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Abstract. This paper is concerned with a stabilized approach to low-order mixed
finite element methods for the Stokes equations. We will provide a posteriori error
analysis for the method. We present two a posteriori error indicators which will
be demonstrated to be globally upper and locally lower bounds for the error of the
finite element discretization. Finally two numerical experiments will be carried out
to show the efficiency on constructing adaptive meshes.
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1 Introduction

In engineering practice we often make use of the low-order mixed finite element meth-
ods because of their advantages in computation. However the discretization form of
the Stokes equations with these elements usually does not satisfy the inf-sup condi-
tion. As a result many methods have been proposed to fix the deficiency, such as the
penalty method [1] and pressure gradient method [2]. It is noted that [3] presents a
new stabilized approach to the equations. After adding an stabilized term G(p, q) to
the variational formulation of the Stokes equations, the discretization form can satisfy
the inf-sup condition and thus has a unique solution. Comparing with other meth-
ods it is much easier in computation because it does not need any approximation of
derivatives, or mesh-dependent parameter.

It is practically important to make a posteriori analysis for a numerical method.
As is known that the most important efficiency of a posteriori analysis lays on con-
structing adaptive meshes [4,5]. Babuška and Rheinboldt started the pioneering work
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about the posteriori error estimation for finite element methods for two point elliptic
boundary value problem [6], see also their work near that period [7, 8]. After that,
many works have been done in this area, see, e.g., [9, 10]. Verfürth derived a poste-
riori error analysis for the Stokes equations [11, 12] and Navier-Stokes equations [13].
In [11] he presented two a posteriori error estimators for the mini-element discretiza-
tion of the Stokes equations and proved that they were upper bound and local lower
bound of the finite element error. These indicators are often changed to be applied to
other situations, see, e.g., [14]. In addition the a posteriori error analysis of many other
discretization forms has been done, see, e.g., [15].

In this paper we present a posteriori error analysis of the stabilized method men-
tioned in the first paragraph. Our work is similar to a posteriori error analysis of a
penalty method [14, 16]. However, one of the useful points of our method is that it
is parameter-free. We give two a posteriori error estimators and show that they are
equivalent to the errors.

The paper is organized as follows. In Section 2, we give a review of the stabi-
lized method for low-order mixed finite element method. Here we choose the P1-P1
velocity-pressure pairs. In Section 3, we prove the equivalence between the a poste-
riori error estimators and the error of the finite element method. In Section 4, two
numerical experiments show the efficiency of our analysis, mainly in constructing
adaptive meshes.

2 The stabilized low-order mixed FEM for the Stokes
equation

Let Ω be a bounded, connected, polygonal domain in R2. We consider the Stokes
equations

− ∆u +∇p = f, in Ω, (2.1a)
∇ · u = 0, in Ω, (2.1b)
u = 0, on Γ := ∂Ω. (2.1c)

We use the standard notations Hk(Ω), ‖ · ‖k, (·, ·)k, k ≥ 0 denote the usual Soblev
space, the standard Soblev norm and inner product, respectively. Especially when
k = 0, L2(Ω) = H0(Ω) denotes the usual Lebegsgue space. We also introduce the
spaces

H1
0(Ω) =

{
ϕ ∈ H1(Ω); ϕ = 0, on Γ

}
,

L2
0(Ω) =

{
ϕ ∈ L2(Ω);

∫

Ω
ϕ = 0

}
.

Next, we give the mixed variational form of (2.1). Find

(u, p) ∈ H1
0(Ω)2 × L2

0(Ω),
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satisfied

a(u, v) + b(v, p) = (f, v), ∀v ∈ H1
0(Ω)2, (2.2a)

b(u, q) = 0, ∀q ∈ L2
0(Ω), (2.2b)

or

L(u, p; v, q) = a(u, v) + b(v, p) + b(u, q) = (f, v), ∀(v, q) ∈ H1
0(Ω)2 × L2

0(Ω), (2.3)

where
a(u, v) =

∫

Ω
∇u : ∇vdΩ, b(u, q) = −

∫

Ω
q∇ · udΩ.

As we all know, the bilinear form L satisfies the following inf-sup condition [17]

inf
(u,p)∈H1

0 (Ω)2×L2
0(Ω)

sup
(v,q)∈H1

0 (Ω)2×L2
0(Ω)

L(
u, p; v, q

)
(|u|1 + ‖p‖0)(|v|1 + ‖q‖0

) ≥ βc > 0. (2.4)

This promises that problem (2.3) has a unique solution.
In order to define a finite element method for the Stokes problem (2.1), we first

introduce Jh, which represents a family of triangulations of Ω, such that

1. the intersection of two different elements is at most a vertex or a whole edge,

2. the ratio of the diameter of any element in Jh to the diameter of its inscribed
circle is bounded by a constant independent of h.

