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Abstract

In a previous paper, some particular multistep cosine methods were constructed which

proved to be very efficient because of being able to integrate in a stable and explicit way

linearly stiff problems of second-order in time. In the present paper, the conditions which

guarantee stability for general methods of this type are given, as well as a thorough study

of resonances and filtering for symmetric ones (which, in another paper, have been proved

to behave very advantageously with respect to conservation of invariants in Hamiltonian

wave equations). What is given here is a systematic way to analyse and treat any of the

methods of this type in the mentioned aspects.
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1. Introduction

In this paper we deal with the stability and phenomenon of resonances of multistep cosine

methods. These methods are designed to integrate systems of the form

ÿ(t) = −Ω2y(t) + g(t, y(t)), (1.1)

with g a smooth function and Ω some matrix which we assume to be diagonal with real eigen-

values, in such a way that the linear part is integrated exactly. These methods have been

proved to turn up very efficient when integrating the system which arises after the space dis-

cretization of a partial differential equation of second-order in time when the ‘stiff’ part is

linear [2, 3, 5, 6, 9, 10, 13] and High order symmetric multistep cosine methods, by B. Cano and

M. J. Moreta (unpublished). In such a way, explicit and stable methods can be obtained. We

remark that the methods suggested in [5,6,9,10,13] lead to at most second-order in time under

a finite-energy and non-resonance condition, but without assuming any regularity of the solu-

tion of the continuous problem. On the contrary, the methods suggested and analysed in [2, 3]

and High order symmetric multistep cosine methods (unpublished) can lead to higher order in

time without assuming any finite-energy condition but taking as a strong hypothesis enough
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regularity of the solution of the continuous problem. The study of stability (independent of the

degree of stiffness of the problem) has been done for particular cases as Gautschi, MC3 and

SMC4 methods in [3] but a general study is lacking in the literature yet which can be applied

to methods of higher order for regular solutions, as those suggested in High order symmetric

multistep cosine methods (unpublished). That is the first aim of the present paper.

For the sake of simplicity, we will consider explicit methods with an even number of steps,

which are the ones recommended in the literature [3] and High order symmetric multistep cosine

methods (unpublished). These methods are determined by a difference equation like

ρhΩ(E)yn = h2σhΩ(E)g(tn, yn), (1.2)

where yn approximates the exact solution y(tn), with tn = t0+nh (natural n), E is the operator

which advances a stepsize from n to n+ 1 and

ρǫ(z) = z2k + α2k−1(ǫ)z
2k−1 + · · ·+ α0(ǫ), σǫ(z) = γ2k−1(ǫ)z

2k−1 + · · ·+ γ0(ǫ),

with {αj}2k−1
j=0 , {γj}2k−1

j=0 certain real functions.

When the methods of this type are consistent and stable convergence follows, which implies

that, for a fixed value of time, when the timestepsize diminishes, the error goes to zero (see [3]

and High order symmetric multistep cosine methods (unpublished)). However, the values of the

timestepsizes h for which clean numerical convergence of the corresponding order is observed

vary a lot depending on the possible diagonal elements λ of Ω. That may lead to ‘not so good’

numerical results. The phenomenon which we try to avoid is called ‘resonance’, since it is

caused by the fact that hλ is at or near certain real distinguished values. This phenomenon has

been well studied in [3] for the symmetric Gautschi and SMC4 methods for the scalar equation

ÿ(t) = −λ2y(t)− y(t), (1.3)

and our second aim here is to give a more general study in order to understand it, only for

this equation, but for every symmetric multistep cosine method. This will allow to construct

filters which avoid those resonances. We remark that the filters suggested here may not lead

to uniform second-order convergence for problem (1.3), as distinct from some of the filters well

discussed in [10]. However, these filters make the methods conserve its order of consistency (as

high as we want) when integrating regular solutions of Hamiltonian wave or beam equations, as

it is well justified in High order symmetric multistep cosine methods (unpublished). Remark 4.1

means to be clarifying in that sense. Besides, for space discretizations of this type of equations

(much more complicated than (1.3)), we have numerically observed that resonances are also

avoided in High order symmetric multistep cosine methods (unpublished). We also remark that

symmetry of these methods is a key condition to guarantee a good behaviour with respect to

conservation of invariants with time when integrating space discretizations of Hamiltonian wave

equations (see [2]).

The paper is structured as follows. Section 2 deals with conditions under which stability

can be assured. Section 3 gives a detailed study of resonances. Section 4 analyses how filtering

must be done in order to avoid them. Finally, in Section 5 some numerical experiments are

shown which corroborate previous results. For the sake of readability, the more technical proofs

of the provided theorems have been written in an appendix.
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2. Stability

It is well known that (1.2) can be written as a one-step method by introducing the vector

Yn = [yn+2k−1, . . . , yn]
T , since

Yn+1 = R(hΩ)Yn + h2B(hΩ)G(tn, Yn),

with G(tn, Yn) = [g(tn+2k−1, yn+2k−1), . . . , g(tn, yn)]
T ,

R(hΩ) =

















−α2k−1(hΩ) −α2k−2(hΩ) −α0(hΩ)

I 0 · · · 0

0 I · · · 0
...

. . .
...

