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Abstract

The elementary analysis of this paper presents explicit expressions of the constants in

the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming

and Raviart-Thomas mixed finite element methods in the Poisson model problem. The

three constants and their dependences on some maximal angle in the triangulation are

indeed all comparable and allow accurate a priori error control.
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1. Introduction

Quantitative a priori error control for the three most popular lowest-order conforming,

nonconforming, and mixed 2D finite element methods (FEMs) named after Courant, Crouzeix-

Raviart, and Raviart-Thomas, depicted symbolically in Figure 1.1, is one of the most funda-

mental questions in the numerical analysis of partial differential equations (PDEs). For the

Courant FEM and the Raviart-Thomas mixed FEM (MFEM), there exist elementwise interpo-

lation operators I and IF such that the error analysis consists in an estimate of the Lebesgue

norms in the sense of

‖∇(v − Iv)‖L2(T ) ≤ C(T )hT
∥∥D2v

∥∥
L2(T )

for some smooth function v with Hessian D2v and the triangle T with diameter hT . The point

is that the constant C(T ) depends on the shape of the triangle but not on its size hT . The

textbook analysis is based on the Bramble-Hilbert lemma and so on some compact embeddings

on a reference geometry [1, 2]. The transformation formula then leads to some estimate of

C(T ) which is qualitative and can be quantified with the help of computer-justified values of

some eigenvalue problem on the reference triangle, cf. e.g., [3] for a historic overview and the

references quoted therein, in particular [4] for Courant and [5] for Raviart-Thomas FEM. This
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paper aims at direct elementary proofs of quantitative error estimates based on the Poincaré

inequality with some known constant plus elementary integration by parts.

The situation is somewhat different for the nonconforming FEMs because the local inter-

polation error through the natural interpolation operator INC is very sharp, even optimal by

some averaging property; but the global error is also driven by the interaction with the incon-

sistency. The standard textbook analysis employs some Strang-Fix type argument [1, 6] which

leads to two contributions and gives the reader the impression that the error analysis is even

more sensitive and perhaps even the scheme is more sensitive than the other two. In Braess [1]

page 111 one can even find the hint that the Crouzeix-Raviart nonconforming FEM (NCFEM)

is more sensitive with respect to large second order derivatives than the other two methods.

Fig. 1.1. Courant, Crouzeix-Raviart, and Raviart-Thomas FE.

This paper aims at a clarification by the comparison of the best known constants C(T ) for

the three FEMs at hand. In fact, the constant

C(α) :=

√
1/4 + 2/j2

1,1

1− | cosα|
, (1.1)

for a maximal angle 0 < α < π of a triangle T and the first positive root j1,1 of the Bessel

function J1, and its maximum

C(T ) := max
T∈T

C(max]T )

in a triangulation T of a 2D polygonal domain Ω play a dominant role. The main results of

this paper are the explicit error estimates

|||u− uC ||| ≤ C(T )
∥∥hTD2u

∥∥
L2(Ω)

, (1.2)

‖p− pRT ‖L2(Ω) ≤ C(T ) ‖hTDp‖L2(Ω) , (1.3)

|||u− uCR|||NC ≤
1

j1,1
osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

(1.4)

for the Courant, Raviart-Thomas and Crouzeix-Raviart finite element approximations uC , pRT
and uCR in a simple Poisson model problem and the oscillations osc(f, T ) defined in Section 6.

In particular, the constants (which are upper bounds) have the same behaviour as the angles

deteriorate with α ↗ π. The above estimate for the NCFEM displays the perturbation result

for an arbitrary L2 function f as a right-hand side in the Poisson model problem and thereby

corrects and sharpens a corresponding error analysis in [7]. The technique here bypasses the
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Strang-Fix argument by the direct connection of the Raviart-Thomas MFEM with the Crouzeix-

Raviart NCFEM usually attributed to Marini [8, 9].

The paper is organised as follows. Section 2 presents some preliminaries and Section 3

shows the elementary interpolation estimate for the nodal interpolation operator I. The model

problem and the error estimate (1.2) for the Courant finite element method is presented in

Section 4. Sections 5 and 6 present the error estimates for the Raviart-Thomas MFEM (1.3)

and the Crouzeix-Raviart NCFEM (1.4).

The contents of this paper reflects the way, finite element methods are taught by the first

author over the years at the universities in Kiel, Vienna, Berlin, Budapest, and Seoul as well as

in his summer schools in Cape Town, Beijing, Mumbai and on Goa. They seem to be optimal

in the class of arguments and offer some quantitative insight with surprisingly little effort.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is employed. The

Lebesgue integral reads
´

, the integral mean
ffl

, norms |||·||| := ‖∇·‖L2(Ω), |||·|||NC := ‖∇NC ·‖L2(Ω)

with piecewise gradient (∇NC ·)|T := ∇(·|T ) for all T ∈ T , and | · | denotes the measure as the

area |T | of the triangle T and the length |E| of an edge E.