Let P0, P1 denote the space of constant polynomials and the linear polynomials space,
put

R0 =
{

qh ∈ L2(Ω) : ∀T ∈ Jh, ϕ|T ∈ P0
}

,

P1 =
{

ϕ ∈ C(Ω) : ∀T ∈ Jh, ϕ|T ∈ P1
}

,

Xh =
{

P1 ∩ H1
0(Ω)

}2,

Yh = P1 ∩ L2
0(Ω).

Then we can give P1 − P1 discretization of (2.1). Find (uh, ph) ∈ Xh ×Yh,

L(uh, ph; vh, qh) = (f, vh), ∀(vh, qh) ∈ Xh ×Yh. (2.5)

It is known that this (2.5) is not stable and can’t be used directly. In [3] it represents an
stabilization approach, that is to add −G(p, q) to the left side of (2.2b). Find (ũ, p̃) ∈
H1

0(Ω)2 × L2
0(Ω),

a(ũ, v) + b(v, p̃) = (f, v), ∀v ∈ H1
0(Ω)2, (2.6a)

b(ũ, q)− G( p̃, q) = 0, ∀q ∈ L2
0(Ω), (2.6b)
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where

G( p̃, q) =
∫

Ω
( p̃−Π p̃)(q−Πq)dΩ. (2.7)

Here the operator Π : L2(Ω) 7→ R0 has a piecewise constant range. And we assume
that Π is continuous as an operator L2(Ω) 7→ L2(Ω):

‖Πp‖0 ≤ C‖p‖0. (2.8)

Eqs. (2.6) are equivalent to the following form: find (ũ, p̃) ∈ H1
0(Ω)2 × L2

0(Ω),

L̃(ũ, p̃; v, q) = (f, v), ∀(v, q) ∈ H1
0(Ω)2 × L2

0(Ω), (2.9)

where

L̃(ũ, p̃; v, q) = a(ũ, v) + b(v, p̃) + b(ũ, q)− G( p̃, q). (2.10)

We can obtain the stabilization method by restricting (2.6) or (2.9) to the finite element
spaces. That is: find (uh, ph) ∈ Xh ×Yh, such that

a(uh, vh) + b(vh, ph) = (f, vh), ∀vh ∈ Xh, (2.11a)
b(uh, qh)− G(ph, qh) = 0, ∀qh ∈ Yh, (2.11b)

or
L̃(uh, ph; vh, qh) = (f, vh), ∀(vh, qh) ∈ Xh ×Yh. (2.12)

It has been proved that (2.12) is a stable variational problem in [3] because the inf-sup
condition is available with the assumption (2.8)

sup
(vh,qh)∈Xh×Yh

L̃(uh, ph; vh, qh)
‖vh‖1 + ‖qh‖0

≥ C
(
‖uh‖1 + ‖ph‖0

)
, ∀(vh, qh) ∈ Xh ×Yh. (2.13)

In addition after we assume that

‖(I −Π)p‖0 ≤ Ch‖p‖1, ∀p ∈ H1(Ω),

we can have the error estimates [3]

‖u− uh‖1 + ‖p− ph‖0

≤C
(

inf
qh∈Yh

‖p− qh‖0 + inf
vh∈Xh

‖u− vh‖1 + ‖(I −Π)p‖0

)
, (2.14)

where (u, p) is the solution of the Stokes problem (2.1), (uh, ph) is the solution of the
stabilized mixed problem (2.12).

We define
eh = u− uh, εh = p− ph,

and let P0 denote the L2-projection onto P1 and let Ih denote the standard pointwise
interpolation operator by elements of P1.
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3 Error indicators

We represent two types of error indicators, one is linked to the stabilization method,
the other is based on the residual of the finite element discretization.

1. The first kind of indicators
We first define an indicator ηΠ related to G(ph, qh) by

ηΠ = ‖(I −Π)ph‖0. (3.1)

As (uh, ph) is the discrete solution of the Stokes problem, this indicator will be easy to
calculate.

2. The second kind of indicators
For every T ∈ Jh, we define ηT as the following form:

ηT =
{

h2
T
∥∥P0f−∇ph

∥∥2
0,T +

1
2 ∑

E⊂∂T∩Ω
hE

∥∥∥
[∂uh

∂n
− ph · n

]
J

∥∥∥
2

0,E
+

∥∥∇ · uh
∥∥2

0,T

} 1
2

, (3.2)

where the [·]J denotes the jump of (·) across E.
Here we use the full discrete error,

|u− ũ|1 + ‖p− p̃‖0 + |ũ− uh|1 + ‖ p̃− ph‖0. (3.3)

Our aim is to prove the quantity

ηΠ +
(

∑
T∈Jh

η2
T

) 1
2
, (3.4)

is equivalent to the full error.

