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Abstract

We present a higher-order in-space characteristic method for the solution of the tran-

sient advection diffusion equations in two space dimensions. This method uses biquadratic

trial and test functions within the framework of the Eulerian-Lagrangian localized Adjoint

Methods (ELLAM). It therefore maintains the advantages of previous ELLAM schemes.

Namely, it treats general boundary conditions naturally in a systematic manner, conserves

mass, and symmetrizes the governing transport equations. Moreover, it generates accurate

numerical solutions even if large time steps are used in the simulation. Numerical exper-

iments are presented to illustrate the performance of this method and establish its order

of convergence numerically.
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1. Introduction

Advection-diffusion equations arise in many models in Science and Engineering and describe

a wide range of natural phenomena characterized by moving fronts. In fluid dynamics, for

example, the movement of a solute in groundwater is described by such an equation. These

equations are known to present serious numerical difficulties especially when the magnitude

of advection is relatively large. Standard finite difference and finite element methods fail to

provide qualitatively correct solutions for this class of equations even with lower accuracy

requirements. More specifically, these methods generate solutions which suffer from numerical

artifacts including non-physical spurious oscillations and numerical diffusion that smears out

sharp fronts of the solution where important chemistry and physics take place.

A number of specialized methods have been developed to resolve these difficulties. They

generally can be classified as Eulerian methods or characteristic methods. Eulerian methods

use fixed spatial grids and incorporate upstream weighting or some other dissipation techniques

in their formulations [3, 7, 10, 11, 14, 15]. Thus, they can eliminate the non-physical oscillations

present in the standard finite difference and finite element methods. Some of the Eulerian

methods, such as the Godunov scheme, the total variation diminishing (TVD) schemes, and

the ENO and WENO schemes, can resolve shock discontinuities from nonlinear hyperbolic

conservation laws.
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Characteristic methods, on the other hand, make use of the hyperbolic nature of the gov-

erning equation by utilizing tracking along the characteristics to treat the advective part of the

governing equation [8,12]. These methods symmetrize the governing equations and significantly

reduce the temporal truncation errors. Thus, they allow large time steps to be used in the nu-

merical simulations without any sacrifice in accuracy, and lead to a greatly improved efficiency.

However, most characteristic methods have difficulties in treating general boundary conditions

and fail to conserve mass. The Eulerian-Lagrangian localized adjoint method (ELLAM) was

proposed by Celia et. al., [6] as an alternative characteristic formulation that alleviates the

difficulties mentioned. This ELLAM formalism provides a general characteristic solution pro-

cedure for advection-diffusion equations and a consistent framework for conserving mass and

treating general boundary conditions.

The original ELLAM method is for the solution of one-dimensional constant-coefficient

advection-diffusion equations, in which piecewise-linear trial and test functions are used in the

weak formulation. The strong potential of this method lead to the development of multidimen-

sional ELLAM schemes using either the finite element or finite volume approaches [4,9,13,18–

21]. Most of the work on ELLAM methods followed the traditional approach in which first- and

second-order numerical methods are probably the most widely used in the numerical simulation

to subsurface porous medium flow processes, especially in terms of characteristic methods. The

main reasons for the choice of lower-order methods is the fact that most mathematical mod-

els for subsurface porous medium flows admit solutions with moving steep fronts and relatively

complicated structures. As a result, the solutions of these models usually have minimal regular-

ities. This is due to a number of factors including the strong heterogeneity of the porous media,

the non linearity and close couplings between the equations in the system, the strong effect of

the singular sources and sinks, the compressibility of the fluid mixture and the medium, and

the enormous size of field-scale application and the required long time period of prediction. In

these circumstances, higher-order numerical schemes usually cannot reach higher-order conver-

gence rates. Nevertheless, it is well known that higher-order numerical methods have generated

numerical solutions with greatly improved accuracy and resolution in the context of nonlinear

hyperbolic conservation laws, despite the fact that the solutions to nonlinear conservation laws

exhibit shock discontinuities, complicated structures, and minimal regularities.

Motivated by the success of higher-order methods in aerodynamics and other applications,

we continue our research on the development of higher-order ELLAM schemes for the solution

of transient advection-diffusion equations. We have worked on the development of higher-order-

in-time ELLAM schemes with success [1, 16]. We have also considered higher-order in space

ELLAM schemes in one-space dimension [2]. In this paper, we present an ELLAM scheme,

for the transient advection-diffusion equation in two space dimensions, which uses higher-order

bi-quadratic trial and test functions in space. The derived scheme possesses a higher-order

spatial convergence rate compared to previous two-dimensional ELLAM methods and improved

spatial resolution. Numerical experiments are presented to illustrate the performance of the new

ELLAM scheme and to numerically verify its convergence rates, which were derived theoretically

for one-dimensional problems [17].