2. Elementary Preliminaries

This section is devoted to some preliminaries for the interpolation error estimates. One is a

Poincaré-Friedrichs type estimate, which follows from the well known trace identity and another

is some transformation stability in the plane. Figure 2.1 displays the geometry of a triangle in

the subsequent two lemmas.

P

E

νE

νx

T

H

Fig. 2.1. Geometry of the triangle T from Lemma 2.1 and Lemma 2.2.

Lemma 2.1 (Trace Identity) Let f ∈ W 1,1(T ) on the triangle T = conv({P} ∪ E) with

vertex P and opposite edge E. Then it holds

 
E

f ds−
 
T

f dx =
1

2

 
T

(x− P ) · ∇f(x) dx.

Proof. Set g(x) := (x− P )f(x) for all x ∈ T and observe

(x− P ) · νE = dist(P,H) for x ∈ E ⊂ H
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for the line H from Figure 2.1 that enlarges E. For x on one of the two other edges, x − P is

parallel to that edge. Hence, the unit normal ν along ∂T satisfies

(x− P )⊥ν(x) for x ∈ ∂T \ E.

Therefore, the Gauss divergence theorem leads to

ˆ
T

div g(x) dx =

ˆ
∂T

g(x) · ν(x) dsx =

ˆ
E

f(x) (x− P ) · νE dsx = dist(P,H)

ˆ
E

f ds .

This and the product rule

div g(x) = 2f(x) +∇f(x) · (x− P )

prove the assertion. �

The classical Poincaré constant of Payne-Weinberger [10] has recently been improved from

1/π (for all convex domains) to the optimal value 1/j1,1 (for triangles), where j1,1 ≈ 3.83170597

denotes the first positive root of the Bessel function J1.

Theorem 2.1 (Poincaré Inequality on Triangles [11]) For all f ∈ H1(T ) on a triangle

T it holds ∥∥f − ffl
T
f(x)dx

∥∥
L2(T )

≤ hT /j1,1 |f |H1(T ). (2.1)

Lemma 2.2 (Poincaré-Friedrichs Inequality) Let f ∈ H1(T ) satisfy
´
E
f ds = 0 on the

triangle T = conv({P} ∪ E) with an edge E opposite to the vertex P . Then it holds

‖f‖L2(T ) ≤
√

max
x∈E
|P − x|2 /8 + h2

T /j
2
1,1 |f |H1(T ) .

Proof. The theorem of Pythagoras for a := f −
ffl
T
f(x)dx and b :=

ffl
T
f(x)dx reads

‖f‖2L2(T ) = ‖a+ b‖2L2(T ) = ‖a‖2L2(T ) + ‖b‖2L2(T ) .

The Poincaré inequality (2.1) gives

‖a‖L2(T ) =
∥∥f − ffl

T
f(x)dx

∥∥
L2(T )

≤ hT /j1,1 |f |H1(T ).

The trace identity from Lemma 2.1 with
ffl
E
f ds = 0 leads to

|T ||b| =
∣∣∣ˆ
T

f(x) dx
∣∣∣ =

1

2

∣∣∣ ˆ
T

(x− P ) · ∇f(x) dx
∣∣∣ ≤ 1

2
‖• − P‖L2(T ) |f |H1(T ).

With polar coordinates (r, ϕ) and the notation for |x − P | =: r and α < ϕ < β with some

distance 0 < δ(ϕ) ≤ maxx∈E |P − x| of P to E, one deduces

‖x− P‖2L2(T ) =

ˆ β

α

ˆ δ(ϕ)

0

r2r dr dϕ =

ˆ β

α

δ(ϕ)4/4 dϕ

≤ max
x∈E
|P − x|2 /2

ˆ β

0

ˆ δ(ϕ)

0

r dr dϕ = |T |max
x∈E
|P − x|2 /2 .
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This results in the bound

|b| =
∣∣∣  
T

f(x) dx
∣∣∣ ≤ 2−3/2|T |−1/2 max

x∈E
|P − x| |f |H1(T ).

The preceding two estimates control the two terms a and b of the above Pythagoras identity

and so prove

||f ||2L2(T ) ≤ h
2
T /j

2
1,1 |f |2H1(T ) + max

x∈E
|P − x|2 /8 |f |2H1(T )

=

(
max
x∈E
|P − x|2 /8 + h2

T /j
2
1,1

)
|f |2H1(T ). �

The following inequality compares the Euclidean length |a| of a vector a in the plane with

a second metric
√

(a · ν)2 + (a · µ)2 given by the two projections a · ν and a · µ.