Theorem 3.1. The a posteriori error estimate

|u− ũ|1 + ‖p− p̃‖0 + |ũ− uh|1 + ‖ p̃− ph‖0

≤C
{

ηΠ +
(

∑
T∈Jh

η2
T + h2

T‖f− P0f‖2
0,T

) 1
2
}

, (3.5)

holds, where C only depends on Ω and the smallest angle in the triangulation Jh.

Proof. We divide the full error into two parts:

|u− ũ|1 + ‖p− p̃‖0 and |ũ− uh|1 + ‖ p̃− ph‖0,

and prove the inequality in two steps.
First, we just consider |u− ũ|1 + ‖p − p̃‖0. We will make use of the property of

b(·, ·). As b(·, ·) satisfies the inf-sup condition

sup
v∈H1

0 (Ω)2

b(v, q)
|v|1 ≥ β‖q‖0, ∀q ∈ L2

0. (3.6)
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Eq. (2.6b) has a unique solution ω ∈ H1
0(Ω)2, so that

b(ω, q) = G( p̃, q), ∀q ∈ L2
0, (3.7a)

|ω|1 ≤ β−1‖(I −Π)‖‖(I −Π) p̃‖0. (3.7b)

Thus ũ−ω and u− ũ + ω belong to the space

V0 =
{

v ∈ H1
0(Ω)2; ∀q ∈ L2

0(Ω), b(v, q) = 0
}

.

By using the ellipticity property of a(·, ·), that is

a(v, v) ≥ α|v|21, ∀v ∈ V0,

we can derive that

α|u− ũ + ω|21 ≤a(u− ũ + ω, u− ũ + ω)
=− b(u− ũ + ω, p− p̃) + a(ω, u− ũ + ω)
=a(ω, u− ũ + ω).

Thus we obtain the following two inequalities:

|u− ũ + ω|1 ≤ Cα−1|ω|1, (3.8a)

|u− ũ|1 ≤ |ũ− u−ω|1 + |ω|1 ≤ (1 + Cα−1)β−1‖(I −Π)‖‖(I −Π) p̃‖0. (3.8b)

Again we use the inf-sup condition of b(·, ·),

β‖p− p̃‖0 ≤ sup
v∈H1

0 (Ω)2

b(v, p− p̃)
|v|1 = sup

v∈H1
0 (Ω)2

−a(u− ũ, v)
|v|1 ≤ C|u− ũ|1. (3.9)

From (3.8) and (3.9), we can derive that

|u− ũ|1 + ‖p− p̃‖0

≤C‖(I −Π) p̃‖0 ≤ C
(
‖(I −Π)ph‖0 + ‖(I −Π)( p̃− ph)‖0

)
. (3.10)

Second, we estimate |ũ− uh|1 + ‖ p̃− ph‖0. In the proof we have to use these two
inequalities

‖v− Ihv‖0,T ≤ ChT|v|1,T, (3.11a)

‖v− Ihv‖0,E ≤ Ch
1
2
T|v|1,E. (3.11b)

By subtracting (2.12) from (2.13) and using (2.6b), (3.11), we can deduce that

L̃(ũ− uh, p̃− ph; v, q)

=
(∇(ũ− uh),∇(v− Ihv)

)− (
p̃− ph,∇(v− Ihv)

)

− (
q,∇ · (ũ− uh)

)− G( p̃− ph, q)
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= ∑
T∈Jh

{
− (

∆(ũ− uh), v− Ihv
)

T +
(∇( p̃− ph), v− Ihv

)
T

+
1
2 ∑

E⊂∂T∩Ω

([∂uh

∂n
− ph · n

]
J
, v− Ihv

)
E

+ (q,∇ · uh)T +
(
(I −Π)ph, (I −Π)q

)
T

}

≤ ∑
T∈Jh

{
ChT‖P0f−∇ph‖0,T|v|1 + Ch

1
2
E

∥∥∥
[∂uh

∂n

− ph · n
]

J

∥∥∥
0,E
|v|1 + ChT‖f− P0f‖0,T|v|1

+ ‖∇ · uh‖0,T‖q‖0,T + ‖(I −Π)ph‖0,T‖I −Π‖‖q‖0,T

}

≤ C
{

ηΠ +
[

∑
T∈Jh

(
η2

T + h2
T‖f− P0f‖2

0,T
)] 1

2
}{|v|1,T + ‖q‖0,T

}
.