0 0 · · · I 0

















,

B(hΩ) =











γ2k−1(hΩ) γ2k−2(hΩ) . . . γ0(hΩ)

0 · · · · · · 0
...

...

0 . . . . . . 0











.

Then, the stability consists of obtaining the following bound

‖Rn(hΩ)‖ ≤ Cn,

for every natural value n and some constant C which does not depend on Ω, h and n, and where

‖ · ‖ denotes the Euclidean matrix norm. Notice that in case g = 0 (and therefore G = 0),

Yn = R(hΩ)nY0. (2.1)

Besides, in such a case, the exact solution of (1.1) would grow at most linearly. However,

the fact that these methods integrate the linear part exactly does not directly imply that the

methods are stable in the indicated sense. Notice that this would be true if Y0 in (2.1) always

corresponded to an exact starting procedure. However, in order to have convergence, ‖R(hΩ)nδ‖
must be controlled for any possible perturbation δ. In fact, a multistep cosine method which is

not stable in the sense mentioned above is given in [3]. We would also like to remark that Kreiss

matrix theorems [1] cannot be applied for our stability bound since the Schur decomposition of

R(hΩ) is not diagonal, as it was studied in [3] for Gautschi and SMC4 methods.

Due to a well-known spectral result, as hΩ is a normal matrix,

‖R(hΩ)n‖ ≤ sup
λ∈σ(Ω)

‖R(hλ)n‖.

Therefore, we are interested in bounding ‖Rn(ǫ)‖/n uniformly on real ǫ. In fact, we obtain a

finer result since, for many values of ǫ, ‖Rn(ǫ)‖ does not grow with n. Here is the precise result,

which proof is given in the appendix because of its technicality.

Theorem 2.1. Let us assume that

(i) ρǫ(z) has coefficients which are continuous and periodic on ǫ.

(ii) For every value of ǫ, all the roots of ρǫ(z) have modulus less than or equal to one and

those of modulus one are at most double.
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(iii) There exist just a finite number of values of ǫl in each period for which double roots are

met.

Then, the stability matrix associated to this polynomial R(ǫ) satisfies

‖Rn(ǫ)‖ ≤ Cn, ǫ ∈ R, n ∈ N, (2.2)

for some constant C which does not depend on n either on ǫ.

Besides, there exists η > 0 such that if |ǫ− ǫl| > η for every ǫl which leads to double roots,

‖Rn(ǫ)‖ ≤ K, n ∈ N,

for some constant K which does not depend on n either on ǫ.

3. Resonances

As it was explained in the introduction, in spite of having convergence when integrating

space discretizations of regular solutions of continuous problems, some times the size of the

errors is very big for moderately small values of the timestepsize. In order to understand this,

we will consider the integration of the simplified problem (1.3) as in the previous paper [3].

As distinct from there, instead of studying just Gautschi and SMC4 method, we will consider

here any stable symmetric multistep cosine method for which the coefficients of the second

characteristic polynomial are bounded for real ǫ. Although the last hypothesis is weaker than

that assumed in [3], Lemmas 6.1 and 6.2 there are still valid with the same proof. We state

them here again for clarity.

It is well known that the numerical solution of (1.3) consists of a linear combination of

powers of the roots zj(ǫ, h)
2k
j=1 of the polynomial

ρǫ(z) + h2σǫ(z), (3.1)

where ǫ = λh. Then, the following lemmas hold.

Lemma 3.1. Let us assume hypotheses of Theorem 2.1 for ρǫ(z) and that the coefficients of

σǫ(z) are bounded for real ǫ. Then, for small enough δ > 0, it happens that for every ǫ ∈
R \ ∪∞

l=0(ǫl − δ, ǫl + δ), there exist positive values h0, r1, . . . , r2k (depending on δ but not on ǫ)

satisfying that, for every positive h such that h ≤ h0(δ), each of the roots {zj(ǫ, h)}2kj=1 remains

in one of the balls {B(zj(ǫ, 0), rj)}2kj=1, where these balls are disjoint to each other. On the other

hand, if for some natural l, ǫ ∈ (ǫl − δ, ǫl + δ), the same result is true with the exception that

d(ǫl) pairs of the balls may not be disjoint to each other in each pair but are disjoint to all the

other ones. (Here d(ǫl) denotes the number of double roots of ρǫl(z).)

Lemma 3.2. Under the same hypotheses of Lemma 3.1, if the method is also symmetric (i.e.

αj(ǫ) = α2k−j(ǫ), j = 0, . . . , k, γj(ǫ) = γ2k−j(ǫ), j = 1, . . . , k−1), the following statements hold.

(a) |zj(ǫ, 0)| = 1, for every j = 1, . . . , 2k.

(b) For small enough δ, if ǫ ∈ R\∪∞
l=0(ǫl−δ, ǫl+δ) , there exists h1(δ) such that, for h ≤ h1(δ),

|zj(ǫ, h)| = 1 for every j = 1, . . . , 2k.

(c) If for some natural l, ǫ ∈ (ǫl − δ, ǫl + δ), either it happens the situation before either

|zj(ǫ, h)| = 1 for at least 2k − 2d(ǫl) roots and the other roots have not modulus one but,

by pairs, they are one the conjugate inverse of the other.
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(d) If, in situation (c), l is such that ρǫl(z) has a real double root zj(ǫl, 0) = zr(ǫl, 0) ∈ R, the

pair of roots zj(ǫ, h) and zr(ǫ, h) satisfy that either both have modulus one and conjugate

to each other or both are real and inverse to each other.