Lemma 2.3 (Transformation Stability) For linearly independent unit vectors ν and µ in

R2, it holds

min
a∈R2\{0}

(a · ν)2 + (a · µ)2

|a|2
= 1− |ν · µ|.

Proof. Let a = αν + βµ for real α and β with α2 + β2 = 1. Set γ := ν · µ and |ν| = 1 = |µ|.
Then −1 ≤ 2αβ ≤ 1 and so

0 ≤ (1 + |γ|)(|γ|+ 2αβγ).

This is equivalent to

−(1 + |γ|) 2αβγ ≤ γ2 + |γ|.

Add 1− |γ|+ 4αβγ on both sides to prove

LHS := (1− |γ|)(1 + 2αβγ) = 1 + 2αβγ − |γ|2αβγ − |γ| ≤ 1 + γ2 + 4αβγ =: RHS.

Direct calculations show

|a|2 = α2 + β2 + 2αβγ = 1 + 2αβγ = LHS/(1− |γ|)

as well as a · ν = α+ βγ and a · µ = β + αγ. Therefore,

(a · ν)2 + (a · µ)2 = (α+ βγ)2 + (β + αγ)2 = 1 + γ2 + 4αβγ = RHS.

Altogether this proves

(1− |γ|)|a|2 ≤ (a · ν)2 + (a · µ)2 for all a ∈ R2 .

This shows that the left-hand side in the assertion is in fact larger than or equal to 1 − |γ|.
Equality and attainment of the minimum follows with the choice

(α, β) =
1√
2

(±1, 1) for ± γ ≤ 0

plus direct calculations. This concludes the proof. �
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3. Nodal Interpolation Error Estimate

This section presents the nodal interpolation error estimates in an abstract form on a triangle

with focus on explicit constants and then compares with the estimate from [3]. Recall the

expression C(α) from (1.1) for any angle 0 < α < π of a triangle T which is preferably chosen

as C(max]T ).

Theorem 3.1 (Interpolation Error Estimate) Let v ∈ H2(T ) with v(A) = v(B) = v(C) =

0 on the triangle T = conv{A,B,C}, with vertices A,B,C, diameter hT , and some interior

angle 0 < α < π. Then it holds

‖∇v‖L2(T ) ≤ C(α) hT
∥∥D2v

∥∥
L2(T )

.

τ1

τ 2

T

A

α

B

C

Fig. 3.1. Geometry in Theorem 3.1.

Proof. Figure 3.1 displays two unit vectors τ1 = ν and τ2 = µ along the two sides of the

angle α with |γ| := |τ1 · τ2| = | cosα|. Lemma 2.3 for a := ∇v(x) and fj := τj · ∇v(x) plus

integration over T show

(1− |γ|)
ˆ
T

|∇v(x)|2 dx ≤
ˆ
T

(
f1(x)2 + f2(x)2

)
dx .

Lemma 2.2 provesˆ
T

(
f1(x)2 + f2(x)2

)
dx ≤ max{|A−B|2, |A− C|2}/8 + h2

T /j
2
1,1

(
|f1|2H1(T ) + |f2|2H1(T )

)
.

Since |τj | = 1 it holds for all x ∈ T and j, k = 1, 2 that

∂fj
∂xk

(x) =
∂

∂xk
∇v(x) · τj ≤

√√√√ 2∑
`=1

∣∣∣∣ ∂2v(x)

∂xk∂x`

∣∣∣∣2 .
This and

|fj |2H1(T ) = ‖∂fj/∂x1‖2L2(T ) + ‖∂fj/∂x2‖2L2(T )

for j = 1, 2 (which eventually results in the factor 2) lead to

|v|2H1(T ) ≤
1/4 + 2/j2

1,1

1− | cosα|
h2
T

ˆ
T

(∣∣∣∣∂2v

∂x2
1

∣∣∣∣2 + 2

∣∣∣∣ ∂2v

∂x1x2

∣∣∣∣2 +

∣∣∣∣∂2v

∂x2
2

∣∣∣∣2
)
dx

=
1/4 + 2/j2

1,1

1− | cosα|
h2
T |v|2H2(T ) = C(α)2h2

T |v|2H2(T ). �
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The following example illustrates how the estimate has to deteriorate as α↗ π and why it

stays bounded under the maximal angle condition.

