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Abstract

In this paper, we study two variational blind deblurring models for a single image. The

first model is to use the total variation prior in both image and blur, while the second model

is to use the frame based prior in both image and blur. The main contribution of this paper

is to show how to employ the generalized cross validation (GCV) method efficiently and

automatically to estimate the two regularization parameters associated with the priors in

these two blind motion deblurring models. Our experimental results show that the visual

quality of restored images by the proposed method is very good, and they are competitive

with the tested existing methods. We will also demonstrate the proposed method is also

very efficient.
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1. Introduction

The blurring of images often occurs from the motion of objects, unfocused cameras and

calibration errors with imaging devices. Mathematically, the forward model of the blurring

process is stated as follows:

f = p ∗ g. (1.1)

Here f is the observed image, g is the original image, p is the blur kernel which is also known as

point spread function, ∗ represents the convolution operator. Recovering g from problem (1.1)

with known p is called non-blind deconvolution problem which is a mathematically ill-posed

problem. When p is also unknown, the problem is called blind deconvolution which is even

more ill-posed. A survey and a book on blind image deconvolution can be found in [1] and [2]

respectively.

In this paper, we consider blind motion deblurring problem. Motion blur appears when

there is a relative motion between the camera and the scene during exposure. In the literature,

there are several deblurring techniques by making use of information from multiple motion

blurred images [3–8]. For single-image blind motion deblurring, some parametric models for

the motion blur kernel are studied and considered in [9, 10]. In [11], Fergus et al. employed
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ensemble learning to recover a motion blur kernel with some image priors. In [12], Tai et al.

introduced a new Projective Motion Blur Model that treats the blurred image as an integration

of a clear scene under a sequence of projective transformations that describe the cameras path.

In [13–16], researchers proposed some efficient and high-quality kernel estimation methods

based on using different approaches. In [14], Jia formulated the kernel estimation as solving a

Maximum a Posteriori (MAP) problem with the defined likelihood and prior on transparency.

In [15], Shan et al. computed a deblurred image using a unified probabilistic model of both

motion blur kernel estimation and unblurred image restoration. They developed a model of

the spatial randomness of noise in the blurred image, as well a new local smoothness prior that

reduces ringing artifacts by constraining contrast in the unblurred image wherever the blurred

image exhibits low contrast. In [16], Xu et al. proposed an efficient and high-quality kernel

estimation method based on using the spatial prior and the iterative support detection kernel

refinement, which avoids hard threshold of the kernel elements to enforce sparsity. However,

these algorithms are required to input some values of parameters so that motion blur kernels

can be recovered and image details can be enhanced properly.

The main aim of this paper is to develop algorithms for automatic deblurring from a single

image. We study two variational blind deblurring models for a single image restoration. The

formulation is given as a minimization problem with some regularization terms on p and g:

min
p,g

E(p, g) ≡ Φ(p ∗ g − f) + λ1R1(p) + λ2R2(g), (1.2)

where Φ(p∗g−f) is the data fidelity term, R1(p) and R2(g) are the regularization terms for p and

g respectively, and λ1 and λ2 are the two positive regularization parameters which are used to

balance the data fidelity term and the two regularization terms. One of the useful regularization

approaches is the total variation (TV) regularization method [17–20]. In this approach, the

data fidelity term is usually l2 norm for image intensity fitting; and the regularization terms

are both measured by the total variation. According to the experimental results in [18, 21],

we find that the use of total variation as a prior to general blur kernels may not be effective.

However, it has been observed for blind motion or out-of-focus deblurring problems [18] that

these blur kernels can be recovered and image details can be enhanced very well. Recently,

another popular regularization method is to determine a sparse representation of image and

blur under tight frame systems [22–24]. These methods are able to recover high-quality images

from given blurred images.

According to (1.2), the regularization parameters must be determined properly so that

deblurring algorithms can be used to provide good recovered images and blurs. In [18, 22–24],

methods are not given for searching suitable regularization parameters. The main contribution

of this paper is to show how to employ the generalized cross validation (GCV) method [25]

efficiently and automatically to estimate the two regularization parameters λ1 and λ2 associated

with the priors in blind motion deblurring models. In this paper, we consider two types of

regularization terms and compare their performance. One type is to use the total variation for

R1 and R2. The other type is to employ tight frame systems for R1 and R2. Our experimental

results show that the visual quality of restored images by the proposed method is very good,

and it is competitive with the tested existing methods. We will demonstrate the proposed

method is also very efficient.

This paper is organized as follows. In Section 2, we present models using the total variation

regularization and the frame-based regularization. In Section 3, we propose the two blind

deblurring algorithms by employing the generalized cross validation (GCV) method to estimate
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regularization parameters. In Section 4, we demonstrate the effectiveness of the proposed

algorithms by experimental results. Finally, some concluding remarks are given in Section 5.

