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Abstract. In this paper, an immersed boundary algorithm is developed by combin-
ing the ghost cell method with adaptive tree Cartesian grid method. Furthermore,
the proposed method is successfully used to evaluate various inviscid compress-
ible flow with immersed boundary. The extension to three dimensional cases is
also achieved. Numerical examples demonstrate the proposed method is effective.

AMS subject classifications: 65M06, 65M50, 76J20
Key words: Ghost cell method, Cartesian grid, adaptive tree method, inviscid compressible
flow.

1 Introduction

This paper focuses on the Ghost Cell method (GCM) and its applications for inviscid
compressible flow on adaptive tree Cartesian grids. As we all know, a continuous
obstacle of computational fluid dynamics (CFD) for configurations with complex ge-
ometry is the problem of mesh generation. Although a variety of grid generation tech-
niques are now available, the generation of a suitable grid for a complicated, multi-
element geometry is still a tedious, difficult and time-consuming task.

At present, the spatial discretization methods mainly have three approaches [1, 2]
for dealing with complicated geometry: unstructured grids, body-fitted curvilinear
grids, and Cartesian grids. Unstructured grids mainly use triangles in two dimen-
sional flow, tetrahedrons or prisms in three dimension. The advantages lie in the fa-
cility of mesh generation for complicated geometry. But the generation is not toilless,
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and still hard to get a good quality grid. Also the memory requirements and com-
putational time are in general high. The main advantage of structured grids follows
from the property that the indices i, j, k represent a linear address space (computa-
tional space), since it directly corresponds to how the flow variables are stored in the
computer memory. Furthermore, more importantly in CFD applications, it gives more
accurate results due to the discretisation methods used in most flow solvers. But there
are also disadvantages. These are the generation of single structured grids for com-
plex geometries, also time-consuming, and it can produce highly skewed grids too.
In order to deal with complicated configurations, multiblock structured grids must be
used. However, very long times are still required for the grid generation in the case of
complex configurations.

A third alternative is the Cartesian grid approach. Conceptually, this approach
is quite simple. Solid bodies are cut out of a single static background mesh and their
boundaries represented by different types of cut cell, or solid bodies are equipped with
ghost cells using the immersed boundary. Most previous work on Cartesian grids for
the compressible Euler equations are based on Cartesian finite volume method [3]. But
these methodologies may suffer stability problems when an explicit time step is used,
cut cells become very small, and degenerate cells will be encountered. Generally, in
two dimensions, a degenerate cell is defined as a cut-cell where the irregularly shaped
(embedded) boundary (i) intersects the cell at more than two points or (ii) interacts
any cell face at more than 1 point [4]. Some technique must be employed to overcome
those problems and time step stability restrictions [4, 5]. Jia et al. [4] present a robust
and efficient hybrid cut-cell/ghost-cell method to overcome the degenerate cell, and
the heat equations are considered. Several authors [2, 6] use a merging technique,
where small irregular cut cell is merged together with a neighboring regular grid cell.
By using this merging technique, the conservation is automatically maintained. But
this method increases the amount of geometry processing. Other methods include
Berger et al. [7, 8] use rotated boxes (h-box method) to enhance stability and, Colella
and coworkers [9, 10] use flux-redistribution procedures. Furthermore, embedded or
immersed boundary ghost cell methods may be also a good choice, and Cartesian grid
finite difference schemes for CFD problems have proven to be quite efficient.

Recently, Sjögreen and Petersson [3] develop an embedded boundary finite dif-
ference technique for solving the compressible two- or three-dimensional Euler equa-
tions in complex geometries on a Cartesian grid, and slope limiters are used on the
embedded boundary to avoid non-physical oscillations near shock waves. Dadone
and Grossman [11, 12] provide a novel finite difference ghost cell method on a Carte-
sian grid, which considers the effect of curvature, and enforces symmetry conditions
for entropy and total enthalpy along a normal to the body surface. The results on
Cartesian grids indicate that the ghost cell method of [11,12] is remarkably convergent
in grid and presents dramatic advantages with respect to the widely used first- and
second-order pressure extrapolation techniques on body-fitted polar grids. In above
mentioned papers of embedded or immersed boundary ghost cell methods, uniform
grid or any grid clustering near the body are used, which must be maintained to the



666 J. Liu, N. Zhao, O. Hu / Adv. Appl. Math. Mech., 5 (2009), pp. 664-682

far-field boundary. In [13], Dadone and Grossman give a far-field coarsening and
mesh adaptation method for Cartesian grids. Cartesian grids in conjunction with tree
data structure are a natural choice for solution-adaptive grids. In this paper, the ghost
cell methods with the adaptive tree Cartesian grids, we make a further study for the
ghost cell immersed boundary method in inviscid compressible flows, and give some
applications of the proposed method. Moreover, the conservation of the method is
studied. The extension to three-dimensional flow is also presented.