Example 3.1 (Maximal Angle Condition) Given any 0 < δ ≤ 1, consider the triangles T1

and T2 defined in Figure 3.2 with vertices N (T1) and N (T2). The point is that T2 has some

largest angle α = π/2 while that of T1 is α = 2 arctan(1/δ) and this tends to π as δ tends to

zero. The smooth function v(x1, x2) = 1− x2
1 has the nodal interpolation Iv(x1, x2) = x2/δ on

T1 and one calculates

‖∂(v − Iv)/∂x2‖2L2(T1) = 1/δ ≤ ‖∇(v − Iv)‖2L2(T1) for
∥∥D2v

∥∥2

L2(T1)
= 4δ .

Theorem 3.1 applies to the interpolation error v − Iv as it vanishes at the vertices of T1. This

shows

Q(v) :=
‖∇(v − Iv)‖L2(T1)

hT1 ‖D2v‖L2(T1)

≤ C(α) .

Elementary trigonometric considerations show

(1− |cosα|)−1 = (1 + δ2)/(2δ2) ≤ δ−2.

Hence, the lower and upper bounds show the same asymptotic behaviour

(4δ)−1 ≤ Q(v) ≤ δ−1
√

1/4 + 2/j2
1,1 as δ ↘ 0.

In other words, the degeneracy of C(α)→∞ is sharp in the sense that

sup
v∈H2(T1)\{0}
v=0 at N (T1)

Q(v) ∝ (1− | cosα|)−1/2 as α↗ π .

To illustrate the difference to the triangle T2 with right angle α = π/2, note that

C(π/2) =
√

1/4 + 2/j2
1,1 ≈ 0.6215

is bounded independently of δ ↘ 0. �

(−1, 0) (1, 0)

(0, δ)

T1

(0, 0) (1, 0)

(0, δ)

T2

Fig. 3.2. The triangles T1 and T2 from Example 3.1.

The search of an optimal bound the error estimate of Theorem 3.1 can also be posed as an

eigenvalue problem with the Rayleigh quotient

RQ(v) := ‖∇v‖2L2(T ) /
∥∥D2v

∥∥2

L2(T )
for v ∈ H2(T ) with v = 0 on N (T ).

Theorem 3.1 leads to an upper bound of the first eigenvalue of this eigenvalue problem with an

elementary proof. The value C3 = 0.489 is known for a right isosceles triangle T from [12–14].
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Remark 3.1. [Comparison with [3]] The reference [3] discusses a valid upper bound for the

constant

C3(T )2 := sup
v∈H2(T )\{0}
v=0 at N (T )

RQ(v) ≤ C(α)2h2
T ,

for a triangle T with maximal angle α and diameter hT = diam(T ). Based on some trans-

formation arguments, this constant has been computed and empirically studied in [3] and

formerly in [12–14] with the numerical value C3(Tref) = 0.489 on the reference triangle Tref =

conv{(0, 0), (0, 1), (1, 0)}. Justified by computer-simulations, the bound of [3] leads to

C3(T ) ≤ 1 + | cosα|√
2
√

1− | cosα|
C3(Tref)√
1− cosα

hT . (3.1)

(The reader is warned that the notation in [3] is different and does not involve the maximum

length hT but the second largest one and there is another parameter which is maximized here

in (3.1) for simplicity.) Figure 3.3 compares the upper bound in (3.1) for C3(T ) and the bound

C(α) as a function of the angle α in the range π/3 ≤ α < π. Notice that an equilateral triangle

T with α = π/3 shows

C(α) = 0.8789 < C3(T ) = 1.0373

and the bound of Theorem 3.1 is even sharper than that of [3]. This is not a contradiction

because the transformation in [3] leads to some upper bound. The overall conclusion from

Figure 3.3 is that the two bounds are comparable; one is with an elementary proof, while the

other is justified by numerical calculations. �

60 90 120 180
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 
upper bound for C3(T)
C( )

Fig. 3.3. Comparison of the constant C(α) and the upper bound (3.1) for C3(T ).

4. Courant FEM

This section is devoted to the simplest model problem for second-order elliptic PDEs and

its most elementary first-order conforming discretisation.
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4.1. Poisson model problem

Given a right-hand side f ∈ L2(Ω) on a bounded Lipschitz domain Ω ⊂ R2 with polygonal

boundary ∂Ω, the strong form of the Poisson model problem reads: seek u ∈ C(Ω̄) ∩H2
loc(Ω)

such that

−∆u = f in Ω and u = 0 along ∂Ω. (4.1)

The formally equivalent weak formulation utilizes the scalar product and the linear and bounded

functional

a(u, v) :=

ˆ
Ω

∇u · ∇v dx and F (v) :=

ˆ
Ω

fv dx for u, v ∈ V := H1
0 (Ω)

in the Hilbert space H1
0 (Ω) of Lebesgue measurable functions in L2(Ω) with a weak gradient

in L2(Ω;R2). The weak form seeks the Riesz representative u of F within the Hilbert space V,

namely u ∈ V with

a(u, v) = F (v) for all v ∈ V . (4.2)

Elliptic regularity leads to u ∈ H2
loc(Ω) ∩H1+s(Ω) for some 1/2 < s ≤ 1 with s = 1 for convex

domains [15,16].