These lemmas are crucial to study resonances. Notice that, for small h, zj(ǫ, h) will be a

perturbation of zj(ǫ, 0), which is a root of the first characteristic polynomial ρǫ(z). Notice also

that all the solutions of (1.3) are bounded with time while in case |zj(ǫ, h)| > 1 for some j, the

numerical solution can grow exponentially with n. This is the fact which leads to resonance.

Therefore, we are interested in cases (c) and (d) in Lemma 6.2, which are the ones which

produce resonance.

In order to understand which double roots produce resonances, the following Taylor series

expansion of (3.1) is used,

η
dρǫ
dǫ

(zl)|ǫl +
η2

2

d2ρǫ
dǫ2

|(zl)ǫl + ηr
d

dǫ
ρ′ǫ(zl)|ǫl +

r2

2
ρ′′ǫl(zl)

+ · · ·+ h2

[

σǫl(zl) + η
dσǫ

dǫ
(zl)|ǫl + rσ′

ǫl
(zl) +

η2

2

d2σǫ

dǫ2
(zl)|ǫl

+ ηr
d

dǫ
σ′
ǫ(zl)|ǫl +

r2

2
σ′′
ǫl
(zl) + · · ·

]

= 0, (3.2)

where ǫ = ǫl + η, z = zl + r, with zl a double root of ρǫl(z).

In the following, we will say that no resonance occurs at ǫl if, for small enough h and ǫ

near enough ǫl the roots zj(ǫ, h) of (3.1) have modulus one. On the contrary, we will say that

resonance occurs if that situation does not happen.

Also in the following we will consider the following hypotheses:

(a) the coefficients of ρǫ(z) are twice continuously differentiable at all the values ǫl which lead

to double roots of ρǫl(z).

(b) the coefficients of σǫ(z) are continuous at the same values of ǫl mentioned in (a) and once

differentiable at the same values of ǫl when σǫl vanishes at some of its double roots.

For the values of ǫl which lead to the double root 1 or −1, the sign of σǫl(±1) is very

important in order to know whether that ǫl will produce resonance. The precise result is the

following theorem which proof is again in the appendix.

Theorem 3.1. Let us assume hypotheses of Lemma 3.2, (a), (b) and that 1 or −1 is a double

root of ρǫl(z). Then,

(i) If σǫl(±1) > 0 or σǫl(±1) = σ′
ǫl
(±1) = dσǫ

dǫ
(±1)|ǫ=ǫl = 0, no resonance occurs at ǫl.

(ii) If σǫl(±1) < 0, resonance occurs at ǫl.

Remark 3.1. Notice that for every consistent method ρ0(z) has the double root 1. Besides,

σ0(1) = ρ′′0 (1)/2 and therefore, by looking at the proof of the previous theorem, σ0(1) is always

positive. Besides, when the underlying multistep method is s-stable [4,12], 1 is the only double

root of ρ0(z). As a consequence, in that case, resonance never occurs by applying (i) in Theorem

3.1.
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Finally, for the values of ǫl which lead to non-real double roots of ρǫl(z), both phenomena of

resonance and non-resonance can be observed. The key point to obtain one or other behaviour

is given by the following theorem, which proof is again in the appendix.

Theorem 3.2. Let us assume hypotheses of Lemma 3.2, (a), (b) and that z̃ is a complex double

root of ρǫl(z). Then,

(i) ρ′′ǫl(z̃)/z̃
k−2 and σǫl(z̃)/z̃

k take real values.

(ii) If the previous values take the same sign or σǫl(z̃) = d
dǫ
σǫ(z̃)|ǫ=ǫl = σ′

ǫl
(z̃)| = 0, no

resonance turns up at ǫl.

(iii) If the values in (i) take different signs, resonance turns up at ǫl.

4. Filters to Avoid Resonance

In this section we consider the technique of filter functions to avoid resonances. In such a

way, the new method would read

ρhΩ(E)yn = h2σhΩ(E)g(tn, φ(yn)), (4.1)

for some filter function φ. Therefore, when integrating (1.3), the numerical solution would be

linear combinations of powers of the roots of the following polynomial (with ǫ = hλ)

ρǫ(z) + h2σ̃ǫ(z), (4.2)

where σ̃ǫ(z) = φ(ǫ)σǫ(z). Notice that this polynomial is again symmetric. The following

theorem states under which conditions on the filter function φ, all the roots of this polynomial

have modulus one and therefore no resonance turns up. We omit the proof since that follows

from Lemmas 6.1 and 6.2 in [3] and Theorems 3.1, 3.2 in this paper just by considering also

that

dσ̃ǫ

dǫ
(z) = φ′(ǫ)σǫ(z) + φ(ǫ)

dσǫ

dǫ
(z), σ̃′

ǫ(z) = φ(ǫ)σ′
ǫ(z).

Theorem 4.1. Under the same hypotheses of Theorems 3.1 and 3.2, the roots of (4.2) have

modulus one and therefore no resonance turns up if the filter function φ satisfies the following

conditions:

(i) φ : R → R is a bounded function on the real axis.

