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Abstract. In this paper, with the use of the moving boundary computational fluid
dynamics method, we developed a new real-time optimal control method which
can be used to find the optimal flapping mode of a fixed flapping plate. The results
show that there is a 54.0% increase in the thrust obtained by the unsteady optimal
flapping rule. In addition, to reduce the cost of computation and to have a better
understanding of the flapping rule, the maximum velocity at the end tip of the
flapping plate is taken as the objective functional, with which the thrust is increased
by 22.9%.
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1 Introduction

The Nature creates millions of strange creatures during the billions years of evolution,
and every day these living creatures move around the world in their graceful, unique
and the most energy saving way. But up to now, very little has been known about
the mechanism of fluid mechanics of various unsteady boundary motions, such as
the moving body surface, associated with the locomotion of these creatures. We hope
to better understand the inscrutability of animal motion by means of studying the
unsteady optimal control of the adaptive smart surface in complex flows.

On the other hand, in the community of fluid mechanics, the techniques of un-
steady control and flow control with compliant surface are attracting researchers at-
tentions. The rapid development of MEMS, MAFC and smart materials, such as the
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shape memory alloy, makes the dream of control of fluid motion with an optimal sur-
face to come true.

As the first step, we study the optimal flapping rule of a flapping plate, to find
the optimal motion mode. A new real-time optimal control method, which is applied
to adaptively control of the flapping rule of a fixed flapping plate, is developed. In
addition, in order to reduce the cost of computation and deepen the understanding of
the optimal flapping rule, we take the maximum velocity at the end tip of the plate
as the objective functional and optimize the rule directly. A relevant study of self-
propelled swimming of a fish and fish school can be found in [1].

2 Numerical method and the algorithm of optimal control

2.1 Numerical algorithm and code verifications

We used the finite-volume method provided by Ferziger & Peric [2] to solve the two-
dimensional version of the incompressible Navier-Stokes and continuity equations, in
the following Cartesian-component (i=1, 2) integral form,

∂

∂t

∫

Ω
ρuidΩ +

∫

S
ρuiundS =

∫

S
τijnjdS−

∫

S
pnidS, (2.1)

∫

S
ρundS = 0, (2.2)

where τij is the viscous stress tensor. A second-order implicit three-time-level scheme
was used for integration in time. The surface integral in (2.1) is split into four control
volume (CV) face integrals approximated by the midpoint rule. As a result, the spatial
precision of the algorithm is of second order.

When the cell faces move, the conservation of mass (and all other conserved quan-
tities) is not necessarily ensured if the grid velocities are used to calculate the mass
fluxes. Mass conservation can be obtained by enforcing the so-called space conservation
law, which can be thought of as the continuity equation for zero fluid velocity:

d
dt

∫

Ω
dΩ−

∫

S
~ub ·~n dS = 0, (2.3)

where ~ub is the velocity of CV cell. This equation describes the conservation of space
when the CV changes its shape and/or position with time. In discretized form, (2.3)
reads

(∆Ω)n+1 − (∆Ω)n

∆t
= ∑

c
(~ub ·~n)cSc, c = e, w, n, s, (2.4)

where e, w, n, and s stand for the right, left, top and bottom faces of the cell, respec-
tively. For the implicit Euler scheme, the discretized continuity equation becomes

(ρ∆Ω)n+1 − (ρ∆Ω)n

∆t
+ ∑

c
ṁc = 0 , c = e, w, n, s, (2.5)
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Table 1: Comparison of several results for cylinder flow at Re = 100.

Std Cd (avg) Cl (rms)
Current study 0.178 1.490 0.261
Lai & Peskin [4] 0.165 1.4473 0.3299
Dias & Majumdar [3] 0.171 1.395 0.283
Kim, Kim & Choi [5] 0.165 1.33 —
Zdravkovich [6] 0.165 1.40 —

where ṁc is the mass flux through a cell face ‘c’. The unsteady term has to be treated in
a way consistent with the space conservation law. For incompressible flows, the con-
tribution of the grid movement to the mass fluxes has to cancel the unsteady term so
that (2.2) is satisfied in the moving grid system. The validation and details of the algo-
rithm can be found in [2], which contains standard convergence and grid refinement
tests for similar bluff-body flow, as shown in [2], p. 253.

For flow over the cylinder at Re=100, Table 1 compares the result obtained by
this numerical algorithm and those from experiment and other numerical simulations,
indicating that our result is reasonably good. While our computed Std is somewhat
larger than most results in the table, it is quite close to the numerical result of Dias &
Majumdar [3].