4.2. Regular triangulation

A regular triangulation T of Ω (in the sense of Ciarlet) into triangles is a finite set of closed

triangles T of positive area |T | such that⋃
T :=

⋃
T∈T

T = Ω

and any two distinct triangles T1 and T2 in T with T1 ∩ T2 6= ∅ share exactly one vertex z or

have one edge E in common. The set of all edges of a triangle T is denoted by E(T ), the set of

vertices of T is denoted by N (T ). The set of all edges resp. nodes is written as

E :=
⋃
T∈T
E(T ) and N :=

⋃
T∈T
N (T ).

Let mid(E) := {mid(E) |E ∈ E} be the set of midpoints of the edges. The piecewise constant

weight hT ∈ P0(T ) is the local mesh-size,

hT |T := hT := diam(T ) for all T ∈ T .

4.3. Courant FEM

For a regular triangulation T of Ω and k ∈ N0 define the finite element spaces

Pk(T ) := {polynomial on T with degree ≤ k} ,
Pk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Pk(T )} ,
VC(T ) := C0(Ω) ∩ Pk(T ) .
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The nodal basis function ϕz ∈ C(Ω) ∩ P1(T ) is defined by ϕz(z) = 1 and ϕz(y) = 0 for z ∈ N
and all other nodes y ∈ N \ {z}. The nodal interpolant is the operator

I : C(Ω)→ VC(T ), v 7→
∑
z∈N

v(x)ϕz(x).

The Galerkin discretisation replaces H1
0 (Ω) by the finite element space VC(T ): seek uC ∈ VC

with

a(uC , vC) = F (vC) for all vC ∈ VC . (4.3)

The following immediate consequence of Theorem 3.1 and the well-known optimality of uC
implies (1.2).

Corollary 4.1. The Courant FEM solution uC on Ω of the Poisson model problem (4.1) sat-

isfies

|||u− uC ||| ≤ |||u− Iu||| ≤ C(T )
∥∥hTD2u

∥∥
L2(Ω)

.

Proof. The first inequality follows from Galerkin orthogonality and the second from Theo-

rem 3.1 because u− Iu vanishes at all nodes. �

4.4. Numerical example

Consider the Poisson model problem (4.1) with

f(x, y) = 4− 2x2 − 2y2 for (x, y) ∈ Ω := (−1, 1)2

and exact solution u(x, y) = (1−x2)(1−y2). The sequence of uniform criss triangulations (T`)`
of the unit square Ω is generated by uniform refinements of Ω into squares divided along the

diagonal parallel to the main diagonal. Table 4.1 shows the errors computed with Matlab [17]

for different levels ` with mesh-sizes hT` =
√

2/2` and efficiency indices

EI := (C(T`)
∥∥hT`D2u

∥∥
L2(T`)

)/|||u− uC |||.

Table 4.1: Numerical results for Courant FEM.

` 1 2 3 4 5

|||u− uC ||| 1.70981192 0.94119129 0.48268572 0.24290612 0.12165024

|||u− Iu||| 1.73845397 0.94721815 0.48353983 0.24301633 0.12166412

EI 2.87527872 2.61168258 2.54626645 2.52987950 2.52577899

5. Raviart-Thomas MFEM

This section is devoted to the error analysis of the Raviart-Thomas mixed finite element

method. The first subsection presents the key argument.
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5.1. Fortin interpolation error estimate

This subsection is devoted to the error analysis in simplified notation. The Fortin interpo-

lation will be defined in Subsection 5.2 below.

Theorem 5.1 (Fortin Interpolation Error Estimate) Let q ∈ H1(T ;R2) on the triangle

T = conv{P1, P2, P3} with maximal angle α with
ˆ
E

q · νE ds = 0 for all E ∈ E(T ).

Then it holds

‖q‖L2(T ) ≤ C(α) ‖hT Dq‖L2(T ) .