The remainder of the paper is arranged as follows. In section 2, the high order
numerical scheme for Euler equation is described. The boundary treatment is shown
in section 3. In section 4, we give the tree data structure and the treatment based
grid adaptation. The numerical results obtained using the ghost cell method on the
adaptive Cartesian grid are presented in section 5. Concluding remarks are made in
the final section.

2 Governing equations and numerical methods

2.1 Governing equations

The inviscid compressible Euler equations can be given in vector form explicitly ex-
pressing the conservation laws of mass, momentum and energy. The equations in a
Cartesian coordinate system can be written as

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)
∂y

+
∂H(U)

∂z
= 0, (2.1)

where

U =




ρ
ρu
ρv
ρw
ρE




, F =




ρu
ρu2 + p

ρuv
ρuw

u(ρE + p)




, G =




ρv
ρuv

ρv2 + p
ρvw

v(ρE + p)




, H =




ρw
ρuw
ρvw

ρw2 + p
w(ρE + p)




.

The variables p, ρ, u, v, w are the pressure, the density, and the three Cartesian com-
ponents of the velocity vector, respectively, and E represents the total energy per unit
mass. The pressure p is obtained using an equation of state for ideal gases

p = (γ− 1)
(

ρE− 1
2
(u2 + v2 + w2)

)
. (2.2)

2.2 Numerical methods

In order to solve the multi-dimensional Euler equations, dimensional splitting is ap-
plied. We use one-dimensional Godunov’s method in each coordinate direction, re-
spectively. A MUSCL-type extrapolation using a minmod slope limiter, with a formal
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second order accuracy in space, has been applied to extrapolate the conserved vari-
ables onto the left- and right-hand sides of each cell face. An approximate Riemann
solver is used to get face flux. For every one-dimensional problem, time discretization
use the optimal second TVD Runge-Kutta method [15].

A particularly simple and robust approximate Riemann solver, called HLL, was
proposed by Harten, Lax and van Leer in [14]. But it has the serious flaw of diffusing
contact surfaces. This is mainly because the HLL solver reduces the exact Riemann
problem to two pressure waves and therefore neglects the contact surface. An im-
proved version of the HLL Riemann solver, named HLLC, is proposed by Toro [16],
which is a modified three waves solver. This HLLC scheme is found to have the fol-
lowing properties [17]: (1) exact preservation of isolated contact and shear waves, (2)
positivity preserving of scalar quantity, and (3) enforcement of entropy condition. The
HLLC solver is versatile, and has been successfully used in various inviscid or vis-
cous compressible flow on multifarious grids. Due to the significant advantages, in
this work, HLLC solver is adopted as the approximate Riemann solver to discrete the
convection flux on adaptive tree Cartesian grids.

The HLLC flux is defined by [16, 18]

FHLLC =





Fl , if SL > 0,
F(U∗

l ), if SL ≤ 0 < SM,
F(U∗

r ), if SM ≤ 0 ≤ SR,
Fr, if SR < 0,

(2.3)

where

U∗
l =




ρ∗l
(ρu)∗l
(ρv)∗l
(ρw)∗l
(ρE)∗l




= Ωl




ρl(SL − ql)
(SL − ql)(ρu)l + (p∗ − pl)nx
(SL − ql)(ρv)l + (p∗ − pl)ny
(SL − ql)(ρw)l + (p∗ − pl)nz
(SL − ql)(ρE)l − plql + p∗SM




,

U∗
r =




ρ∗r
(ρu)∗r
(ρv)∗r
(ρw)∗r
(ρE)∗r




= Ωr




ρr(SR − qr)
(SR − qr)(ρu)r + (p∗ − pr)nx
(SR − qr)(ρv)r + (p∗ − pr)ny
(SR − qr)(ρw)r + (p∗ − pr)nz
(SR − qr)(ρE)r − prqr + p∗SM