2. Regularization Models

2.1. The TV Regularization Model

Let us first discuss the total variation model:

min
p,g

E(p, g) ≡
∫

Ω

(p ∗ g − f)2dx + λ1,1

∫

Ω

|Dp|+ λ1,2

∫

Ω

|Dg|, (2.1)

Here Ω denotes the image domain, and D represents the gradient operator. The data fidelity

term is measured in L2-norm of (p ∗ g − f), and the two regularization terms are measured in

L1-norm of the gradients of p and g respectively. In order to obtain a physically meaningful

solution, we usually impose the following physical conditions:

∫

p = 1, p ≥ 0 and lg ≤ g ≤ ug.

Here we assume the pixel value of restored image is in between lg and ug. For grey-level image,

lg and ug are usually set to be 0 and 255 respectively. Now we formulate the basic procedure

of our approach for solving problem (2.1) as follows: for k = 0, 1, 2, · · ·

Algorithm 1.

Step 1: let g0 = f be the initial image, and set ǫg and ǫp to be the stopping criterion.

Step 2: the kth iteration:

• Given gk, compute pk+
1
4 by solving:

min
p

Ep(p) ≡
∫

Ω

(p ∗ gk − f)2dx + λ1,1

∫

Ω

|Dp|, (2.2)

update pk+
1
2 by setting:

pk+
1
2 = max{pk+ 1

4 , 0},

normalize pk+
1
2 by setting:

pk+1 =
pk+

1
2

‖pk+ 1
2 ‖1

;

• Given pk+1, compute gk+
1
2 by solving:

min
g

Eg(g) ≡
∫

Ω

(pk+1 ∗ g − f)2dx + λ1,2

∫

Ω

|Dg|, (2.3)

update gk+1 by setting:

gk+1 = min{max{gk+ 1
2 , lg}, ug}.

Step 3: Go back to Step 2 of Algorithm 1 until ||gk+1−gk||
||gk+1|| ≤ ǫg and ||pk+1−pk||

||pk+1|| ≤ ǫp.
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2.2. The Frame-based Regularization Model

In this subsection, we discuss the frame-based regularization model. A countable set of

functions X ∈ L2(R) is called a tight frame of L2(R) if

f =
∑

h∈X

< f, h > h, ∀f ∈ L2(R),

where < ·, · > is the inner product of L2(R). The tight frame is a generalization of an or-

thonormal basis which allows more flexibility by sacrificing the orthonormality and the linear

independence. Given a finite set of generating functions:

Ψ := {ϕ1, · · · , ϕr} ⊂ L2(R).

If a countable set X defined by the dilations and the shifts of generators from Ψ is a tight frame

of L2(R), ϕ ∈ Ψ are called (tight) framelets. Here,

X := {ϕl,j,k : 1 ≤ l ≤ r, j, k ∈ Z} and ϕl,j,k = 2
j

2ϕl(2
jx− k), ϕl ∈ Ψ.

The construction of the generators which can generate a tight frame starts from a refinable

function, see details in [31]. What we usually care about is how to convert the framelet de-

composition and reconstruction to finite dimensional frames because of the finiteness of images

dimensionality. Let A be a M × N (M ≥ N) matrix whose rows are vectors in R
N . The set

containing all the rows of A is also denoted by A. Then A is a tight frame for R
N if for any

vector x ∈ R
N ,

x =
∑

y∈A

< x, y > y.

Here < ·, · > is the inner product of finite dimensional Euclidean spaces. The matrix A is

called the analysis (or decomposition) operator, and its adjoint A∗ is called the synthesis (or

reconstruction) operator. The above equation is equivalent to the perfect reconstruction formula

which can be written as x = A∗Ax. Hence A is a tight frame of RN if and only if A∗A = I. We

can derive A from some fixed filters. Let h0 be a low-pass filter, and h1, · · · , hr be high-pass

filters. In this paper, we will use piece-wise linear framelets:

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

The 2D filters can be obtained by the tensor product of 1D filters:

{Hl} = {hl1 ⊗ h0, h0 ⊗ hl2 , hl1 ⊗ hl2 , 1 ≤ l1, l2 ≤ r}.

For the 1D case, given a filter {h(j)}j=J
j=−J , let S(h) be the convolution operator with filter h

under the Neumann (symmetric) boundary condition:

S(h) = T (h) +H(h),

where T (h) and H(h) are Toeplitz and Hankel matrices respectively, see [32] for details,

T (h) =













h(0) · · · h(−J) · · · 0
...

. . .
. . .