Proof. Let E1, E2, E3 be the edges of T and ν1, ν2, ν3 corresponding exterior unit normal

vectors. Then

fj := q · νj ∈ H1(T ) satisfies

ˆ
Ej

fj ds = 0

for any j = 1, 2, 3. Lemma 2.2 implies

‖fj‖L2(T ) ≤ hT
√

1/8 + 1/j2
1,1 |fj |H1(T ) .

Suppose that the maximum angle α of T is at P3 with neighbouring edges E1 and E2. Lemma

2.3 implies for ν = ν1 and µ = ν2 with |ν1 · ν2| = |cosα| that

(1− |cosα|) ‖q‖2L2(T ) ≤ ‖f1‖2L2(T ) + ‖f2‖2L2(T ) ≤ h
2
T (1/8 + 1/j2

1,1)(|f1|2H1(T ) + |f2|2H1(T )).

Since νj is a unit vector,

|fj |H1(T ) = ‖Dq · νj‖L2(T ) ≤ ‖Dq‖L2(T ) . (5.1)

Hence,

|f1|2H1(T ) + |f2|2H1(T ) ≤ 2 |q|2H1(T ) .

The combination with the aforementioned estimate of ‖q‖L2(T ) proves the assertion. �

5.2. Raviart-Thomas finite element space

Given a regular triangulation T from Subsection 4.2, define the Raviart-Thomas finite ele-

ment space

RT0(T ) := {qRT ∈ P1(T ;R2) ∩H(div,Ω) : ∀T ∈ T ∃aT , bT , cT ∈ R
∀x ∈ T, qRT (x) = (aT , bT ) + cT (x1, x2)}.

It is well known that some piecewise polynomial function qRT belongs to

H(div,Ω) = {q ∈ L2(Ω;R2) : div q ∈ L2(Ω)}

if and only if all the jumps [qRT ]E := (qRT |T+ − qRT |T−)|E , for E = T+ ∩ T− with T± ∈ T ,

across an interior edge E disappear in their normal component [qRT ]E · νE = 0 along E. Given
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an interior edge E ∈ E(T ) shared by its neighbouring triangles T+ and T− and the vertices P±
opposite to E of T±, set

ΨE(x) :=

{
± |E|

2|T±| (x− P±) for x ∈ T±,
0 elsewhere.

A corresponding formula without T− applies to some boundary edge E ∈ E(T ) with one neigh-

bouring triangle T+. Then ΨE ∈ RT0(T ) with supp ΨE = wE := T+ ∪T− defines an edge-basis

function of RT0(T ). Indeed,

RT0(T ) = span{ΨE : E ∈ E}.

The Fortin interpolation operator IF q is defined for all q ∈ H1(Ω;R2) by

IF q =
∑
E∈E

( 
E

q · νE ds
)

ΨE

(with signs ± in the definition of T± and νE = νT+) such that

(q − IF q) · νE = 0 along any E ∈ E . (5.2)

Theorem 5.2. Let q ∈ H1(Ω;R2) with Fortin interpolation IF q. Then it holds

‖q − IF q‖L2(Ω) ≤ C(T ) ‖hTDq‖L2(Ω) .

Proof. The condition (5.2) leads to the assumption of Theorem 5.1 with q substituted by

q − IF q on any triangle T ∈ T . Theorem 5.1 shows

‖q − IF q‖L2(T ) ≤ C(max]T )hT ‖D(q − IF q)‖L2(T ) .

Any 2× 2 matrix A with trace tr(A) = A11 +A22 and deviatoric part

devA = A− tr(A)/2 I

allows for the orthogonality of the 2 × 2 unit matrix I and devA with respect to the scalar

product A : B :=
∑
j,k=1,2AjkBjk of the two matrices A,B ∈ R2×2. The Pythagoras theorem

shows for the associated Frobenius norm |·| (i.e. |A| =
√
A : A)

|A|2 = |devA|2 + tr(A)2/2.

This identity for A = D(q − IF q)(x) followed by an integration of x over T leads to

‖D(q − IF q)‖2L2(T ) = ‖devD(q − IF q)‖2L2(T ) + ‖div(q − IF q)‖2L2(T ) /2.

Notice that DIF q|T = cT I for some cT ∈ R is constant on T . Hence, devDIF q = 0. Moreover,

the Gauss divergence theorem and (5.2) showˆ
T

div q dx =

ˆ
∂T

q · ν dx =

ˆ
∂T

(IF q) · ν ds =

ˆ
T

div(IF q) dx = 2cT |T |.

Therefore, div(q − IF q) has integral mean zero and so

‖div(q − IF q)‖L2(T ) ≤ ‖div q‖L2(T ) .