It is important to understand the effect of variation of flow parameters with dif-
ferent numbers of grids on the surface of flapping plate. Two sets of grids are used to
compute the flow parameters of a NACA0012 airfoil at Rec=1000, α=12o. As shown
in Figs. 1 and 2, in the direction of~j the grids distributed unevenly, and the grid num-
bers for Grid-1 and Grid-2 are 240× 40 and 340× 40, respectively. There are 100 and
200 grid points on the surface of the airfoil, respectively.

(a). Grid 1 (b). Local magnification

Figure 1: Grid 1 (240× 40) and its local magnification.

(a). Grid 2 (b). Local magnification

Figure 2: Grid 2(340× 40) and local magnification.
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Figure 3: The comparison of flow
parameters with two sets of grids.
(a). Lift-to-drag ratio; (b). Lift; (c).
Drag.

Fig. 3 presents the flow parameters for the two grids. It is observed that the dif-
ferences between the flow parameters obtained are not big, but the time needed in the
simulation of flow with Grid-2 is several times longer than that with Grid-1. Therefore,
the grid number used in the simulation is 240× 40.

2.2 The optimization method and its verification

The optimization method used in this study solves nonlinearly constrained minimax
problems [7]. The problem to be solved is the following. Let m1,m2,m3 be integers with
0≤m1≤m2≤m3, fi be given real numbers, and gi be given smooth functions. We wish
to 




min ω,
| fi − gi(x1, · · · , xn)| ≤ ω, 1 6 i 6 m1,
gi(x1, · · · , xn) ≤ ω, m1 + 1 6 i 6 m2,
gi(x1, · · · , xn) ≤ 0, m2 + 1 6 i 6 m3,

(2.6)

by selecting the optimal values of x1, · · · , xn.
In order to verify the reliability of this optimization method, the following opti-

mization problem is chosen and solved with the method in [8]:

min f (~x) = (x1 − x4)2 + (x2 − x5)2 + (x3 − x6)2, (2.7)

which is subject to the constrain conditions




5− x2
1 − x2

2 − x2
3 > 0,

1− (x4 − 3)2 − x2
5 > 0,

8− x6 > 0,
x6 − 4 > 0.

(2.8)

The exact solution for (2.7) – (2.8) is ~x∗=(1, 0, 2, 2, 0, 4), and the corresponding optimal



406 C. J. Wu, L. Wang / Adv. Appl. Math. Mech., 3 (2009), pp. 402-414

Table 2: The comparison between approximate and exact solutions. V: variables; IV: initial values; OFV:
objective functional values; N: numbers of iteration; ES: exact solution.

V IV Analytical derivate Difference derivate ES
x1 1.0 0.99999999790387E+00 0.99999991804778E+00 1.0
x2 1.0 -0.49112942115734E-08 -0.46570133988029E-10 0.0
x3 1.0 0.20000000410220E+01 0.20000000410220E+01 2.0
x4 3.0 0.19999999999855E+01 0.19999999999615E+01 2.0
x5 0.0 -0.466916224982010E-08 -0.385890276931850E-08 0.0
x6 5.0 0.40000000000000E+01 0.39999999997850E+01 4.0

OFV 21.0 0.49999999998910E+01 0.49999999988800E+01 5.0
N - 40 55 -

index is f (~x∗) =5. In the optimization process, it is needed to find the derivatives of
object functional and the constrain condition. There are two ways to get the deriva-
tives, i.e., using the analytical derivative expression and the middle point difference
formula of the code, which is

∂ f
∂xi

=
1

2h

[
f (x1, · · · , xi + h, · · · , xn)− f (x1, · · · , xi − h, · · · , xn)

]
. (2.9)

In many optimization problems, it is very difficult to give the explicit expression of the
object functional and the constrain condition. Therefore, the second method is widely
used in practice. From Table 2, one can find that the results obtained by both methods
are very close to each other, with the errors below 10−8.

2.3 The procedure of unsteady optimal control

The procedure of unsteady optimal control is as follows:

1. Select parameters to be optimized and determine their initial values ~x0;

2. Compute the flow field on the initial grid till t0, at which the process of control start;

3. Save the flow field, the lift F0
y and the thrust F0

x at t0. Calculate the value of the objective

functional J(~x0);
4. Find a search step ~h and reconstruct the new flapping rule with ~x0 +~h;

5. Create new grids with the new rule. Then, interpolate the flow field at t0 into the new grids
to get the new initial field.