,

F∗l ≡ F(U∗
l ) =




ρ∗l SM
(ρu)∗l SM + p∗nx
(ρv)∗l SM + p∗ny
(ρw)∗l SM + p∗nz
((ρE)∗l + p∗)SM




, F∗r ≡ F(U∗
r ) =




ρ∗r SM
(ρu)∗r SM + p∗nx
(ρv)∗r SM + p∗ny
(ρw)∗r SM + p∗nz
((ρE)∗r + p∗)SM




,

Ωl ≡ (SL − SM)−1, Ωr ≡ (SR − SM)−1,
p∗ = ρl(ql − SL)(ql − SM) + pl = ρr(qr − SR)(qr − SM) + pr,
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and
q ≡ unx + vny + wnz,

with ~n=[nx, ny, nz]T being the unit normal vector to the interface. Intermediate wave
velocity SM is taken from Batten et al. [19]

SM =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr

ρr(SR − qr)− ρl(SL − ql)
.

Signal velocities SL and SR are defined as

SL = min
(
λ1(Ul), λ1(URoe)

)
,

SR = max
(
λm(Ur), λm(URoe)

)
,

with λ1(URoe) and λm(URoe) being the smallest and largest eigenvalues of the Roe
matrix.

In the approximate Riemann solvers, a higher-order approximation must be in-
terpreted in terms of flux values to achieve second order accuracy at control-volume
boundaries. This paper use van Leer’s monotone upstream-centred scheme for con-
servation laws (MUSCL) approach to get second-order accuracy, and minmod limiter
to damp spurious oscillation, which are shown as follows [20]

uR
j+ 1

2
= uj+1 − 1

4

[
(1− k)∆̃j+ 3

2
u + (1 + k) ˜̃∆j+ 1

2
u
]

,

uL
j+ 1

2
= uj +

1
4

[
(1− k) ˜̃∆j− 1

2
u + (1 + k)∆̃j+ 1

2
u
]

,
(2.4)

where

∆̃j+ 1
2
u = minmod(∆j+ 1

2
u, ω∆j− 1

2
u),

˜̃∆j+ 1
2
u = minmod(∆j+ 1

2
u, ω∆j+ 3

2
u),

minmod(x, ωy) = sgn(x) max{0, min[|x|, ωysgn(x)]},

and k is a coefficient of MUSCL scheme. When set k=1/3 , we can get a third order
upwind scheme for uniform grid. ω is a constant specified by user, generally, ω=1.

3 Ghost cell methods on Cartesian grids

Recently, Dadone and Grossman [11, 12] present some systemic results about a novel
ghost cell method for static body on Cartesian grids. In their papers, the ghost cell val-
ues are developed from an assumed flow field model in vicinity of the wall consisting
of a vortex flow with locally symmetric distribution of entropy S and total enthalpy H
per unit mass along a surface normal, and take into account the effect of curvature. If
we make R the signed local radius of curvature of the wall, Vt the velocity component
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tangential to the body surface, then this flow model satisfies the normal momentum
equation

∂p
∂~n

= −ρ
(Vt)2

R
. (3.1)

The above equation is equipped with the nonpenetration boundary condition Vn=V ·
~n=0, and the antisymmetric normal derivative ∂S/∂~n and ∂H/∂~n along the surface
normal to the body in the vicinity of the body. These entropy and total enthalpy dis-
tributions will produce zero normal derivatives when the flow is irrotational. The
method has shown to produce superior accuracy compared to the classical surface
boundary condition in [11,12]. In view of many good characters, the method has been
successfully used for unstructured grid by Wang and Sun in [21].

3.1 Two-dimensional ghost cell method on Cartesian grids

In this study, the body is immersed into the Cartesian volume grid. In order to imple-
ment the ghost cell methodology for an immersed boundary, we need to first identify
cells whose centers are inside the solid, and then determine the ghost cells. Solid cells
can be identified by ray-tracing. Here, two closest rows of solid cells near the body
surface are identified as the ghost cells (GC). Those cells are shown in Fig. 1. Fol-
lowing this, we need to devise a scheme that will allow us to compute the value of
the variables at each of these ghost cell centers such that the boundary condition on
the immersed boundary in the vicinity of the ghost-cell is satisfied. Here, the ghost
cell method for two dimensional inviscid flow on Cartesian grids use the following
equations described by [11]

pGC = pIP − ρIP
V2

tIP
R

∆n, (3.2)