Altogether, and with another application of the Pythagoras theorem, it follows

‖D(q − IF q)‖2L2(T ) ≤ ‖devDq‖2L2(T ) + ‖div q‖2L2(T ) /2 = ‖Dq‖2L2(T ) .

The summation of the resulting estimate on ‖q − IF q‖2L2(T ) over all T ∈ T concludes the

proof. �



Explicit Error Estimates for FEM 349

5.3. Raviart-Thomas MFEM

The mixed finite element method for the Poisson model problem of Subsection 4.1 with

the Raviart-Thomas finite element space RT0(T ) and the piecewise constant P0(T ) seeks

(pRT , uRT ) ∈ RT0(T )× P0(T ) with

ˆ
Ω

pRT · qRT dx+

ˆ
Ω

uRT div qRT dx = 0 for all qRT ∈ RT0(T );

ˆ
Ω

vRT div pRT dx+

ˆ
Ω

fvRT dx = 0 for all vRT ∈ P0(T ).

(5.3)

Let fT denote the piecewise L2 projection of f onto P0(T ) with

fT |T := fT :=

 
T

f(x) dx for all T ∈ T . (5.4)

Theorem 5.3. There exists a unique solution (pRT , uRT ) of the Raviart-Thomas MFEM. The

discrete flux pRT is the unique minimiser of

‖p− qRT ‖L2(Ω) for all qRT ∈ Q(f, T ) := {qRT ∈ RT0(T ) : fT + div qRT = 0}.

Proof. The existence of a unique solution follows from standard results in the theory of

mixed FEM [1,6,18]. The optimality is well known and follows from (5.3) for the test function

qRT := pRT − rRT ∈ Q(0, T ) for any rRT ∈ Q(f, T ). Indeed, (5.3) shows pRT ⊥ (pRT − rRT ).

Since p = ∇u is a gradient, (p− pRT ) ⊥ (pRT − rRT ) and so

‖p− rRT ‖2L2(Ω) = ‖p− pRT ‖2L2(Ω) + ‖pRT − rRT ‖2L2(Ω) . �

The following immediate consequence of Theorem 5.2 and 5.3 is announced as the a priori

error estimate (1.3).

Corollary 5.1. The Raviart-Thomas MFEM solution pRT on Ω of the Poisson model problem

(4.1) satisfies

‖p− pRT ‖L2(Ω) ≤ ‖p− IF p‖L2(Ω) ≤ C(T ) ‖hTDp‖L2(Ω) .

Proof. The first inequality follows from the minimising property of Theorem 5.3 and the

second from Theorem 5.2. �

Remark 5.1. [Comparison with [7]] Corollary 5.1 is a significant improvement over [7]; the

estimate [7, Equation (3.31)] is significantly greater than C(α).

5.4. Numerical example

Table 5.4 displays the errors ‖p− pRT ‖L2(Ω), ‖p− IF p‖L2(Ω), and the efficiency index

EI := (C(T`) ‖hT`Dp‖L2(T`))/‖p− pRT ‖L2(Ω)

for different levels ` in the benchmark problem from Subsection 4.4 based on the Matlab im-

plementation [19].
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Table 5.1: Numerical results for Raviart-Thomas MFEM.

` 1 2 3 4 5

‖p− pRT ‖L2(Ω) 0.98381972 0.56556947 0.29406962 0.14855355 0.07447061

‖p− IF p‖L2(Ω) 0.99628941 0.57150710 0.29503879 0.14868306 0.07448708

EI 4.99703932 4.34622629 4.17944042 4.13671187 4.12594455

6. Crouzeix-Raviart NCFEM

This section is devoted to the nonconforming finite element method (NCFEM) after Crouzeix

and Raviart and its relation to the Raviart-Thomas MFEM usually associated with Marini [8].

The implications lead to some equivalence of error estimates for the two methods.

6.1. Crouzeix-Raviart NCFEM

The NCFEM after Crouzeix and Raviart concerns the nonconforming finite element space

VNC(T ) := {v ∈ P1(T ) | v continuous at mid(E), with v = 0 for mid(∂Ω ∩ E)} .

The piecewise gradient ∇NC : H1(T ) → L2(Ω;R2) is defined by (∇NCv)|T := ∇v|T for all

T ∈ T and defines the scalar product

aNC(u, v) :=
∑
T∈T

ˆ
T

∇u · ∇v dx for all u, v ∈ H1(T )

and the induced discrete energy norm |||·|||NC :=
√
aNC(·, ·). For every E ∈ E , the edge-oriented

basis function ψE is defined by

ψE(mid(E)) = 1 and ψE(mid(F )) = 0 for all F ∈ E \ {E}

and VNC(T ) = span{ψE |E ∈ E(Ω)}. The discrete Friedrichs inequality [6] reads

‖v‖L2(Ω) ≤ CdF |||v|||NC for all v ∈ VNC(T ).