(ii) φ(ǫ) is continuous at the values ǫl which lead to double roots of ρǫ(z) and continuously

differentiable at the values ǫl such that, for the corresponding double roots z̃, σǫl(z̃) = 0.

(iii) φ(ǫl) < 0 or φ(ǫl) = φ′(ǫl) = 0 for every real value ǫl which leads to the double root ±1 of

ρǫ(z) and for which σǫl(±1) < 0.

(iv) φ(ǫl) > 0 or φ(ǫl) = φ′(ǫl) = 0 for every real value ǫl which leads to the double root ±1 of

ρǫ(z) and for which σǫl(±1) > 0.

(v) φ(ǫl) = 0 for every real value ǫl which leads to the double root ±1 of ρǫ(z) and for which

σǫl(±1) = 0.
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(vi) φ(ǫl) > 0 or φ(ǫl) = φ′(ǫl) = 0 for every real value ǫl which leads to a non-real double

root z̃ of ρǫ(z) and for which ρ′′ǫl(z̃)/z̃
k−2 and σǫl(z̃)/z̃

k take the same sign.

(vii) φ(ǫl) < 0 or φ(ǫl) = φ′(ǫl) = 0 for every real value ǫl which leads to a non-real double

root z̃ of ρǫ(z) and for which ρ′′ǫl(z̃)/z̃
k−2 and σǫl(z̃)/z̃

k take different signs.

(viii) φ(ǫl) = 0 for every real value ǫl which leads to a non-real double root z̃ of ρǫ(z) and for

which σǫl(z̃) = 0.

On the other hand, it is also necessary to ask for some requirements to the filter function φ

so that the filtered multistep cosine method conserves the order of consistency. Let us denote

by dn to the local truncation error when applied to (1.1), which is defined as

dn = ρhΩ(E)y(tn)− h2σhΩ(E)g(tn, y(tn)).

Then the following theorem follows.

Theorem 4.2. Whenever g is Lipschitz on its second variable with Lipschitz constant L and the

coefficients of σǫ(z) are bounded by a certain constant Γ, the local truncation error corresponding

to the filtered method (4.1) d∗n satisfies for every vector norm ‖ · ‖,

‖d∗n‖ ≤ ‖dn‖+ 2kh2ΓL max
l∈{0,...,2k−1}

‖[I − φ(hΩ)]y(tn+l)‖. (4.3)

Proof. The proof is straightforward by taking into account that

d∗n = ρhΩ(E)y(tn)− h2σhΩ(E)g(tn, φ(hΩ)y(tn))

= dn + h2σhΩ(E)[g(tn, y(tn))− g(tn, φ(hΩ)y(tn))].

This completes the proof of the theorem. �

Remark 4.1. As it was justified in [3] and B. Cano and M. J. Moreta, High order symmetric

multistep cosine methods, unpublished, for all the methods recommended there, when integrating

regular solutions of PDEs, after a pseudospectral discretization Ω is a diagonal matrix and

‖dn‖ behaves as O(h2k+2). On the other hand, y(t) in such a case contains the approximation

to the Fourier coefficients of the solution. Therefore, for regular solutions, the components

corresponding to the higher frequencies are very small, even negligible. Because of this, we

suggest considering a filter function for which φ(ǫ) is at least bounded and not very big when

ǫ grows and such that (φ(ǫ) − 1)/ǫ2k is bounded (and as small as possible) for small ǫ so that

the second term in (4.3) at least behaves also as O(h2k+2). In any case, a detailed proof of the

conservation of the order of consistency in that case is given in the same references.

Remark 4.2. For the choice of that function we must also take into account that φ′′(ǫl) must

not be too big for the values of ǫl for which we are imposing that φ(ǫl) = φ′(ǫl) = 0 since, in

that case, the higher order terms in (3.2) may be too large and h should be very small so as

not to observe resonance.

Remark 4.3. The filter functions suggested in [3] for Gautschi and SMC4 methods satisfied

all the conditions stated in Theorem 4.1 and Remarks 4.1, 4.2.
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5. Numerical Experiments

In this section, our aim is to numerically corroborate the results of Sections 3 and 4. We

numerically integrate problem (1.3) with initial conditions such that the exact solution of the

problem is y(t) = cos(
√
1 + λ2t)/

√
1 + λ2. We have considered the cosine 8-step method SMC8

described in High order symmetric multistep cosine methods (unpublished). For that method,

double roots of the first characteristic polynomial were met for ǫ = 2mπ, π/3+2mπ, 2π/5+2mπ,

4π/5+ 2mπ, π+2mπ, 6π/5+ 2mπ, 8π/5+ 2mπ, 5π/3+ 2mπ, integer m. An obvious function

φ which satisfies all the conditions stated in Theorems 4.1 and Remarks 4.1, 4.2 is

φ(ǫ) =

{

1 if ǫ ∈ [−1.2, 1.2]

0 if ǫ /∈ [−1.2, 1.2].
(5.1)

In the left plot of Fig. 5.1 we show the local error committed just after advancing one

stepsize with the values h = 0.1, 0.05, 0.025. We have considered the values λ = 1, 2, . . . , 1000.