The paper is organized in the following way. In the next section, we review the development

of the ELLAM method. The details of the numerical approximation will be discussed in Section

3. Numerical results will be reported in Section 4. Some relevant discussions will be presented

in the final section.
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2. Development of the ELLAM Schemes

The model equation considered is the two-dimensional unsteady-state advection diffusion

equation
∂(φ(x, t) u(x, t))

∂t
+∇ ·

(

v(x, t)u(x, t) −D(x, t)∇u(x, t)
)

= f(x, t) (2.1)

where x = (x, y), ∇ = 〈∂/∂x, ∂/∂y〉, φ(x, t) is the retardation coefficient, v(x, t) is the velocity

field, D(x, t) is the diffusion-dispersion tensor, and f(x, t) is a source or sink term. While

the ELLAM method can be developed for any bounded spatial domain which admits a quasi-

uniform triangular or rectangular partition, for simplicity of presentation we consider a spatial

domain of the form Ω = [a, b]× [c, d]. To close the system, we assume that an appropriate initial

condition and any proper combination of Dirichlet, Neumann, or flux boundary conditions are

specified at the inflow or outflow parts of the boundary.

2.1. Partition and Characteristic Tracking

ELLAM methods, in general, can be developed for any quasi-uniform partition of the space-

time domain Ω × [0, T ]. However, for simplicity of presentation, we consider the following

uniform rectangular partition in space and time

xi = a+ i∆x, i = 0, · · · , I with ∆x = (b− a)/I,

yj = c+ j ∆y, j = 0, · · · , J with ∆y = (d− c)/J,

tn = n∆t, n = 0, · · · , N with ∆t = T/N,

(2.2)

where I, J , and N are positive integers. The numerical scheme uses a time-stepping procedure,

and so, we only need to focus on the current time interval (tn−1, tn]. By multiplying equation

(2.1) by a piecewise smooth test function w that vanishes outside Ω × (tn−1, tn] we obtain a

weak form of Eq. (2.1)

∫

Ω

(φ u)(x, tn) w(x, tn) dx+

∫ tn

tn−1

∫

Ω

(D∇u) · ∇w dx dt

−
∫ tn

tn−1

∫

Ω

u

(

φ
∂w

∂t
+ v · ∇w

)

dx dt+

∫ tn

tn−1

∫

∂Ω

(v u−D∇u) w · n dS

=

∫

Ω

(φ u)(x, tn−1) w(x, tn−1
+) dx+

∫ tn

tn−1

∫

Ω

f w dx dt, (2.3)

where w(x, tn−1
+) = limt→tn−1 w(x, t) which takes into account the fact that w is discon-

tinuous in time at time tn−1.

In the ELLAM framework [6], the test functions w(x, t) in equation (2.3) are selected to

satisfy, within the tolerance of the accuracy desired, the homogeneous equation of the hyperbolic

part of the adjoint equation of (2.1)

φ
∂w

∂t
+ v · ∇w = 0 (2.4)

to reflect the Lagrangian nature of Eq. (2.1); in other words, the test functions should be chosen

to be constant along the characteristics. These characteristic curves of Eq. (2.1) are defined as
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solutions to initial value problems for the ordinary differential equation

dx

dt
= vφ(x, t) :=

(

v(x, t)

φ(x, t)

)

. (2.5)

However, solving this equation for a generic velocity field is not possible, in general. Thus,

we need to use some numerical means to track the characteristics approximately. A variety

of algorithms may be used for that purpose, including the Euler and Runge-Kutta methods.

In our formulations we use a second order Runge-Kutta method and define the approximate

characteristic curve X(θ; x̄, t̄) emanating from a point (x̄, t̄) by

X(θ; x̄, t̄) = x̄+
θ − t̄

2
(vφ(x̄, t̄) + vφ(x̄− (θ − t)vφ(x̄, t̄), t̄)) . (2.6)

Here θ is the time position along that characteristic. Moreover, to further improve the accuracy

of tracking, we divide the global step ∆t into a number of micro time steps, and the tracking

described by Eq. (2.6) can be carried across these micro steps.