Combining this inequality with (2.13), we can conclude that

|ũ− uh|1 + ‖ p̃− ph‖0 ≤ C
{

ηΠ +
[

∑
T∈Jh

(
η2

T + h2
T‖f− P0f‖2

0,T
)] 1

2
}

. (3.12)

From (3.10) and (3.12), we can derive the conclusion. ¤

Theorem 3.2. The following estimates hold,

ηΠ ≤ C
(
|u− ũ|1 + ‖ p̃− ph‖0

)
, (3.13a)

ηT ≤ C
(
|u− ũ|1,T + |ũ− uh|1,T + ‖ p̃− ph‖0,T + hT‖f− P0f‖0,T

)
, (3.13b)

where C only depends on Ω and the smallest angle in the triangulation Jh.

Proof. We will prove the two inequalities respectively.
1. Subtracting (2.6b) from (2.2b), we can obtain

b(u− ũ, q) = −G( p̃, q), ∀q ∈ L2
0.

As G(·, ·) has the following property

G(q, q) = ‖(I −Π)q‖2
0, ∀q ∈ L2

0,

when we choose q = p̃, we can easily get

‖(I −Π) p̃‖0 ≤ C|u− ũ|1,

where C only depends on ‖I −Π‖0 and the norm of b(·, ·).
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Using a triangle inequality, we can conclude that

ηΠ = ‖(I −Π)ph‖0 ≤ C
(|u− ũ|1 + ‖ p̃− ph‖0

)
.

2. In the proof of (3.13b), we will use the property of bubble function. Let λTi, i =
1, 2, 3 denote the barycentric coordinates of T ∈ Jh and Eij, 1 ≤ i ≤ j ≤ 3 denote the
three edge of T with xi and xj as its endpoints. Give two bubble functions

ψT =
λT1λT2λT3∫
T λT1λT2λT3

and ψEij =
λTiλTj∫

Ei j
λTiλTj

,

define two functions on T

wT =
1
2 ∑

E⊂∂T∩Ω
h2

E

[∂uh

∂n
− ph · n

]
J
ψE − ψT

{
|T|2[P0f−∇ph]

+
1
2 ∑

E⊂∂T∩Ω
h2

E

[∂uh

∂n
− ph · n

]
J

∫

T
ψE

}
, (3.14a)

qT = ∇ · uh, (3.14b)

where |T| denotes the area of T. It is obvious that
∫

T
wT = −|T|2(P0f−∇ph),

∫

E
wT =

1
2

h2
E

[∂uh

∂n
− ph · n

]
J
, ∀E ⊂ ∂T ∩Ω.

With these properties we can get

η2
T =h2

T‖P0f−∇ph‖2
0,T +

1
2 ∑

E∈∂T∩Ω
hE

∥∥∥
[∂uh

∂n
− ph · n

]
J

∥∥∥
2

0,E
+ ‖∇ · uh‖2

0,T

=− (P0f−∇ph, wT)T + ∑
EE∈∂T∩Ω

([∂uh

∂n
− ph · n

]
J
, wT

)
E

+ (∇ · uh, qT)T

=− (P0f−∇ph, wT)T +
(4(−ũ + uh)T − (− p̃ + ph), wT

)
T

+
(∇(−ũ + uh)T − (− p̃ + ph),∇wT

)
T +

(∇ · (uh − u), qT
)

T

=(f− P0f, wT)T +
(∇(−ũ + uh),∇wT

)
T + ( p̃− ph,∇wT)T

+
(∇ · (uh − ũ), qT

)
T +

(∇ · (ũ− u), qT
)

T

≤C
{|ũ− uh|1,T + ‖ p̃− ph‖0,T + |u− ũ|1,T

}{‖qT‖0,T + |wT|1,T
}

+ ‖f− P0f‖0,T‖wT‖0,T. (3.15)

Note that

‖qT‖0,T ≤ ηT, |w|1,T ≤ CηT, ‖wT‖0,T ≤ ChTηT, (3.16)

thus we can obtain the conclusion by combining (3.15) and (3.16). ¤
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4 Numerical examples

In our numerical experiments, we use the usual following adaptive algorithm

Solve → Estimate → Refine.

Concretely we solve our problem in the following strategy:

1. Give an initial triangulation J0 and a tolerance η∗. Solve the problem on this triangulation,

2. Compute

ηΠ +
(

∑
T∈Jh

η2
T

) 1
2
;

if it is less than η∗ we get the final solution and stop. Otherwise, go to Step 3,

3. Compute ηΠ,T + ηT and their mean value. Generate a new mesh size h by the method
presented in [18] and go back to Step 2.