. . .
...

h(J)
. . .

. . .
. . . h(−J)

...
. . .

. . .
. . .

...

0 · · · h(J) · · · h(0)













,
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and

H(h) =













h(1) h(2) · · · h(J) 0

h(2)
. . .

. . .
. . . h(−J)

...
. . .

. . .
. . .

...

h(J)
. . .

. . .
. . . h(−2)

0 h(−J) · · · h(−2) h(−1)













.

In this paper, we use a multi-level tight frame system corresponding to the decomposition with-

out down sampling. For a given filter h = {h(j)}j=J
j=−J , the filters h(l) at level l corresponding

to the decomposition without down sampling is given as follows:

hl =
{

h(−J), 0, · · · , 0
︸ ︷︷ ︸

2l−1−1

, h(−J + 1), 0, · · · , 0, h(−1), 0, · · · , 0
︸ ︷︷ ︸

2l−1−1

, h(0),

0, · · · , 0
︸ ︷︷ ︸

2l−1−1

, h(1), 0, · · · , 0, h(J − 1), 0, · · · , 0
︸ ︷︷ ︸

2l−1−1

, h(J)
}

.

For given filters {hi}ri=0, let Z l
i = S(hl

i). Then the multi-level decomposition operator up

to level L (without down sampling) is given by:

A =

























L−1∏

l=0

ZL−l
0

ZL
1

L−1∏

l=1

ZL−l
0

...

ZL
r

L−1∏

l=1

ZL−l
0

...

Z1
1
...

Z1
r

























.

If the filters {hi}ri=0 satisfy the unitary extension principle [33], we have A∗A = I. Then A is

a tight frame of RN . Based on the deblurring problem (1.2), we consider the following model:

min
p,g

E(p, g) ≡
∫

Ω

(p ∗ g − f)2dx + λ2,1‖Ap‖1 + λ2,2‖Ag‖1. (2.4)

We formulate the basic procedure of our approach for solving problem (2.4) as follows: for

k = 0, 1, 2, · · ·
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Algorithm 2.

Step 1: let g0 = f be the initial image, and set ǫg and ǫp to be the stopping criterion.

Step 2: the kth iteration:

• Given gk, compute pk+
1
4 by solving:

min
p

Ep(p) ≡
∫

Ω

(p ∗ gk − f)2dx + λ2,1‖Ap‖1, (2.5)

update pk+
1
2 by setting:

pk+
1
2 = max{pk+ 1

4 , 0},

normalize pk+
1
2 by setting:

pk+1 =
pk+

1
2

‖pk+ 1
2 ‖1

;

• Given pk+1, compute gk+
1
2 by solving:

min
g

Eg(g) ≡
∫

Ω

(pk+1 ∗ g − f)2dx + λ2,2‖Ag‖1, (2.6)

update gk+1 by setting:

gk+1 = min{max{gk+ 1
2 , lg}, ug}.

Step 3: Go back to Step 2 of Algorithm 2 until ||gk+1−gk||
||gk+1||

≤ ǫg and ||pk+1−pk||
||pk+1||

≤ ǫp.

We remark here the regularization functionals in (2.1) and (2.4) are not convex about (p, g).

However, the objective functionals in (2.2) and (2.5) are strictly convex about p, and the

objective functionals in (2.3) and (2.6) are strictly convex about g because of the linearity of

the blurring operator.

3. The Proposed Algorithms

3.1. The Algorithms

There are two computational issues in solving blind image restoration models in (2.1) and

(2.4). The first issue is how to solve their associated subproblems in (2.2), (2.3), (2.5) and (2.6)

efficiently. The second issue is how to estimate the regularization parameters λ1,1, λ1,2 and

λ2,1, λ2,2 in (2.1) and (2.4). We remark that the optimization problems in (2.2), (2.3), (2.5)

and (2.6) are not linear least squares problems, and the generalized cross validation cannot be

applied directly to these optimization problems for estimation of regularization parameters.

Our main aim is to develop algorithms that can recover the blur and the original image,

and to estimate the two regularization parameters automatically, i.e., given the observed image

f , we can obtain the blur and the image without any prior knowledge.