2.2. The Reference Equation

The family of ELLAM methods can be formulated by evaluating the space-time integrals in

Eq. (2.3) along the approximate characteristics. Special attention needs to be given to the two

triple integrals in this weak form: the second (source and sink) term on the right-hand side of

the equation and the second (diffusion) term on the left-hand side. These integrals, in a similar

way to all other terms, are changed to the characteristic variables, and then a backward Euler

quadrature along the characteristics is applied. This results in the following formulation for the

ELLAM schemes,

∫

Ω

φ(x, tn) u(x, tn)w(x, tn) dx +

∫

Ω

∆t(I)(x)(D∇u)(x, tn) · ∇w(x, tn) dx

+

∫ tn

tn−1

∫

∂Ω(O,n)

∆t(O)(x, t)(D∇u) · ∇w (v · n) dS

−
∫ tn

tn−1

∫

Ω

u

(

φ
∂w

∂t
+ v · ∇w

)

dx dt+

∫ tn

tn−1

∫

∂Ω

(vu −D∇u) · n w dS

=

∫

Ω

φ(x, tn−1) (x, tn−1)w(x, tn−1
+) dx+

∫

Ω

∆t(I)f(x, tn)w(x, tn) dx

+

∫ tn

tn−1

∫

∂Ω(O,n)

∆t(O)(x, t)f w (v · n) dS + E(u,w) (2.7)

where ∂Ω(O,n) is the outflow part of the boundary, E(u,w) is the truncation error due to

the use of Euler quadrature, ∆t(I)x = tn − t∗(x) where t∗(x) is the time instance when the

characteristic emanating from (x, tn) intersects the boundary ∂Ω × [tn−1, tn], and similarly

∆t(O)(x, t) = t− t∗(x, t), where t∗(x, t) is the time instance when the characteristic emanating

from (x, t) intersects the boundary; both time steps extend to ∆t when the corresponding

characteristics do not intersect the boundary.
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3. Numerical Approximation

The numerical schemes can use arbitrarily high-order trial and test functions. Here we

present the schemes using piecewise bilinear and biquadratic basis functions over rectangular

elements determined by partition (2.2). The original one dimensional Linear ELLAM scheme

uses the hat functions

li(x, t
n) =































x− xi−1

∆x
, if x ∈ [xi−1, xi]

xi+1 − x

∆x
, if x ∈ [xi, xi+1]

0, otherwise

(3.1)

as basis functions [6]. The two-dimensional bilinear ELLAM scheme is the natural extension

which uses two-dimensional piecewise bilinear polynomials that are formed by taking direct

products of associated one dimensional basis functions (3.1). That is, if li(x, t
n) is the piecewise

linear function defined along x at the grid point xi, and lj(y, t
n) is the corresponding function

along y at the grid point yj , then the piecewise bilinear basis function associated with node k

located at the grid point (xi, yj) is defined by wk(x, t
n) = li(x, t

n) lj(y, t
n) (see Fig. 3.1(a)).

x
i+1

x
i

x
i−1

y
j−1

y
j

y
j+1

(a)

x
i+1

x
i

x
i−1

y
j−1

y
j

y
j+1

(b)

x
i+1

x
i

x
i−1

y
j−1

y
j

y
j+1

(c)

x
i+1

x
i

x
i−1

y
j−1

y
j

y
j+1

(d)

Fig. 3.1. Representative global basis functions at time tn for (a) bilinear, (b) biquadratic interpolation.

Only nonzero parts are plotted.

In a similar manner, we can present the basis functions of the higher-order (biquadratic)

ELLAM by considering the piecewise quadratic basis functions in one-space dimension

l2i(x, t
n) =































2(x− xi−1)(2 − xi−1 − xi)

(∆x)2
, x ∈ [xi−1, xi]

2(x− xi+1)(2− xi+1 − xi)

(∆x)2
, x ∈ [xi, xi+1]

0, otherwise,

(3.2)
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l2i+1(x, t
n) =











4(x− xi)(xi+1 − x)

(∆x)2
, x ∈ [xi, xi+1]

0, otherwise.