6. Use the new grids and the new initial field to compute the flow field at t0 + dt (dt is the

time step) and the value of objective functional J(~x0 +~h);
7. If J(~x0 +~h)<J(~x0) and all of the constrains are satisfied, let ~x0=~x0 +~h, and J(~x0)=J(~x0 +

~h);
8. The process of optimization will be stopped if the value of objective functional can not be

reduced anymore and the process of 3-7 will be repeated otherwise.

9. Compute the flow field on the new grids corresponding to the optimized rule till t0 + ∆t
(∆tÀdt) at which the next control starts;

10. The program will be stopped if the terminal condition is satisfied and let t0=t0 + ∆t; otherwise
repeat 3-9.
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3 Numerical results

Here, we apply the above moving boundary CFD and the optimal control methods in
the study of unsteady optimal control of the flapping rule, in order to get the maxi-
mum thrust with an unchanged flapping frequency. Since we want to obtain the un-
steady optimal flapping rule, i.e., the optimal flapping rule is changed with time and
flow condition, the history of flow will be effected to the resulting unsteady optimal
flapping rule, therefore it is much more difficult than the usual optimization, in which
the flow history dose not influence the result.

3.1 Numerical simulation of a flapping plate

In this paper, both simulation and control are based on the flapping rule [9] which
is the result obtained by fitting the swimming motion of a real fish. The rule of the
centerline of the fish body is

H(x, t) = h1(x) cos{ω[t− k1(x)]}+ h3(x) cos{3ω[t− k3(x)]}
+h5(x) cos{5ω[t− k5(x)]}, (3.1)

where 



h1(x) = −0.073 + 0.093/(x + 1.0) + 0.125x2,
h3(x) = 0.001 + 0.001x3 + 0.005x10,
h5(x) = 0.005− 0.002x3 + 0.003x10,
k1(x) = −1.392x + 2.281 sin(x)− 0.985 cos(x),
k3(x) = 2.781x− 3.102 sin(x)− 0.119 cos(x),
k5(x) = −0.215 + 0.304x2 + 0.028 cos(10.0x).

(3.2)

The distribution of the thickness of the plate is the same as NACA0012. In one period,
the process of flapping is shown in Fig. 4 by solid lines.

C-type grids of total 240 × 40 are used. The flapping period of plate is T=1.0.
The inflow velocity is u0=0.05. The kinematic viscosity coefficient is ν=1.5 × 10−5.
We take the projected length of plate in x-direction as chord and its value is c=0.1 in
the computational domain. Therefore, the Reynolds number based on the chord is
Rec=333. In addition, the thrust is defined as the negative value of the total force in
x-direction. If inflow velocity is small, the main part of thrust will be positive.

For the boundary conditions, on the moving surface of flapping plate, the non-slip
boundary condition is applied, on which the velocities are obtained from the optimal
control process; The left boundary is an inflow boundary. The right, top and bottom
boundaries are continuous outflow boundaries. For the initial condition, set the ve-
locity of the whole field to be ~u=0.05~i, where~i is the unit vector at x-direction.

Fig. 5 shows the vorticity field and the vectors represent the relative velocity field
from which the averaged flow has been removed in one period. It can be seen that the
reverse Kármán vertex street is created and developed.
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Figure 4: Comparing of flapping processes before and after the unsteady optimization in one period.

3.2 Unsteady optimization of flapping rule

In order to increase the thrust under the condition of a fixed flapping frequency, the
flapping rule is dynamically optimized. The flapping rule of the plate’s centerline is
the same as (3.1); h1(x), h3(x), h5(x) are the same as (3.2), but k1(x), k3(x), k5(x) in (3.2)
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Figure 5: Test 3.1: Vorticity field and relative velocity field with the original rule in one period.
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Figure 6: Test 3.2: Vorticity field and relative velocity field with the optimized rule in one period.
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are replaced by




k1(x) = P1x + 2.281 sin(x)− 0.985 cos(x),
k3(x) = 2.781x + P2 sin(x)− 0.119 cos(x),
k5(x) = −0.215 + P3x2 + 0.028 cos(10.0x),

(3.3)

where P1, P2 and P3 are parameters to be optimized, which may not be unique, i.e.,
one can chose others to do the optimal control. Chose the initial values for P1, P2 and
P3 as

P0
1 = −1.392, P0

2 = −3.102 and P0
3 = 0.304.

In order to obtain the maximum thrust, following objective functional is used:

J =
|Fy − F0

y |
|F0

y |
+ 10

Fx

|F0
x |

. (3.4)

To reduce J, the total force in the y-direction (lift) should be constrained and the total
force in the x-direction should be decreased as much as possible. The constraint is
∆ymax<0.002, where ∆ymax is the maximum displacement of the centerline within one
step of optimization.