For the optimization problems in (2.2) and (2.3), there are many effective and efficient

methods for solving such total variation image deblurring problem, see [18,34,35]. In particular,

we introduce two auxiliary variables p̂ and ĝ and an additional quadratic terms to minimize the
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objective functionals in (2.2) and (2.3) respectively [35], i.e.,

min
p,p̂

E1(p, p̂) ≡
1

λ1,1

∫

Ω

(p ∗ gk − f)2dx +
β

2

∫

Ω

(p− p̂)2dx +

∫

Ω

|Dp̂|, (3.1)

and

min
g,ĝ

E2(g, ĝ) ≡
1

λ1,2

∫

Ω

(pk+1 ∗ g − f)2dx +
β

2

∫

Ω

(g − ĝ)2dx +

∫

Ω

|Dĝ|, (3.2)

Here note that as β increases, the solutions of problem (3.1) and (3.2) will get closer to those

of problem (2.2) and (2.3). Therefore, the value of β will be increased iteration by iteration in

practice so that the two minimization problems in (3.1) and (3.2) are close to those in (2.2) and

(2.3) respectively. Algorithms 1A and 1B for solving problems in (3.1) and (3.2) are summarized

as follows:

Algorithm 1A.

1. let p̂0 be the initial kernel, and set ǫ to be the stopping criterion.

2. the kth iteration:

• Given p̂k, compute pk+
1
4 by solving:

min
p

{
∫

Ω

(p ∗ gk − f)2dx +
λ1,1β

2

∫

Ω

(p− p̂k)2dx}, (3.3)

update pk+
1
2 by setting:

pk+
1
2 = max{pk+ 1

4 , 0},

normalize pk+
1
2 by setting:

pk+1 =
pk+

1
2

‖pk+ 1
2 ‖1

;

• Given pk+1, compute p̂k+
1
4 by solving:

min
p̂

{β
2

∫

Ω

(p̂− pk+1)2dx +

∫

Ω

|Dp̂|}, (3.4)

update p̂k+
1
2 by setting:

p̂k+
1
2 = max{p̂k+ 1

4 , 0},

normalize p̂k+
1
2 by setting:

p̂k+1 =
p̂k+

1
2

‖p̂k+ 1
2 ‖1

,

increase β by using:

β = θ · β.

3. Go back to Step 2 of Algorithm 1A until ||pk+1−pk||
||pk+1||

≤ ǫ.
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Algorithm 1B.

1. let ĝ0 = f be the initial image, and set ǫ to be the stopping criterion.

2. the kth iteration:

• Given ĝk, compute gk+
1
2 by solving:

min
g

{
∫

Ω

(pk+1 ∗ g − f)2dx +
λ1,2β

2

∫

Ω

(g − ĝk)2dx}, (3.5)

update gk+1 by setting:

gk+1 = min{max{gk+ 1
2 , lg}, ug};

• Given gk+1, compute ĝk+
1
2 by solving:

min
ĝ

{β
2

∫

Ω

(ĝ − gk+1)2dx +

∫

Ω

|Dĝ|}, (3.6)

update ĝk+1 by setting:

ĝk+1 = min{max{ĝk+ 1
2 , lg}, ug},

increase β by using:

β = θ · β.

3. Go back to Step 2 of Algorithm 1B until ||gk+1−gk||
||gk+1||

≤ ǫ.

For the subproblems in (3.3) and (3.5), it can be solved by using fast Fourier transforms, see [35].

For the subproblems in (3.4) and (3.6), it can be solved by the projection algorithm [36, 37]

or the Split Bregman algorithm [38]. It is interesting to note that (3.3) and (3.5) are linear

least squares problems with Tikhonov regularization, and therefore the associated regularization

parameters λ1,1β/2 and λ1,2β/2 can be estimated by the generalized cross validation technique

which will be discussed in next Section. We propose the following computational procedures

in Algorithms 1A and 1B. We first estimate the regularization parameters and then solve the

corresponding linear regularized least squares problems.

By using the same approach, we use two auxiliary variables p̂ and ĝ and additional quadratic

terms to minimize the objective functionals in (2.5) and (2.6) respectively, i.e.,

min
p,p̂

E3(p, p̂) ≡
1

λ2,1

∫

Ω

(p ∗ gk − f)2dx +
β

2

∫

Ω

(p− p̂)2dx + ‖Ap̂‖1, (3.7)

and

min
g,ĝ

E4(g, ĝ) ≡
1

λ2,2

∫

Ω

(pk+1 ∗ g − f)2dx +
β

2

∫

Ω

(g − ĝ)2dx + ‖Aĝ‖1, (3.8)

Here the value of β will also be increased iteration by iteration so that the two minimization

problems in (3.7) and (3.8) are close to those in (2.5) and (2.6) respectively. Algorithms 2A

and 2B for solving problems in (3.7) and (3.8) are summarized as follows:
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Algorithm 2A.

1. let p̂0 be the initial kernel, and set ǫ to be the stopping criterion.