The two-dimensional basis functions are then defined to be the direct product of these one di-

mensional functions. A representative corner-node, midside-node, and center-node biquadratic

basis functions are presented in Fig. 3.1. These methods use similar basis functions at the

outflow boundary of the space-time domain. Here we recall that on the interior of the domain,

these test functions extend to be constant along the approximate characteristics. The two EL-

LAM schemes are based on approximating the exact solution u of Eq. (2.1) (or equivalently the

reference Eq. (2.7)) by a piecewise bilinear or biquadratic trial function U , of the same degree as

the test functions. Incorporating the trial and test functions above into the reference Eq. (2.7)

and dropping the truncation error term E(u,w) and the adjoint term, the fourth term on the

left side of the equation, gives the corresponding ELLAM schemes
∫

Ω

φ(x, tn) U(x, tn)w(x, tn) dx+

∫

Ω

∆t(I)(x)(D∇U)(x, tn) · ∇w(x, tn) dx

+

∫ tn

tn−1

∫

∂Ω(O,n)

∆t(O)(x, t)(D∇U) · ∇w (v · n) dS

+

∫ tn

tn−1

∫

∂Ω

(vU −D∇U) · n w dS

=

∫

Ω

φ(x, tn−1) (x, tn−1) w(x, tn−1
+) dx+

∫

Ω

∆t(I)f(x, tn) w(x, tn) dx

+

∫ tn

tn−1

∫

∂Ω(O,n)

∆t(O)(x, t)f w (v · n) dS.

(3.3)

With the known solution U(x, tn−1) from the computations at the previous time step tn−1 (or

the initial condition) and the prescribed boundary conditions, each ELLAM method solves for

U(x, tn) with x in Ω and also for (x, t) for points in Ω(O,n). These schemes symmetrize the

governing Eq. (2.1), generate accurate numerical solutions even if large time steps are used,

and conserve mass [6].

4. Numerical Experiments

We conduct several example runs to observe the performance of the bilinear and biquadratic

ELLAM methods (L-ELLAM, Q-ELLAM) developed and to numerically verify their conver-

gence rates which were proved for the one-dimensional case in [17].

4.1. Convergence Rates

In this example, we establish the convergence rates in space of the higher-order (biquadratic)

ELLAM scheme as well as the bilinear ELLAM method. As a model problem, we consider the

transport of a rotating Gaussian pulse with initial configuration given by

u0(x, y) = exp

(

− (x− xc)
2 + (y − yc)

2

2σ2

)

(4.1)
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Table 4.1: Order of convergence in space of the L-ELLAM and Q-ELLAM methods for the transport

of the Gaussian pulse problem

Method h ∆t L2 Error L1 Error CPU seconds

L-ELLAM 1/21 π/200 1.88270×10−2 4.69993×10−3 80.50

1/22 π/200 1.76360×10−2 4.26819×10−3 90.08

1/23 π/200 1.64753×10−2 3.89080×10−3 98.10

1/24 π/200 1.53485×10−2 3.51173×10−3 104.42

1/25 π/200 1.42735×10−2 3.20672×10−3 115.13

1/26 π/200 1.33057×10−2 2.91680×10−3 125.55

1/27 π/200 1.23982×10−2 2.65664×10−3 129.96

1/28 π/200 1.16136×10−2 2.41584×10−3 138.64

1/29 π/200 1.08832×10−2 2.22009×10−3 149.35

1/30 π/200 1.02231×10−2 2.04316×10−3 159.74

α = 1.8 α = 2.3

Cα = 3.21 Cα = 5.37

Q-ELLAM 1/21 π/200 2.50893×10−3 4.17767×10−4 111.80

1/22 π/200 2.18695×10−3 3.53850×10−4 123.88

1/23 π/200 1.88490×10−3 3.01452×10−4 132.87

1/24 π/200 1.58538×10−3 2.47161×10−4 146.37

1/25 π/200 1.35704×10−3 2.06903×10−4 160.17

1/26 π/200 1.17361×10−3 1.78075×10−4 164.75

1/27 π/200 1.06855×10−3 1.60205×10−4 177.68

1/28 π/200 9.83897×10−4 1.46533×10−4 200.01

1/29 π/200 9.42515×10−4 1.38701×10−4 204.11

1/30 π/200 9.00645×10−4 1.29302×10−4 218.41

α = 3.0 α = 3.4

Cα = 26.65 Cα = 13.0

where the center and the standard deviation are (xc, yc) = (0,−0.25) and σ = 0.0316. Eq. (2.1)

is solved with this initial condition over a domain of Ω = [−0.5, 0.5]× [−0.5, 0.5] for a period

of T = π/2. The rotating velocity field is v(x, y, t) = 〈−4y, 4x〉 and the diffusion tensor

D = 0.0002I2 (where I2 is the 2× 2 identity matrix). To complete the model, we select φ = 1

and consider a zero source/sink term. The exact solution to this problem is given by

u(x, y, t) =
2σ2

2σ2 + 4(0.0002)t
exp

(

− (x̄− xc)
2 + (ȳ − yc)

2

2σ2 + 4(0.0002)t

)

. (4.2)

where (x̄, ȳ) = (x cos 4t+ y sin 4t,−x sin 4t+ y cos 4t).