ρGC = ρIP

(
pGC

pIP

) 1
γ

, (3.3)

V2
tGC = V2

tIP +
2γ

γ− 1

(
pIP

ρIP
− pGC

ρGC

)
, (3.4)

VnGC = −VnIP, (3.5)

where IP denotes the image point concerning the relevant ghost cell (GC), and ∆n
indicates the distance between the IP and GC. Then, the nonpenetration boundary
condition is satisfied automatically. Using the surrounding fluid cells, the values at the
image points IP can be achieved by a bilinear interpolation for two dimensional flow,
a trilinear interpolation for three dimensional flow. In the above procedure, a situation
may be encountered where one of the fluid cells surrounding the image point is the
ghost cell itself [22, 23], see for instance the point IP1 shown in Fig. 1. In this case, we
only use a linear interpolation. It is also the case that the surrounding interpolation
stencil for image point of ghost cell contains other ghost cells. This situation only takes
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Figure 1: 2D schematic describing ghost cell method used in the current solver.

into account the fluid cells to achieve the value. In this special case, the interpolation
formula at the image point uses the following equation

φIP =

(
m

∑
i=1

1
ri

φi

) /(
m

∑
i=1

1
ri

)
, (3.6)

where ri indicates the distance between the image point IP and the fluid cell surround-
ing IP, m is the total number of the fluid cells.

In order to evaluate the pressure pGC at ghost cell in Eq. (3.2), for an arbitrary
curved boundary, we also need to estimate the local curvature. Here we adopt the
method suggested by Wang and Sun [21] for two dimensional flow. Consider a curved
boundary shown in Fig. 2. To estimate the curvature for body surface A-B, firstly we
use A-B and the point to the left of the boundary face (point L f t) to make one estimate,

Lft

A

B
Rgt

Figure 2: Estimation of local curvature for 2d body.
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and then we use A-B and the right point Rgt to perform the other estimate, which is
given in [21]. Then, a simply average of the two estimates may obtain the final radius.
The local averaged radius is used as the final approximation of the local curvature.
However, if either point A or B is a sharp corner, then we only use the estimate from
the three points, avoiding the sharp corner.

3.2 Three-dimensional ghost cell method on Cartesian grids

For three-dimensional flow, the extension is as follows [12]

pGC = pIP − ρIP
Ṽ2

IP
R

∆n, (3.7)

ρGC = ρIP

(
pGC

pIP

) 1
γ

, (3.8)

VnGC = VGC ·~n = −VIP ·~n, (3.9)

Ṽ2
GC = Ṽ2

IP +
2γ

γ− 1

(
pIP

ρIP
− pGC

ρGC

)
, (3.10)

V̂GC = 0, (3.11)

where the vector ~n is normal to the body surface, Ṽ=V − (V ·~n)~n is in the direction
of the streamline projected onto the surface, and V̂ the velocity component normal to
~n and Ṽ.

The method of [12] for curvature in Eq. (3.7) is very complicated, which need to
find the intersection of the body surface with the plane formed by the tangent to the
surface streamline and the surface normal. If the geometry is a sphere, the radius of
the local curvature is simply the radius of the sphere. For an arbitrary 3D body, some
methods must be developed to estimate the local curvature. In practical computation,
for simplicity, we can use local averaged radius as the approximation of the curvature
near the body surface. Given arbitrary four noncoplanar points A, B, C and D, we can
find the radius by solving the following equations

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 = R2, i = A, B, C, D.

If we set the volume of the tetrahedron ABCD is Ω,

|AB| = a, |AC| = b, |AD| = c, |BC| = r, |BD| = q, and |CD| = p,

then

R =
1

24Ω

√
(ap + bq + cr)(−ap + bq + cr)(ap− bq + cr)(ap + bq− cr), (3.12)

where Ω can be computed from the following equation

Ω =
1
3

4

∑
m=1

(~rmid · ~S)m.
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Here (~rmid)m denotes the midpoint of the tetrahedron face m, and ~Sm the face vector
(outward directed) at face m, respectively. The local averaged radius is used as the
final approximation of the local curvature.

If reflection boundary conditions are used on a solid boundary in the above method
and the effective of curvature is considered to be neglected, the variables on ghost cell
can be obtained by

pGC = pIP , (3.13)
ρGC = ρIP , (3.14)
VGC = VIP − 2(VIP ·~n)~n . (3.15)

4 Solution-based mesh refinement on Cartesian grids

Cartesian grids in conjunction with tree data structure is a natural choice for solution-
adaptive grids. In this work, we use a generalized binary tree (e.g., quad-tree in 2D,
octree in 3D, etc.) data structure [24].