Then, in the right plot of Fig. 5.1 we show the same local error when using filter (5.1). We

notice that the errors are the same for values of λ such that hλ < 1.2. Then, there is a range

of values for which the errors are noticeably different. That is because the second term in (4.3)

becomes important then. However, for bigger values of λ, as it was well justified in [3] for this

problem, the second term becomes less important and the size of the errors of both figures are

very similar.
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Fig. 5.1. Growth of local error with λ for problem (1.3) and SMC8 method without filtering (left) and

filtering (right)

In any case, the advantages of filtering are not seen in the local error but in the global error.

In Fig. 5.2, we show the global error committed after time T = 40 for the same values of h and

λ. In the left plot, no filter function was used and therefore the error is enormously big, mainly

when hλ is near the values of ǫl which lead to resonances: 2π/5+ 2mπ, π+2mπ, 8π/5+ 2mπ,

integer m, according to Theorems 3.1, 3.2 and the calculations made in High order symmetric

multistep cosine methods (unpublished).

However, in the right plot of Fig. 5.2, after applying the filter function (5.1), those resonances

disappear. Notice also that, as it is justified in the above reference, the first characteristic

polynomial associated to this method satisfies hypotheses of Theorem 2.1. Therefore, following

the same argument as that in Subsection 5.2 of [3], this justifies that the method converges
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Fig. 5.2. Growth of global error with λ for problem (1.3) and SMC8 method without filtering (left)

and filtering (right)

for the smallest values of λ as O(h8) but the error does not decrease when h diminishes but is

controlled for the biggest values of λ.

Appendix

A. Proof of Theorem 2.1

Before proving the main theorem of stability, we consider the following lemma.

Lemma A.1. Let r ≥ 1 be an integer and z0, . . . , zr−1, t0, . . . , tr some complex values of

unit modulus such that z0, . . . , zr−1 are well apart from each other and from the value 1 and

t0, . . . , tr are near enough the value 1. More precisely, there exists δ > 0 such that |arg(zj)| ≥ 2δ

(j = 0, . . . , r − 1), |arg(zj/zl)| ≥ 2δ (j, l = 0, . . . , r − 1, j 6= l) and |arg(tj)| ≤ δ (j = 0, . . . , r).

Then,

n
∑

e0, . . . , er−1 = 0

e0 + · · · + er−1 ≤ n

ze00 . . . z
er−1

r−1

( e0−1
∑

s=0

ts0

)( e1−1
∑

s1=0

ts11

)

. . .

( n−e0−···−er−1−1
∑

sr=0

tsrr

)

= zn0C0,r(z0, . . . , zr−1, t0, . . . , tr)

( n
∑

s=0

ts0

)

+ · · ·

+ znr−1Cr−1,r(z0, . . . , zr−1, t0, . . . , tr)

( n
∑

sr−1=0

t
sr−1

r−1

)

+ Cr,r(z0, . . . , zr−1, t0, . . . , tr)

( n
∑

sr=0

tsrr

)

+ zn0C
′
0,r(z0, . . . , zr−1, t0, . . . , tr)

+ · · ·+ znr−1C
′
r−1,r(z0, . . . , zr−1, t0, . . . , tr) + C′

r,r(z0, . . . , zr−1, t0, . . . , tr)

+ (z0t0)
nC′′

0,r(z0, . . . , zr−1, t0, . . . , tr) + · · ·+ (zr−2tr−2)
nC′′

r−2,r(z0, . . . , zr−1, t0, . . . , tr),

where the functions Cj,r(z0, . . . , zr−1, t0, . . . , tr), C′
j,r(z0, . . . , zr−1, t0, . . . , tr) and C′′

j,r(z0, . . . ,

zr−1, t0, . . . , tr) do not depend on n and are bounded independently of the considered values

z0, . . . , zr−1, t0, . . . , tr.
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Proof. The result follows by induction on r. For r = 1, let us first assume that t0 6= 1 and

t1 6= 1. Then,

n
∑

e0=0

ze00

( e0−1
∑

s=0

ts0

)( n−e0−1
∑

s1=0

ts11

)

=
n
∑

e0=0

ze00
1− te00
1− t0

1− tn−e0
1

1− t1

=
1

1− t0

1

1− t1

[ n
∑

e0=0

ze00 −
n
∑

e0=0

(z0t0)
e0 − tn1

n
∑

e0=0

(

z0
t1

)e0

+ tn1

n
∑

e0=0

(

z0t0
t1

)e0]

=
1

1− t0

1

1− t1

[

1− zn+1
0

1− z0
− 1− zn+1

0 tn+1
0

1− z0t0
− tn+1

1

1− ( z0
t1
)n+1

t1 − z0
+ tn+1

1

1− ( z0t0
t1

)n+1

t1 − z0t0

]

. (A.1)

After making the corresponding calculations to sum the four rational expressions in the bracket,

(A.1) becomes
1

1− t0

1

1− t1

Dtn+1
0 + Et20 + Ft0 +G

(1 − z0)(1− z0t0)(t1 − z0)(t1 − z0t0)
,

with

D = zn+2
0 − zn+3

0 − t1z
n+1
0 + t21z

n+1
0 − t21z

n+2
0 + t1z

n+3
0 ,

E = t1z
2
0 − z30 − t1z

n+3
0 + z30t

n+1
1 + zn+3

0 − z20t
n+1
1 ,

F = −z0t
2
1 + z30 + t21z

n+2
0 + z0t

n+1
1 − zn+2

0 − z30t
n+1
1 ,

G = −t21z
n+1
0 + z0t

2
1 − z20t1 − z0t

n+1
1 + z20t

n+1
1 .