The truncation error of the two ELLAM schemes can be estimated as follows

max
n=0,..,N

‖u(x, tn)− U(x, tn)‖LP
≤ Cα(h)

α + Cβ(∆t)β (4.3)

in the L2 and the L1 norms where ∆x = ∆y =: h; here α and β are the orders of convergence in

space and time, respectively [17]. Because the temporal convergence rates of ELLAM schemes

using a backward Euler step in time were previously reported for one-dimensional problems

in [1, 16], in this example we only measure the spatial convergence rates of the bilinear and

biquadratic ELLAM methods. We vary the spatial grid size h systematically with the temporal

step being sufficiently refined so that the temporal errors are negligible. We then use a linear

regression to fit the spatial convergence rates. Table 4.1 contains the L2 and the L1 norms of
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Table 4.2: Results of the L-ELLAM and Q-ELLAM methods for the transport of the box function

problem

Method h ∆t L2 Error L1 Error CPU seconds

L-ELLAM 1/85 π/12 2.12625×10−3 4.93197×10−4 45.76

1/85 π/60 1.69367×10−3 3.78598×10−4 227.67

1/90 π/24 5.36936×10−4 1.23854×10−4 112.03

1/90 π/60 4.91244×10−4 1.23542×10−4 283.73

Q-ELLAM 1/85 π/12 2.62226×10−3 6.21217×10−4 97.67

1/85 π/60 1.66480×10−3 3.68038×10−4 322.47

1/90 π/24 1.05805×10−3 2.79854×10−4 201.62

1/90 π/60 4.77819×10−4 1.23959×10−4 410.70

the errors generated in runs carried out for the L-ELLAM and Q-ELLAM, respectively. These

results verify the optimal-order convergence rates of these ELLAM schemes in the two norms.

We also remark that the constant Cα increases as the degree of the trial and test functions

increases. This is because the errors for higher-order ELLAM schemes depend on higher-order

Sobolev norms of the exact solution.

The choice of the relatively small time steps ∆t in Table 4.1 was to establish the order of

convergence. However, one main advantage of ELLAM and characteristic methods in general

is that they allow large time steps in the simulations. Therefore, in Fig. 4.1, we present the

solutions generated by both ELLAM methods for this model problem using a grid of size

h = 1/60 and the relatively larger ∆t = π/30 . Both L-ELLAM and Q-ELLAM perform very

well and present a solution with relatively small errors of 4.50754× 10−4 and 2.58679× 10−4 in

the L2 norm, respectively, and 6.65402× 10−4 and 3.72599× 10−4 in the L1 norm with a CPU

real time of 56.55 and 65.9 seconds.

4.2. Transport of a Diffused Box Function

In order to test the L-ELLAM and Q-ELLAM methods for problems with discontinuous

data, we consider in this example the transport of a diffused rectangular box function with

initial configuration given by

uo(x, y) =







1, (x, y) ∈ [−0.1, 0.1]× [−0.35,−0.15]

0, otherwise
(4.4)

subject to Eq. (2.1). The parameters selected in this model problem are the same as those

in the previous example and so is the space-time domain. The exact solution of this model

problem is given by

u(x, y, t) =
1

4

[

erf

(

x̄+ 0.1√
0.0008t

)

− erf

(

x̄− 0.1√
0.0008t

)]

×

[

erf

(

ȳ + 0.35√
0.0008t

)

− erf

(

ȳ + 0.15√
0.0008t

)]

(4.5)

where erf(x) = 2/
√
π
∫ x

0
e−s2ds is the standard error function and (x̄, ȳ) = (x cos(4t) +

y sin(4t),−x sin(4t) + y cos(4t)) as defined before.

In Table 4.2 we present the numerical results of some representative example runs, while

in Fig. 4.2, we present plots of the solutions of the L-ELLAM and Q-ELLAM schemes using a
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Fig. 4.1. Plots at t = π/2 and contours at t = π/10, π/5, 3π/10, 2π/5, π/2 of the exact solution

and the solutions of L-ELLAM and Q-ELLAM with h = 1/60 and ∆t = π/30 for the transport of the

Gaussian pulse problem

grid of sizes h = 1/60 and ∆t = π/30 as well as the exact solution. These results show that the

ELLAM schemes very accurately capture the details and the steep fronts of the exact solution,

with the Q-ELLAM performing better. These results support the development of higher-order

schemes. On the other hand, these results also call for the development of higher-order ELLAM

schemes with rigorous higher-order temporal approximations (e.g., TVD in time). This will be

one of the objectives for our future work.