The circle of Step 2 and Step 3 is iterated 4–5 times in our computation.
We will present two examples in this section to show the efficiency of our error

estimators in the process of constructing self-adaptive meshes and in estimating the
discretization errors.

Example 4.1. We consider a driven cavity problem in the domain Ω = (0, 1)× (0, 1),
which means that ux = 1, uy = 0 on the upper side and u = 0 on the other three sides.
We start from the initial mesh in Fig. 1 and after 5 steps get Fig. 2, from which we can
see that at the two top corners there are more triangles than other areas. In Figs. 5 and
6, we present the velocity field in uniform mesh and adaptive form mesh after 2 steps
given in Figs. 3 and 4, with nearly the same number of triangles. From these figures
we can see that the solution using the a posteriori error analysis gives a more accurate
approximation to the real situation.

Figure 1: Example 4.1: Initial mesh. Figure 2: Example 4.1: the mesh after 5 steps.
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Figure 3: Example 4.1: Uniform mesh. Figure 4: Example 4.1: Adaptive mesh af-
ter 2 steps.

Figure 5: Example 4.1: Velocity field in
uniform mesh of Fig. 3.

Figure 6: Example 4.1: Velocity field in
adaptive mesh of Fig. 4.

Example 4.2. We consider a problem [19] with a smooth solutions, which are given by

ux = 1.5r
1
2
(
cos(0.5θ)− cos(1.5θ)

)
,

uy = 1.5r
1
2
(
3 sin(0.5θ)− sin(1.5θ)

)
,

p = −6r−
1
2 cos(0.5θ),

in a circular domain with radius 1 and angle 2π, and with a non-homogeneous Dirich-
let boundary conditions on the curved part of the boundary and homogeneous Dirich-
let boundary conditions on the straight part of the boundary. We start the strategies
from the initial triangulations, as in Fig. 7 and refine 3 times shown in the following
three figures. It is observed that in the noncontinuous area, there are much more ele-
ments than these in the continuous area. In Table 1, we present the ratio of the error
indicators and the discrete error, which is defined as the effective index in [20]. Here
N is the number of element in the triangulations. At the same time, we compare the
|eh|1/|u|1 and ‖εh‖0/‖p‖0 in with adaptive mesh and uniform mesh. In the last two
columns, we give |ēh|1/|u|1 and ‖ε̄h‖0/‖p‖0 as the discretization errors in uniform
meshes. From the result, we can obviously see the advantage of adaptive mesh.
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Figure 7: Example 4.2: initial mesh. Figure 8: Example 4.1: mesh after step 1.

Figure 9: Example 4.2: mesh after step 2. Figure 10: Example 4.2: mesh after step 3.

Table 1: The errors and the effective index.

Mesh N ratio |eh |1
|u|1

‖εh‖0
‖p‖0

N |ēh |1
|u|1

‖ε̄h‖0
‖p‖0

1 805 2.87335 0.180503 0.239083 795 0.236052 0.34612
2 1490 3.32213 0.126404 0.146115 1486 0.214606 0.307636
3 2848 3.74112 0.0884136 0.0928755 2889 0.183395 0.257435

Acknowledgements

The research is supported by the NSF of China (No. 10971166) and the National Basic
Research Program (No. 2005CB321703).

References

[1] G. F. CAREY AND B. KRISHNAN, Penalty approximation of Stokes flow, Comput. Method.
Appl. Mech. Eng., 42 (1984), pp. 183–224.

[2] J. BLASCO AND R. CODINA, Stabilized finite element method for the transient Navier-Stokes
equations based on a pressure gradient projection, Method. Appl. Mech. Eng., 182 (2000), pp.
277–300.



Y. N. He, C. Xie and H. B. Zheng / Adv. Appl. Math. Mech., 6 (2010), pp. 798-809 809

[3] P. B. BOCHEV, C. R. DOHRMANN AND M. D. GUNZBURGER, Stabilization of low-order
mixed finite elements for the Stokes equations, SIAM. J. Numer. Anal., 44 (2006), pp. 82–101.

[4] P. MORIN, R. H.NOCHETTO AND K. G. SIEBERT, Date oscillation and convergence of adap-
tive FEM, SIAM. J. Numer. Anal., 38 (2000), pp. 466–468.
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[12] R. VERFÜRTH, A posteriori error estimators for the Stokes equations II non-conforming dis-
cretizations, Numer. Math., 60 (1991), pp. 235–249.
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