Notice that D + E + F + G = 0 since it is clear that the term in brackets in (A.1) vanishes

when t0 = 1. This implies that (A.1) can also be written as

1

t1 − 1

Dtn0 + · · ·+Dt20 + (D + E)t0 + (D + E + F )

(1 − z0)(1 − z0t0)(t1 − z0)(t1 − z0t0)
,

or equivalently, in terms of t1,

1

t1 − 1

Htn+1
1 + It21 + Jt1 +K

(1 − z0)(1 − z0t0)(t1 − z0)(t1 − z0t0)
,

with

H = z30t0 − z20t0 + z0 − z20 ,

I = (zn+1
0 − zn+2

0 )

( n
∑

l=1

tl0

)

+ zn+1
0 − z0,

J = (zn+3
0 − zn+1

0 )

( n
∑

l=2

tl0

)

+ (z20 − zn+1
0 )(t0 + 1),

K = (zn+2
0 − zn+3

0 )

( n
∑

l=2

tl0

)

+ (zn+2
0 − z30)t0.

Notice that now H + I + J +K = 0 since it is again clear that the term in brackets in (A.1)

vanishes when t1 = 1. This implies that (A.1) can also be written as

H(
∑n

l=0 t
l
1) + I(t1 + 1) + J

(1 − z0)(1 − z0t0)(t1 − z0)(t1 − z0t0)
. (A.2)
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From here, as the denominator is far from zero for the considered values of z0, t0, t1, and taking

into account the expressions for H, I, J , the result follows for r = 1 and t0, t1 6= 1. On the other

hand, for t0 = 1 and t1 = 1 the result comes from applying Gosper’s algorithm [8, 15] to find

closed forms for hypergeometric identities, and can be seen to be the same as (A.2) substituting

t0 and t1 by 1.

It is quite straightforward except for extremely tedious expressions that the result can be

proved for general r once it is assumed for r − 1 and r = 1. �

From this lemma and for simplicity, we will show here the proof for the most unfavourable

case in which all the roots of ρǫ(z) have unit modulus. Notice that, by a Schur decomposition [9],

the matrix R(ǫ) is unitary equivalent to

T (ǫ) =











T11(ǫ) T12(ǫ) . . . T1k(ǫ)

0 T22(ǫ) . . . T2k(ǫ)
...

. . .

0 0 . . . Tkk(ǫ)











,

where each Tjl(ǫ) is a 2× 2-matrix and

Tjj(ǫ) =

(

eiθj,1(ǫ) aj(ǫ)

0 eiθj,2(ǫ)

)

,

with eiθj,1(ǫ) and eiθj,2(ǫ) (j = 1, . . . , k) the eigenvalues of R(ǫ), for which we can assume that

eiθj,1(ǫ) and eiθj,2(ǫ) may be close to each other but eiθj,m(ǫ) (m = 1, 2) are always well apart

from eiθk,r(ǫ) (r = 1, 2) whenever j 6= k. Notice that

‖R(ǫ)‖ ≤
√

‖R(ǫ)‖1 · ‖R(ǫ)‖∞, (A.3)

and therefore, using hypothesis (i), ‖R(ǫ)‖ is uniformly bounded on ǫ. On the other hand, it

always happens that

‖Rn(ǫ)‖ = ‖T n(ǫ)‖, (A.4)

and, by using the notation,

T n(ǫ) =











T11,n(ǫ) T12,n(ǫ) . . . T1k,n(ǫ)

0 T22,n(ǫ) . . . T2k,n(ǫ)
...

. . .

0 0 . . . Tkk,n(ǫ)











,

it can be inductively proved that

Tjl,n =

l−j
∑

r=1

∑

j<j1<···<jr=l

n−r
∑

e0, . . . , er = 0

e0 + · · · + er = n − r

T e0
jj Tjj1T

e1
j1j1

Tj1j2T
e2
j2j2

. . . T er
jrjr

. (A.5)

Our aim now is to bound the coefficients of these 2× 2-matrices and by using (A.3) applied to

T n and (A.4), we will get bound (2.2).

Notice that

T n
jj(ǫ) =

(

einθj,1(ǫ) aj(ǫ)
∑n−1

s=0 ei[sθj,1(ǫ)+(n−s)θj,2(ǫ)]

0 einθj,2(ǫ)

)

,
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and then, using (A.5), we need to bound appropriately the most unfavourable terms, which are

of the form

n−r
∑

e0, . . . , er = 0

e0 + · · · + er = n − r

eie0θj,2(ǫ)
( e0−1
∑

s=0

eis(θj,1(ǫ)−θj,2(ǫ))

)

. . . eierθjr,2(ǫ)

( er−1
∑

sr=0

eisr(θjr,1(ǫ)−θjr,2(ǫ))

)

.