2. the kth iteration:

• Given p̂k, compute pk+
1
4 by solving:

min
p

{
∫

Ω

(p ∗ gk − f)2dx +
λ2,1β

2

∫

Ω

(p− p̂k)2dx}, (3.9)

update pk+
1
2 by setting:

pk+
1
2 = max{pk+ 1

4 , 0},

normalize pk+
1
2 by setting:

pk+1 =
pk+

1
2

‖pk+ 1
2 ‖1

;

• Given pk+1, compute p̂k+
1
4 by solving:

min
p̂

{β
2

∫

Ω

(p̂− pk+1)2dx + ‖Ap̂‖1}, (3.10)

update p̂k+
1
2 by setting:

p̂k+
1
2 = max{p̂k+ 1

4 , 0},

normalize p̂k+
1
2 by setting:

p̂k+1 =
p̂k+

1
2

‖p̂k+ 1
2 ‖1

,

increase β by using:

β = θ · β.

3. Go back to Step 2 of Algorithm 2A until ||pk+1−pk||
||pk+1||

≤ ǫ.

Algorithm 2B.

1. let ĝ0 = f be the initial image, and set ǫ to be the stopping criterion.

2. the kth iteration:

• Given ĝk, compute gk+
1
2 by solving:

min
g

{
∫

Ω

(pk+1 ∗ g − f)2dx +
λ2,2β

2

∫

Ω

(g − ĝk)2dx}, (3.11)

update gk+1 by setting:

gk+1 = min{max{gk+ 1
2 , lg}, ug};
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• Given gk+1, compute ĝk+
1
2 by solving:

min
ĝ

{β
2

∫

Ω

(ĝ − gk+1)2dx + ‖Aĝ‖1}, (3.12)

update ĝk+1 by setting:

ĝk+1 = min{max{ĝk+ 1
2 , lg}, ug},

increase β by setting:

β = θ · β.

3. Go back to Step 2 of Algorithm 2B until ||gk+1−gk||
||gk+1|| ≤ ǫ.

Similarly, for the subproblems in (3.9) and (3.11), it can be solved by using fast Fourier trans-

forms. For the subproblems in (3.10) and (3.12), it can be solved by the Linearized Bregman

algorithm [39,40]. Both regularization parameters are estimated by the generalized cross vali-

dation method with respect to each iteration.

3.2. Estimation of regularization parameters

The method of regularization is used to achieve stability for deblurring problems. Recall

the classical Tikhonov regularization [26], a regularization operator D is added to restrict the

set of admissible solutions. Then the regularized solution g(λ) is computed as follows:

min
g(λ)

{

λ‖Dg(λ)‖22 + ‖f −Hg(λ)‖22
}

. (3.13)

The parameter λ controls the regularity of the solution. One can solve the problem in (3.13)

by the following equation:

(λDtD +HtH)g(λ) = Htg(λ).

For different choices of D with some appropriate boundary conditions, one can find some fast

algorithms to deal with the above equation, see [27–30] for detailed discussion.

Another computational issue in regularization is the choice of λ. Generalized cross-validation

[25] is a method that estimates λ without requiring an estimate of the noise variance. It is based

on the concept of prediction errors. For each k = 1, · · · , n, let gkλ be the vector that minimizes

the error measure:
n∑

i=1,i6=k

([f ]i − [Hg(λ)]i)
2 + λ‖Dg(λ)‖22,

where n is the size of the vector f , [Hg]i is the ith element of Hg and [f ]i is the ith element of

f . If λ is such that gkλ is a good estimate of g, then [Hgkλ]k should be a good approximation of

[f ]k on average. For a given λ, the average squared error between the predicted value [Hgkλ]k
and the actual value [f ]k is given by:

1

n

n∑

k=1

(

[f ]k − [Hgkλ]k

)2

.
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The generalized cross-validation (GCV) is a weighted version of the above error:

v(λ) =
1

n

n∑

k=1

(

[f ]k − [Hgkλ]k

)2
[

1−mkk(λ)

1− 1
n

∑n

j=1 mjj(λ)

]2

,

where mjj(λ) is the (j, j)th entry of the so-called influence matrix:

M(λ) = H(HtH + λDtD)−1Ht.

In [25], one can find that v(λ) can be written as:

v(λ) = n
‖[I −M(λ)]f‖22
tr[I −M(λ)]2

.