The total computational time is 15, and the optimization time step is ∆t=0.03. Fig.
7 shows the history of thrust in unsteady optimization process. It can be seen that
both the maximum and the minimum of the thrust are increased continually. When
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Figure 7: Thrusts in the process of optimization.
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Figure 8: Thrusts obtained with the original rule and the optimized rule (unsteady optimization).
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Figure 9: Thrusts obtained with the original rule and the optimized rule (characteristic optimization).
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Figure 10: The phase diagrams of the tip of the original rule and the unsteady optimized rule.

t>8, the peak of thrust is almost fixed. Therefore, we take the rule at t=7.95 to do the
simulation again, and compare the results with the original ones.

At t=7.95, the three optimized parameters are P1=−2.178, P2=−3.098 and P3=
0.398. The dashed line in Fig. 4 shows the process of flapping controlled by the opti-
mization rule. Comparing it with the solid line, it can be seen that the flapping rule
has been changed greatly. Some wavy motion are overlapped to the surface of the
plate. Fig. 6 shows that the reverse Kármán vertex street is strengthened remarkably;
therefore the thrust is increased. From Fig. 10, it can be seen that the phase diagram
of the end tip of plate has been changed greatly, but the needed power is not changed
much. Fig. 8 shows the thrust with the optimized rule. There is a 54.0% increase in
average value of the thrust. Therefore, the new rule, which is the combination of flap-
ping and wavy motion, can increase the flapping efficiency at the unchanged flapping
frequency. This result is particularly interesting since it is known that a prior designed
moving wavy wall can be used in the drag reduction flow control [10], but the wavy
motion in this study is the result of optimal control of the flapping rule.

3.3 Characteristic optimization of flapping rule of the plate

In the last section, the thrust is increased greatly with the method of unsteady opti-
mization of the flapping rule of the plate. In the process of optimization, the Navier-
Stokes equations have to be solved several thousand times repeatly. Therefore, the
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Figure 11: Flapping processes with original rule and characteristic optimized rule in one period.

total computational time is very long. In this section, first, we compare the origi-
nal rule with the unsteady optimized one. The purpose is to find some characteristic
parameters. Then, we will take these parameters as objects and optimize the rule di-
rectly. As a result, the cost of computation is reduced, but the efficiency of flapping is
still increased compared with the oringial one.

Let us first check the velocity and amplitude of the end tip of plate. Fig. 10 shows
the phase diagram of the original rule and the unsteady optimized rule. From the fig-
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Figure 12: The phase diagrams of the tip of the original rule and the characteristic optimized rule.

ure, it can be seen that both the maximum velocity and the amplitude are increased.
As a test, we take the maximum velocity of the tip as the object in the direct optimiza-
tion. The objective functional is

J = −|vtail |. (3.5)

Because the analytic function of flapping rule is known, velocity can be calculated
easily. As in the last section, we take the same three parameters in (3.3) as optimal pa-
rameters, and initial values and optimal algorithm are the same. In such way, in the di-
rect optimization of the maximum velocity of the tip, only a few seconds are needed to
get the result, and the following three optimized parameters P1=−1.5262, P2=−2.7995
and P3=0.0995, are obtained.

As shown in Fig. 11, the flapping mode of characteristic optimized rule is not
changed too much compared with the original one. Fig. 12 shows the phase dia-
grams of the tip of the original rule and the characteristic optimized rule. It is seen
that the peak of the maximum velocity is increased greatly, and the amplitude is de-
creased slightly and becomes symmetrical. The difference of flapping modes between
the original rule and the unsteady optimized rule exist all over the plate. But the main
difference between the original rule and the characteristic optimized rule only lies at
the end tip of plate. Fig. 9 shows the thrusts of the original rule and the characteristic
optimized rule. Compared with Fig. 8, it can be seen that the positive thrust peak of
the characteristic optimized rule is the maximum of the three. However the negtive
thrust peak of the characteristic optimized rule is far less than the others. Therefore,
compared with the original one, there is only a 22.9% increase in thrust. The main
reason is that the searching space of characteristic optimization is much smaller than
that of unsteady optimization.

4 Conclusions

It is calculated that the method of unsteady optimal control can be used to optimize
the flapping rule of a fixed plate. Using this method, we can get a new flapping mode
which is a combination of flapping and wavy motion. The results show that the thrust
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increases 54.0% with the unsteady optimized flapping rule at the same frequency. On
the other hand, in order to reduce the cost of computation, we take the maximum
velocity at the end tip of the plate as the objective functional in the direct optimization.
As a result, there is a 22.9% increase in the thrust with this method.
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