A Higher-Order Eulerian-Lagrangian Localized Adjoint Method 333

−0.5
0

0.5

−0.5

0

0.5

0

0.5

1

x−axis

max =    1 min =    0

y−axis −0.5 0 0.5
−0.5

0

0.5

0.1
0.9

0.1
0.9

0.1
0.9

0.1

0.9

0.1
0.9

(a) Exact Solution

−0.5
0

0.5

−0.5

0

0.5

0

0.5

1

x−axis

max =    1 min = 2.17e−020

y−axis −0.5 0 0.5
−0.5

0

0.5

0.1
0.9

0.1

0.90.1

0.9

0.1
0.9 0.1

0.9

(b) L-ELLAM

−0.5
0

0.5

−0.5

0

0.5

0

0.5

1

x−axis

max =    1 min = 1.16e−018

y−axis −0.5 0 0.5
−0.5

0

0.5

0.10.9

0.1

0.90.1
0.9

0.1

0.9

0.10.9

(c) Q-ELLAM

Fig. 4.2. Plots at t = π/2 and contours at t = π/10, π/5, 3π/10, 2π/5, π/2 of the exact solution and

the solutions of L-ELLAM and Q-ELLAM with h = 1/60 and ∆t = π/30 for the transport of the box

function problem

4.3. Diffusion in a plane shear flow

The next set of numerical experiments involves the transport of a point source under the

influence of a shear flow [5]. The model Eq. (2.1) is solved using a velocity field of v(x, y, t) =

〈1 + 2y, 0〉 and a diffusion of D = 0.0001I2 over a spatial domain of [0, 1.3]× [−0.2, 0.2]. The

analytic solution subject to an initial condition of Mδ(x0, 0) (where δ represents the dirac delta
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Fig. 4.3. Plots of the solution at t = 1.2 and contours at t = 0.2, 0.4, 0.6, 0.8, 1.0 1.2 of the exact

solution and the solutions of L-ELLAM and Q-ELLAM with h = 1/100 and ∆t = 1/15 for the diffusion

in a plane shear flow problem

function) is given by

u(x, y, t) =
M

0.0004πt
√

1 + 4t2

12

exp

(

− (x− x0 − t− yt)2

0.0004t(1 + 4t2

12 )
− y2

0.0004t

)

. (4.6)

In the model problem we work with a finite initial condition at t = 0.2 and simulate over the

time interval [0.2, 1.2] using M = 0.001.

As a representative model run, we simulate the problem with a discretization of ∆x = ∆y =

1/100 and ∆t = 1/15 and present the L-ELLAM and Q-ELLAM solutions in Fig. 4.3. The

norms of the absolute errors generated are an L2 norm of 8.54250× 10−4 and an L1 norm of

5.41365× 10−5 for the L-ELLAM using 73.61 CPU seconds and an L2 norm of 4.91267× 10−4

and an L1 norm 3.52839× 10−5 consuming 104.48 CPU seconds.
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5. Discussion

In this paper we have presented a characteristic scheme of a high order in space to solve

the two-dimensional advection diffusion equation. This method uses piecewise biquadratic test

and trial functions over rectangular grids within a finite element framework of the Eulerian-

Lagrangian localized adjoint methods (ELLAM). The derived scheme maintains the advantages

of the class of ELLAM schemes which include global mass conservation and a natural treatment

of the boundary conditions in the formulation. Moreover, it is not subject to CFL restrictions,

and thus allows for large time steps to be used in the simulation without any sacrifice to

accuracy.

Numerical experiments are presented which investigate the performance of the method de-

veloped and its convergence rates in comparison to previously developed ELLAMmethods based

on linear interpolation. These results verify the higher order convergence rate in space expected

from the order of polynomial interpolation used. Moreover, they illustrate the strong potential

of the derived scheme and show a promising for practical use and a wide industrial applicability.

To further improve the accuracy and convergence behaviour of the method, one could consider

coupling the higher-order discretization in space with a high-order approximation in time (e.g.,

TVD in time). This will be a topic for future investigation.
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