A solution-based approach to mesh refinement or coarsening is applied, i.e., sen-
sors are employed to detect and localize physical flow phenomena. We adopt the
sensors concerning curl and divergence of velocity suggested by De Zeeuw [24] as
follows

τci = |∇ ×V|d
3
2
i , τdi = |∇ ·V|d

3
2
i ,

where i=1, 2, · · · , N, with N being the total number of cells and d=
√

Ω (Ω is the cell
volume). The standard deviation of both parameters are computed as

σc =

√√√√√
N
∑

i=1
τ2

ci

N
, σd =

√√√√√
N
∑

i=1
τ2

di

N
.

A cell is flagged for refinement or coarsening if one of two possible conditions hold:
(1) if either τci>σc or τdi>σd, the cell is flagged for refinement; (2) if both τci<1/10σc
and τdi<1/10σd, the cell is flagged for coarsening.

When a cell is flagged for refinement, we must present the value at the center of a
child cell. In this study, we use a linear interpolation polynomial to get the child cell’s
value, with minmod limiter damping the oscillation near shock wave. A cell is flagged
for coarsening, the parent cell only use a conservative average to obtain the value.
When an adaptive refinement is used, we may encounter nonuniform grids shown in
Fig. 3. If we want to advance the value at the point A, we should find the value at the
grid point E firstly. For this case, we find his surrounding cells A, B, C, D, then the Eq.
(3.6) is used to interpolate the vale at the point E. At the interface between coarse and
fine grids , we must impose correction of conservation law to make the fluxes into the
fine grid across a coarse/fine cell boundary equal the flux out of the coarse cell [25].
Here, we make use of the effective method given in [25] to ensure global conservation.
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A

B C

D

E

Figure 3: The treatment of coarse-fine grid interface.

5 Results for ghost cell methods on Cartesian grids

The main purpose of the test cases is to demonstrate the capability of the developed
overall algorithm. The proposed method has been applied to compute two- and three-
dimensional compressible flows for various configurations.

5.1 Supersonic flow past a circular cylinder

Firstly, we compute supersonic two-dimensional compressible flow around a circular
cylinder of radius r=1 at Ma1=3. In this simulation, initial grids (initial largest spatial
step h=r/4) have been refined three times near the body firstly, then three levels of
solution-based refinement have been done. The final mesh is shown on the left of Fig.
4. The total number of the computational grid cell is 37977. In this computation, the
number of the grid is far less than the one used in [3] for combining the ghost cell
method Eqs. (3.2)-(3.5) with the adaptive Cartesian grid method. Numerical density
contours obtained for Ma1=3 is presented on the right of Fig. 4. This figure shows
a sharp resolution near the shock. From the theoretical and experimental results, the
distance ∆ of the shock from the obstacle, measured on the stagnation is approximated
in [26, 27] by

∆
r

= 0.386 exp
(

4.67
M2

1

)
. (5.1)

Eq. (5.1) gives the theoretical value ∆=0.6485. Using our ghost cell method on the
adaptive Cartesian grids, the numerical value of the mean shock detachment is given
by ∆=0.685.
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Figure 4: Example 5.1. Left: zoom of the adaptive grid. Right: density contours.

5.2 Steady-state supersonic flow around a triangle

In this subsection, we consider the same case with the one in [27], where a supersonic
flow past a solid body of triangular shape with height h=0.5 and half angle θ=20◦,
as shown on the left of Fig. 5. The free stream Mach number is 2. In this geometry,
a special procedure will be encountered, which is the problem of multi-valued ghost
points [3, 11–13]. It is often found near unresolved thin surfaces and sharp corners,
such as the cases at the sharp trailing edge of an airfoil or near the apex of triangle
as Fig. 5. At sharp corners, one cell center inside the geometry may be the ghost cell
center for one side of the corner surface, as well as for the other side. Also, a ghost cell
center pertaining to one side of a corner surface may be located inside the flow field

Figure 5: Example 5.2. Left: geometrical configuration for oblique shock wave analysis. Right: zoom of
adaptive Cartesian grids.
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Figure 6: Example 5.2. Density contours for Ma1 = 2.

on the other side of the corner. To handle this case, considering the used numerical
scheme of time evolution, we firstly find the fluid cells which need multiple valued
ghost points to evolute in time, and set flags. Generally, we give ghost boundary
conditions before time evolution. In this special case, the multiple valued ghost points
are evaluated during the time evolution, which accords to the fluid cell to find the
corresponding ghost cell value. The rest fluid cells are computed as usual.