Then the optimal regularization parameter is chosen to minimize v(λ). If the periodic boundary

condition or the Neumann boundary condition is used for both H and DtD, we can rewrite

v(λ) as follows:

v(λ) = n

n∑

i=1

[
λβi

α2
i + λβi

]2

[Ff ]2i

[
n∑

i=1

λβi

α2
i + λβi

]2 ,

where F represents either the discrete Fourier matrix or the discrete cosine transform matrix,

and αi and βi represent the eigenvalues of H and DtD respectively. We also recall that αi

and βi can be obtained by fast Fourier transforms with periodic boundary condition or by

fast cosine transforms with Neumann boundary condition. Then we use the GCV method to

estimate the regularization parameters λ1,1β/2, λ1,2β/2, λ2,1β/2, and λ2,2β/2 in (3.3), (3.5),

(3.9) and (3.11). For example, we rewrite (3.3) as follows:

min
p̃

{
λ1,1β

2

∫

Ω

p̃2dx +

∫

Ω

(gk ∗ p̃+ gk ∗ p̂k − f)2dx

}

,

where p̃ = p − p̂k. Compare the above problem with the initial GCV functional (3.13), one

can find that D = I is the identity matrix, and if we denote Gk as the matrix form of the

convolution operator by the kernel gk, then the eigenvalues of Gk can be obtained by fast

Fourier transforms with periodic boundary condition or by fast cosine transforms with Neumann

boundary condition. Then the the GCV function of µ1 =
λ1,1β

2 in (3.3) is given by:

v(µ1) = n

n∑

i=1

[
µ1

α2
i + µ1

]2
[
F(f −Gkp̂k)

]2

i

[
n∑

i=1

µ1

α2
i + µ1

]2 ,

where αi is the eigenvalues of Gk. The optimal regularization parameters in (3.5), (3.9) and

(3.11) can be obtained by similar approach.

In the next section, we demonstrate that the visual quality of restored images by the pro-

posed method is very good and the two proposed methods are quite efficient.
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4. Experimental Results

In this section, we test the two proposed algorithms on several images with different kinds of

motion or out-of-focus blurs. We use peak signal to noise ratio (PSNR) to measure the quality

of restored images. It is defined as follows:

MSE =
1

N
‖gc − g‖22,

PSNR = 10 log10

(
2552

MSE

)

,

where MSE means the mean squares error, g is the original image, gc is the deblurred image,

and N is the size of the image. For a color image, we compute MSE as 0.3R+0.59G+0.11B,

here R, G, and B represent the MSE of red, green and blue channels.

In all the experiments, we use an observed image as an initial image and an δ function as

an initial point spread function. The lower and upper bounds of pixel values are set to be

lg = 0 and ug = 255. The initial value of β is set to be 2 and the value of β at each outer

iteration is increased by a factor of θ = 2 so that β becomes larger and larger, and this force

the optimization problems in (3.1), (3.2), (3.7) and (3.8) are close to (2.2), (2.3), (2.5), and

(2.6) respectively. For the stopping criteria, we set ǫg and ǫp to be 1 × 10−3 in Algorithm 1

and Algorithm 2 and ǫ to be 1× 10−1 in Algorithm 1A, 1B, 2A and 2B for the tolerance of the

relative difference between two successive iterates. The two proposed algorithms are written in

MATLAB, and the maximum iterations of Algorithm 1 and Algorithm 2 are set to 100. We

remark here all the original blurred images are noise free in the experiments.

Table 4.1: The PSNRs for different θ.

θ 1.2 2 3 4 5

PSNR for Alg. 1(dB) 24.6763 24.6763 24.6763 24.6763 24.6763

PSNR for Alg. 2(dB) 26.5092 26.3900 26.3135 26.4655 26.2783

θ 6 7 8 9 10

PSNR for Alg. 1(dB) 24.6763 24.6763 24.6763 24.6763 24.6763

PSNR for Alg. 2(dB) 26.4890 26.3109 26.4698 26.3396 26.2968

Table 4.2: The PSNRs for different β.

β 1.2 2 4 8 16

PSNR for Alg. 1(dB) 24.6763 24.6763 24.6763 24.6763 24.6763

PSNR for Alg. 2(dB) 26.3187 26.3900 26.3375 26.3167 26.3335

β 32 64 128 256 512

PSNR for Alg. 1(dB) 24.6763 24.6763 24.6763 24.6763 24.6763

PSNR for Alg. 2(dB) 26.4554 26.5633 26.3418 26.4234 26.4092

4.1. Robustness to Parameters

In Table 1 and Table 2, we test the effect of two parameters β and θ in Algorithm 1 and

Algorithm 2. In Table 1, we fix the value of β to be 2 and check the PSNRs of restored

images for different initial values of θ = 1.2, 2, 3, 4, 5, 6, 7, 8, 9, 10. Here the initial image is

blurred by linear motion blurs of length 15 pixels, See Fig. 4.1(b). We also show the restored
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p) (q) (r)

Fig. 4.1. (a) original image; (b) motion blurred image (len = 15, theta = 45); (c)-(f) deblurred images

by Algorithm 1 with β = 2 and θ = 1.2, 4, 7, 10; (g)-(j) deblurred image by Algorithm 1 with θ = 2 and

β = 1.2, 8, 64, 512; (k)-(n) deblurred images by Algorithm 2 with β = 2 and θ = 1.2, 4, 7, 10; (o)-(r)

deblurred image by Algorithm 1 with θ = 2 and β = 1.2, 8, 64, 512.