(A.6)

This can also be written as

n−r
∑

e0,...,er−1=0

e0+...+er−1≤n−r

eie0θj,2(ǫ)
( e0−1
∑

s=0

eis(θj,1(ǫ)−θj,2(ǫ))

)

. . .

eier−1θjr−1,2(ǫ)

( er−1−1
∑

sr−1=0

eisr−1(θjr−1,1(ǫ)−θjr−1,2(ǫ))

)

ei(n−r−e0−···−er−1)θjr,2(ǫ)

( n−r−e0−···−er−1−1
∑

sr=0

eisr(θjr,1(ǫ)−θjr,2(ǫ))

)

,

which, except for the factor ei(n−r)θjr,2(ǫ) (which is obviously bounded by 1), is equal to

n−r
∑

e0, . . . , er−1 = 0

e0 + · · · + er−1 ≤ n − r

eie0(θj,2(ǫ)−θjr,2(ǫ)) . . . eier−1(θjr−1,2(ǫ)−θjr,2(ǫ))

( e0−1
∑

s=0

eis(θj,1(ǫ)−θj,2(ǫ))

)

. . .

( er−1−1
∑

sr−1=0

eisr−1(θjr−1,1(ǫ)−θjr−1,2(ǫ))

)( n−r−e0−···−er−1−1
∑

sr=0

eisr(θjr,1(ǫ)−θjr,2(ǫ))

)

.

This summation corresponds to the result in Lemma A.1 for

z0 = ei(θj,2(ǫ)−θjr,2(ǫ)), z1 = ei(θj1,2(ǫ)−θjr,2(ǫ)), · · · , zr−1 = ei(θjr−1,2(ǫ)−θjr,2(ǫ)),

t0 = ei(θj,1(ǫ)−θj,2(ǫ)), t1 = ei(θj1,1(ǫ)−θj1,2(ǫ)), · · · , tr = ei(θjr,1(ǫ)−θjr,2(ǫ)),

where z0, . . . , zr−1 are clearly far from 1 but t0, . . . , tr can be as closer as we want to 1. Notice

also that z0, . . . , zr−1, t0, . . . , tr are continuous and periodic functions on ǫ and therefore, taking

also (iii) into account, when applying the result on Lemma A.1, the constant which appears in

Landau notation there can be bounded independently of ǫ.

Let us assume now that ǫ is far enough from the values of ǫl which lead to double roots

of ρǫ(z) so that |1 − ei(θj,1(ǫ)−θj,2(ǫ))| and |1 − ei(θjm,1(ǫ)−θjm,2(ǫ))| (m = 1, . . . , r) are always

bigger than a certain quantity δ. (Because of hypotheses (i) and (iii) this will happen whenever

|ǫ− ǫl| > η for some positive value η.) Then, the previous sum can be written as

n−r
∑

e0, . . . , er−1 = 0

e0 + · · ·+ er−1 ≤ n − r

eie0(θj,2(ǫ)−θjr,2(ǫ)) . . . eier−1(θjr−1,2(ǫ)−θjr,2(ǫ))

1− eie0(θj,1(ǫ)−θj,2(ǫ))

1− ei(θj,1(ǫ)−θj,2(ǫ))
. . .

1−eier−1(θjr−1,1(ǫ)−θjr−1,2(ǫ))

1− ei(θjr−1,1(ǫ)−θjr−1,2(ǫ))

1− ei(n−r−e0−...−er−1)(θjr,1(ǫ)−θjr,2(ǫ))

1− ei(θjr,1(ǫ)−θjr,2(ǫ))
,
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which, except for a factor which can be bounded independently of ǫ and n, is a sum of 2r+1

terms of the following form

n−r
∑

e0, . . . , er−1 = 0

e0 + · · · + er−1 ≤ n − r

eie0(θj,m(ǫ)−θjr,mr (ǫ)) . . . eier−1(θjr−1,mr−1
(ǫ)−θjr,mr (ǫ)), (A.7)

where m,m1, . . . ,mr−1,mr will take the values 1 or 2. Then, this term can also be written like

n−r
∑

e0, . . . , er−2 = 0

e0 + · · · + er−2 ≤ n − r

eie0(θj,m(ǫ)−θjr,mr (ǫ)) . . . eier−2(θjr−2,mr−2
(ǫ)−θjr,mr (ǫ))

n−r−(e0+···+er−2)
∑

er−1=0

eier−1(θjr−1,mr−1
(ǫ)−θjr,mr (ǫ))

=

n−r
∑

e0, . . . , er−2 = 0

e0 + · · ·+ er−2 ≤ n − r

eie0(θj,m(ǫ)−θjr,mr (ǫ)) . . . eier−2(θjr−2,mr−2
(ǫ)−θjr,mr (ǫ))

1− ei(n−r−e0−···−er−2+1)(θjr−1,mr−1
(ǫ)−θjr,mr (ǫ))

1− ei(θjr−1,mr−1
(ǫ)−θjr,mr (ǫ))

,

which can be expressed (except for a factor which is bounded independently of ǫ and n) as a

sum of two terms of the following form

n−r
∑

e0, . . . , er−2 = 0

e0 + · · · + er−2 ≤ n − r

eie0(θj,m(ǫ)−θjs,ms (ǫ)) . . . eier−2(θjr−2,mr−2
(ǫ)−θjs,ms (ǫ)), s = r, r − 1.