We solve the problem using the presented adaptive ghost cell Cartesian grids
method on the domain [−4, 4]× [−4, 4]. Initial grids (initial largest spatial step h=0.5)
have been refined six times near the body firstly, then make three times solution adap-
tion. The final mesh is shown on the right of Fig. 5. The total number of grid points is
40233. Fig. 6 shows contours of the density obtained with the presented method. The
figure clearly indicates the position of the attached shock.

An oblique shock can be attached or detached depending on the values of the
deflection angle θ and the upstream Mach number Ma1. If the shock is attached to the
triangle, its angle with the horizontal, β, can be computed through following relation
[27, 28]

tan θ = 2 cot β
( M2

1 sin2 β− 1
M2

1(γ + cos 2β) + 2

)
. (5.2)

For M1=2 and θ=20◦, Boiron et al. [27], according to Eq. (5.2), compute the angle
β=53.46◦. In [27], the authors also give some numerical values of β by using a high-
resolution penalization method to solve viscous Navier-Stokes equations. Their nu-
merical value of β is 54.13◦ on 5122 grid points, 53.70◦ on 10242 grid points and 53.56◦
on 5122 grid points. In our computation for Euler equations on 40233 grid points, the
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mean shock angle β=54.20◦. The numerical result is comparable with theirs.

5.3 Conservation properties

In [3], Sjögreen and Petersson analyzed the conservation properties of their Cartesian
embedded boundary method. To investigate the quantity of possible loss of mass from
the embedded boundary, they compute a steady subsonic flow in a channel with an
elliptic obstacle. We will also use the same case to study the mass loss by the present
method. In the investigation, the domain is of size [−3, 3]× [−2, 2] and the ellipse has
the axis length 0.5 and 0.3 in the x- and y-directions respectively. The free stream Mach
number is 0.5. The upper and lower boundaries are solid walls where slip boundary
conditions are imposed. The conditions are identical with the ones of [3].

The conservation of mass is measured by comparing the total mass flux across the
left inlet with the total mass flux across the right outlet boundary. According to [3],
the mass flux over the grid line xi is approximated by the sum

Fi =
N−1

∑
j=1

hρi,j+1/2ui,j+1/2,

where N is the number of grid points in the j direction, and ρi,j+1/2 = (ρi,j+1 + ρi,j)/2.
The discrepancy between the influx F1 and the outflux FM shows the mass loss, which
is ∆F=FM − F1. For the present ghost cell method, 304 × 204 grid points are used.
In this situation, the mass loss ∆F is 3.32× 10−3, and the relative loss is 1.65× 10−3.
In [3], using the limiter at embedded boundary, the authors showed that the mass
loss ∆F is 1.5 × 10−2, and the relative loss is 5.4 × 10−3 with 301 × 301 grid points.
Without the limiter, the authors of [3] showed that the mass loss ∆F is 1.2× 10−2, and
the relative loss is 4.3× 10−3. It is interesting that we can also get smaller mass loss
(the mass loss ∆F=8.541× 10−3, and the relative loss is 5.36× 10−3) if we make use
of the reflection boundary conditions Eqs. (3.13)-(3.15), which shows the results are
slightly put into the shade than the boundary conditions Eqs. (3.2)-(3.5) concerning the
effect of curvature, locally symmetric distribution of entropy and total enthalpy per
unit mass along a surface normal. This demonstrates some advantage of the present
method, see also [11]. Fig. 7 presents the numerical contour image for the pressure.

5.4 Flow past a NACA0012 airfoil

Now, let us consider an application of the proposed method to deal with airfoil. An
airfoil has a sharp trailing edge, which is difficult to define the ghost cell boundary
as the aforesaid triangle. In this case, we also used our adaptive ghost cell method to
handle this question and get some desired results.