(a) (b)

Fig. 4.2. original images.

images corresponding to θ = 1.2, 4, 7, 10 in Fig. 4.1(c)-(f) for Algorithm 1 and Fig. 4.1(k)-(n)

for Algorithm 2. We see that the PSNRs for different θ in Algorithm 1 are always 24.6763

dB, and the variation of PSNR for Algorithm 2 is within 0.2309 dB. Meanwhile, we see from



On Algorithms for Automatic Deblurring from a Single Image 93

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.3. (a) motion blurred image (len = 9, theta = 45); (b) deblurred image by the algorithm in [16]

(PSNR = 18.95dB); (c) deblurred image by Algorithm 1 (PSNR = 31.93dB); (d) deblurred image by

Algorithm 2 (PSNR = 31.94dB); (e) motion blurred image (len = 15, theta = 45); (f) deblurred image

by the algorithm in [16] (PSNR = 17.43dB); (g) deblurred image by Algorithm 1 (PSNR = 28.06dB);

(h) deblurred image by Algorithm 2 (PSNR = 29.02dB).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.4. (a) motion blurred image (len = 9, theta = 45); (b) deblurred image by the algorithm in [16]

(PSNR = 16.91dB); (c) deblurred image by Algorithm 1 (PSNR = 28.31dB); (d) deblurred image by

Algorithm 2 (PSNR = 28.32dB); (e) motion blurred image (len = 15, theta = 45); (f) deblurred image

by the algorithm in [16] (PSNR = 15.25dB); (g) deblurred image by Algorithm 1 (PSNR = 23.33dB);

(h) deblurred image by Algorithm 2 (PSNR = 25.20dB).

Fig. 4.1(c)-(j) that the restored images change very little visually for different choice of θ and

β by Algorithm 1.

In Table 2, we fix the value of θ to be 2 and check the PSNRs of restored images for different

initial values of β = 1.2, 2, 4, 8, 16, 32, 64, 128, 256, 512. Here the initial image is the same, see



94 W. WANG AND M. NG

(a) (b) (c)

Fig. 4.5. original images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.6. (a) and (e) motion blurred images with the blur kernels are shown on the top left of the

corresponding images; (b) and (f) deblurred images by the algorithm in [16] with the estimated kernels;

(c) and (g) deblurred images by Algorithm 1 with the estimated kernels; (d) and (h) deblurred images

by Algorithm 2 with the estimated kernels.

Fig. 4.1(b). We still show the restored images corresponding to β = 1.2, 8, 64, 512 in Fig. 4.1(g)-

(j) for Algorithm 1 and Fig. 4.1(o)-(r) for Algorithm 2. We see that the PSNRs for different

β in Algorithm 1 are always 24.6763 dB, and the variation of PSNR for Algorithm 2 is within

0.2466 dB. Meanwhile, we see from Fig. 4.1(k)-(r) that the restored images also change very

little visually for different choice of θ and β by Algorithm 2. Therefore, we can say that the

proposed algorithms are very robust for the two parameters θ and β.

4.2. PSNRs and motion blur kernels

In this section, we give some examples using Algorithm 1 and Algorithm 2 to deal with the

motion deblurring problem. we compare the two proposed algorithms with the recent algorithm

proposed in [16]. All the parameters of the algorithm in [16] use the default values. In the first

experiment, two images are used to test the proposed two algorithms. These images are shown

in Fig. 4.2. The original images are blurred by linear motion blurs of length 9 and 15 pixels. The

resulting blurred images are shown in Figs. 4.3 - 4.4(a) and (e). We display the restored images

by the the algorithm in [16], the total variation based algorithm, and the frame-based algorithm
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.7. (a) and (e) input observed images; (b) and (f) deblurred images by the algorithm in [16] with

the estimated kernels; (c) and (g) deblurred images by Algorithm 1 with the estimated kernels; (d) and

(h) deblurred images by Algorithm 2 with the estimated kernels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.8. (a) and (e) input observed images; (b) and (f) deblurred images by the algorithm in [16]; (c)

and (g) deblurred images by Algorithm 1; (d) and (h) deblurred images by Algorithm 2.

in Figs. 4.3 - 4.4(b) and (f), Figs. 4.3 - 4.4(c) and (g), and Figs. 4.3 - 4.4(d) and (h) respectively.