The constant CdF does not depend on the mesh-size or cardinality of the shape-regular trian-

gulation. The discrete Friedrichs inequality implies that |||·|||NC is a norm on VNC(T ) and the

Riesz representation theorem guarantees a unique solution uCR ∈ VNC of

aNC(uCR, vCR) =

ˆ
Ω

fvCR dx for all vCR ∈ VNC(T ). (6.1)

6.2. Equivalence of CR-FEM and RT-MFEM

The following equivalence theorem is well known [8, 19] and is given here to stress that the

right-hand side f in the Poisson model problem has to be modified to its piecewise integral

mean fT ∈ P0(T ) as in (5.4). For any T ∈ T set

s2(T ) :=
∑

E∈E(T )

|E|2 = 36 ‖• −mid(T )‖L2(T ) / |T | .

The following theorem states a representation of the unique solution (5.3).
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Theorem 6.1 (Marini [8]) Suppose that ũCR ∈ VNC(T ) solves the discrete problem for the

Crouzeix-Raviart FEM with modified right-hand side fT ∈ P0(T ), i.e., ũCR ∈ VNC(T ) satisfies

aNC(ũCR, vCR) =

ˆ
Ω

fT vCR dx for all vCR ∈ VNC(T ). (6.2)

Then the solution (pRT , uRT ) of (5.3) reads

pRT (x) = ∇NC ũCR − fT /2 (x−mid(T )) for x ∈ T ∈ T ,

uRT =

 
T

ũCR dx+ s2(T )fT /144 on T ∈ T . �

6.3. CR-FEM error estimate

This section establishes the error estimate (1.4) for the Crouzeix-Raviart nonconforming

finite element method. The oscillations of a function f ∈ L2(Ω) are defined as

osc(f, T )2 :=
∑
T∈T

h2
T ‖f − fT ‖

2
L2(T ) .

Theorem 6.2. The Crouzeix-Raviart NCFEM solution uCR ∈ VNC(T ) on Ω of the Poisson

model problem (4.1) satisfies

|||u− uCR|||NC ≤
1

j1,1
osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

.

Proof. Let ũCR ∈ VNC(T ) solve (6.2) and set p̃CR := ∇NC ũCR ∈ P0(T ;R2). The orthogo-

nality of the L2 projection Π0 onto P0(T ) plus the Poincaré inequality show

|||ũCR − uCR|||2NC = aNC(ũCR, ũCR − uCR)− aNC(uCR, ũCR − uCR)

=

ˆ
Ω

(f − fT )(ũCR − uCR)dx

=

ˆ
Ω

(f − fT )
(
(ũCR − uCR)−Π0(ũCR − uCR)

)
dx

≤ 1

j1,1
osc(f, T )|||ũCR − uCR|||NC .

Hence, |||ũCR − uCR|||NC ≤ osc(f, T )/j1,1. The Pythagoras theorem leads to

‖p− p̃CR‖2L2(Ω) = ‖p−Π0p‖2L2(Ω) + ‖Π0p− p̃CR‖2L2(Ω) .

For the first term on the right-hand side, the Poincaré inequality yields

‖p−Π0p‖2L2(Ω) ≤
1

j2
1,1

‖hTDp‖2L2(Ω) .

For the second term, Theorem 6.1 leads to Π0pRT = p̃CR and therefore

‖Π0p− p̃CR‖2L2(Ω) = ‖Π0(p− pRT )‖2L2(Ω) ≤ ‖p− pRT ‖
2
L2(Ω) .

Thus, Corollary 5.1 and the triangle inequality conclude the proof. �

Remark 6.1. The estimate in [7, Theorem 4.1] is wrong in the sense that the difference of

uCR and ũCR has been neglected. Even the corrected version of that estimate is less sharp than

Theorem 6.2 because of Remark 5.1.
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6.4. Numerical example

Table 6.4 displays the error |||u−uCR|||NC , the oscillations osc(f, T ), and the efficiency index

EI :=

(
1

j1,1
osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

)
/|||u− uCR|||NC

in the benchmark problem from Subsection 4.4.

Table 6.1: Numerical results of Crouzeix-Raviart FEM.

` 1 2 3 4 5

|||u− uCR|||NC 1.34051563 0.73261164 0.37526998 0.18881556 0.09455757

osc(f, T ) 1.97765293 0.53229065 0.13533651 0.03397415 0.00850227

EI 4.36265775 3.82871143 3.64628361 3.57691331 3.54782899
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