In the transonic flow computation, the Mach number is 0.8 and the angle of attack
1.25◦ around the NACA0012 airfoil. This case is run for outer boundary of the mesh
at an 10-chord radius. The initial mesh was firstly refined six times near the body
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Figure 7: Example 5.3. Pressure contours for Mach 0.5 flow in a channel with obstacle.

boundary (the largest spacial interval h=0.5, airfoil chord=1). Three levels of solution-
based refinement are done during the time evolution. The mesh is shown in Fig. 8.
In the process of solution-based refinement, we only use the sensor of the divergence
of velocity σd. The pressure contours are shown on the left of Fig. 9, and the pressure
coefficient is plotted on the right. As observed in Fig. 9, both the strong shock and the
weak shock are well resolved, and the positions of shock are also well located. The
relations between convergence history and the number of iterations are shown in Fig.
10.

Figure 8: Example 5.4. Left: the initial grid of NACA0012 airfoil. Right: zoom of adaptive Cartesian grids.
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Figure 9: Example 5.4. Left: pressure contours. Right: distribution of pressure around the surface of the
airfoil (Mach 0.8 at angle of attack 1.25◦).
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Figure 10: Example 5.4. Convergence histories vs the number of iterations.

5.5 Three-dimensional results

Finally, let us consider a simple three-dimensional supersonic flow past a sphere to
show the capability of the present adaptive Cartesian grid ghost cell method. The
sphere has radius r=1. We adopt octree data structure for mesh generation. We show
the final refined grids on the left of Fig. 11. In this study, the initial mesh is firstly re-
fined two times near the body boundary, and two levels of solution-based refinement
are done during the time evolution (the largest spacial interval h=0.5). We also indi-
cate the density distribution for the steady Mach 3 flow past a sphere in Fig. 11. From
the figure, although the spacial interval is coarser, the bow shock is well resolved,
which indicates that our three-dimensional code is effective. The computation was
run time accurately until the bow shock moved into the correct position.
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Figure 11: Example 5.5. Left: zoom of Cartesian adaptive grids. Right: density contours (Mach 3 flow past
a sphere).

From the theoretical and experimental results, the distance ∆ of the shock from the
sphere, measured on the stagnation, is approximated in [26] by

∆
r

= 0.143 exp
(

3.24
M2

1

)
. (5.3)

Eq.(5.3) gives the theoretical value of ∆=0.205. Using our ghost cell method on adap-
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Figure 12: Example 5.5. Comparison of theoretical by Eq. (5.4) (thick black line) and computed shock
wave shape by CFD for flow over sphere.
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tive Cartesian grids, the numerical value of mean shock detachment ∆ is 0.213 approx-
imately.

In order to evaluate the effectiveness of our method, we also study the shape of
shock at x=0. Billig [26], assumed that the detached shock wave is a hyperbola that is
asymptotic to the freestream Mach angle or in the case of a cone or wedge afterbody,
the attached shock angle θ. The equation presented by Billig for the coordinates of the
shock at x=0 is

z = −
{

r + ∆− rccotan2θ
[(

1 +
y2tan2θ

r2
c

) 1
2 − 1

]}
. (5.4)

The approximate relationship for the vertex radius of the curvature rc of the sphere-
cone and the shock shape is presented as follows

rc

r
= 1.143 exp

[ 0.54
(M1 − 1)1.2

]
. (5.5)

The freestream Mach angle may be gotten by

θ = arcsin
1

M1
. (5.6)

Using Eqs. (5.5) and (5.6), the shape of shock is approximated by Eq. (5.4). The isobars
of pressure at x=0, and the approximate shape (thick black line) of shock wave achieved
by Eq. (5.4), are plotted in Fig. 12. From this figure, the computed shock shape by the
present Cartesian grid method is well consistent with the theoretical result.

6 Conclusions

In this paper, we developed a new kind of immersed boundary methods which com-
bine the ghost cell method with adaptive tree Cartesian grid method. The proposed
method has been applied successfully to solve steady state problems of the Euler
equations for a variety of two- and three- dimensional internal and external flows.
Numerical tests included a supersonic flow past a triangle, circular cylinder, three-
dimensional sphere, a transonic NACA airfoil, and a subsonic flow in a channel with
obstacle. Numerical results showed that the present method can achieve correct shock
positions, high resolution, and some correct physical characters. Despite the viola-
tion of the conservation in the immersed boundary methods, the loss of mass of the
present method is smaller than other works for the same cases. It is demonstrated
that the present method is very effective. The extension to handle moving body and
viscous compressible Navier-Stokes solver is under development.
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