Meanwhile, we remark that the iterations required for convergence to obtain Figs. 4.3(c) and (d)

by using Algorithm 1 and Algorithm 2 are 56 and 65 respectively. Each iterations in Algorithm

1 and Algorithm 2 take 1.48 and 8.71 seconds respectively on a windows PC with an Intel 2.66

GHz CPU for the blurred image in Fig. 4.2(a) of the size 300× 265. Because the frame-based

algorithm requires to process different frames in the matrix A, more computational times are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.9. The zooming parts of Fig. 4.8(a)-(h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.10. (a) and (e) input observed images; (b) and (f) deblurred images by the algorithm in [16]; (c)

and (g) deblurred images by Algorithm 1; (d) and (h) deblurred images by Algorithm 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.11. The zooming parts of Fig. 4.10(a)-(h).
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Fig. 4.12. The input out-of-focus images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 4.13. (a), (f), (k), and (p) the restored images by the method in [14]; (b), (g), (l), (q) the restored

images by the method in [20]; (c), (h), (m), (r) the restored images by the method in [41]; (d), (i), (n),

(s) the restored images by Algorithm 2; (e), (j), (o), (t) the restored images by Algorithm 1.

required. We observe from the figures that the visual quality of the deblurred images by the

two algorithms are quite good. However, we find that the deblurred images by Algorithm 2

are better than those by Algorithm 1, especially when the motion blur is more serious. In the

second experiment, we consider the images that are blurred by a random linear motion and a

V-type motion kernels. The original images are shown in Fig. 4.5(a). The resulting blurred

images and motion blur kernels are shown in Figs. 4.6(a) and (e). We display the restored

images and the recovered motion blurs by the the algorithm in [16], the total variation based

algorithm, and the frame-based algorithm in Figs. 4.6(b) and (f), Figs. 4.6(c) and (g), and

Figs. 4.6(d) and (h) respectively. We observe from the figures that the visual quality of the

deblurred images and the estimated motion kernels by the two algorithms are quite good.

In the third experiment, we consider the images that are blurred by random non-linear

motion kernels. The original images are shown in Fig. 4.5(b) and (c). The resulting blurred

images and motion blur kernels are shown in Figs. 4.7(a) and (e). We display the restored images
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 4.14. The zooming parts of Fig. 4.12(a)-(t).

and the recovered motion blurs by the the algorithm in [16], the total variation based algorithm,

and the frame-based algorithm in Figs. 4.7(b) and (f), Figs. 4.7(c) and (g) and Figs. 4.7(d) and

(h) respectively. The estimated motion blurs are also shown on the top left hand side of the

restored images. According to the restoration results, the proposed two algorithms can recover

both the blur and the image quite well.

4.3. Comparisons

In this section, we give some other examples for comparison. The input observed images are

shown in Figs. 4.8 - 4.11(a) and (e). We display the restored images by the algorithm in [16],

the total variation based algorithm, and the frame-based algorithm, in Figs. 4.8 - 4.11(b), (f),

Figs. 4.8 - 4.11(c), (g) and Figs. 4.8 - 4.11(d), (h) respectively. Visually, we find that the

restored images are better than those given by the algorithm in [16]. In Figs. 4.9 and 4.11, we

show the zoomed parts of the restored images in Figs. 4.8 and 4.10 respectively. Again it is

clear that the proposed two algorithms can restore images quite well.

Then we test the effects of the proposed algorithms for out-of-focus blurs. The input images

are shown in Fig. 12, where we can see that they are all out-of-focus especially the background.

We compare the two proposed algorithms with some other approaches, such as the method
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in [14], in [20], and in [41]. We display the restored images by the method in [14], in [20],

in [41], the frame-based algorithm, and the total variation based algorithm, in Figs. 4.13(a),

(f), (k), (p), Figs. 4.13(b), (g), (l), (q), Figs. 4.13(c), (h), (m), (r), Figs. 4.13(d), (i), (n), (s),

Figs. 4.13(e), (j), (o), (t) respectively. In Fig. 4.14, we show the zoomed parts of the restored

images in Fig. 4.13 respectively. We can see that the performance of the proposed total variation

based algorithm is better than the proposed frame-based algorithm for out-of-focus blurs, and

is also better than other methods.

5. Concluding Remarks

In this paper, we proposed two blind deconvolution methods to remove camera motion or

out-of-focus blur from a single image by minimizing a energy functional with different regu-

larization terms. The first model is to use the total variation prior in both image and blur,

while the second model is to use the frame based prior in both image and blur. The main

contribution of this paper is to show how to employ the generalized cross validation (GCV)

method automatically to estimate the two regularization parameters associated with the priors

in these two blind motion deblurring models. Experimental results show the effectiveness and

efficiency of the proposed methods.
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