By proceeding inductively, (A.7) and therefore (A.6) can be finally written like a number

(dependent of r) of terms of the following form (except for a factor which does not depend on

n either on ǫ):

n−r
∑

e0=0

eie0(θj,m(ǫ)−θjs,ms (ǫ)) =
1− ei(n−r+1)(θj,m(ǫ)−θjs,ms (ǫ))

1− ei(θj,m(ǫ)−θjs,ms (ǫ))
, s = 1, . . . , r,

and each of these terms is obviously bounded.

B. Proof of Theorem 3.1

In such a case, situation (d) of Lemma 6.2 in [3] applies. Therefore, the perturbed roots

satisfy that either both have modulus one and are conjugate to each other or both are real and

inverse to each other. To deduce which case applies, we will consider Taylor series expansion

(3.2).

Notice that the assumptions on ρǫ(z) imply that

ρǫ(z) =

k
∏

l=1

(z − eiθl(ǫ))(z − e−iθl(ǫ))

=

k
∏

l=1

(z2 − 2 cos(θl(ǫ))z + 1), (B.1)
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for some real functions θl(ǫ) (l = 1, . . . , k) which are twice differentiable on ǫ at ǫ = ǫl.

First notice that, according to (B.1),

d

dǫ
ρǫ(z) =

k
∑

r=1

2 sin(θr(ǫ))θ
′
r(ǫ)zΠ

k
j = 1

j 6= r

(z2 − 2 cos(θj(ǫ))z + 1). (B.2)

Now, as ρǫl(±1) = 0, for some r̃ ∈ {1, . . . , k} it happens that cos(θr̃(ǫl)) = ±1. Then, it is easy

to deduce from (B.2) that

d

dǫ
ρǫ(±1)|ǫ=ǫl = 0.

Now, differentiating (B.2) again with respect to ǫ and with respect to z and evaluating at ǫ = ǫl,

z = ±1, leads to

d2

dǫ2
ρǫ(±1)|ǫ=ǫl = 2k(θ′r̃(ǫl))

2Πk
j=1

j 6=r̃

(

1∓ cos(θj(ǫl))

)

> 0,
d

dǫ
ρ′ǫ(±1)|ǫ=ǫl = 0.

On the other hand, differentiating now (B.1) just with respect to z,

ρ′ǫ(z) =

k
∑

r=1

(2z − 2 cos(θr(ǫ)))Π
k
j=1

j 6=r

(

z2 − 2 cos(θj(ǫ))z + 1

)

,

which evaluated at z = ±1, ǫ = ǫl vanishes by similar arguments. Differentiating again, it can

be deduced that

ρ′′ǫl(±1) = 2kΠk
j=1

j 6=r̃

(

1∓ cos(θj(ǫl))

)

> 0.

From here, in case (i), and by considering (3.2), in first approximation r2 < 0, so r is purely

imaginary, from what the perturbed corresponding roots lie on the unit circle.

In case (ii), if σǫl(±1) < 0 notice that in first approximation

r2 = − 2

ρ′′ǫl(±1)

(

h2σǫl(±1) +
η2

2

d2

dǫ2
ρǫ(±1)|ǫ=ǫl

)

,

and therefore for |η|2 < 2h2σǫl(±1)/ d2

dǫ2
ρǫ(±1)|ǫ=ǫl , r

2 > 0 and therefore the two perturbed

roots are real and one of them of modulus greater than 1.

C. Proof of Theorem 3.2

To prove (i), notice that

σǫ(z) = γ1(ǫ)z
2k−1 + · · ·+ γk−1(ǫ)z

k+1 + γk(ǫ)z
k + γk−1(ǫ)z

k−1 + · · ·+ γ1(ǫ)z

can also be written as

σǫ(z) = zk
(

γ1(ǫ)(z
k−1 + z1−k) + · · ·+ γk−1(ǫ)(z + z−1) + γk(ǫ)

)

, (C.1)

for which the bracket when evaluated at z̃ is real because ¯̃z = z̃−1. On the other hand, by

proceeding in a similar manner, just taking into account that ρǫ(z) is also symmetric, it can be

proved that
z d
dz
(zρ′ǫ(z))

zk
|z=z̃
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is real.

Now, taking into account that z̃ is a double root of ρǫl(z),

z
d

dz
(zρ′ǫ(z))

∣

∣

∣

∣

z=z̃
ǫ=ǫl

= z

[

ρ′ǫ(z) + zρ′′ǫ (z)

]

z=z̃
ǫ=ǫl

= z̃2ρ′′ǫl(z̃),

from what (i) follows. Now, in order to prove (ii-iii), let us consider the notation z̃ = eiθr̃(ǫl).

Then, as

ρǫ(z) = (z − eiθr̃(ǫ))2(z − e−iθr̃(ǫ))2
k
∏

l=1
l 6=r̃

(z − eiθl(ǫ))(z − e−iθl(ǫ)),

d

dǫ
ρǫ(z) = −2iθ′r̃(ǫ)e

iθr̃(ǫ)(z − eiθr̃(ǫ))(z − e−iθr̃(ǫ))2
k
∏

l=1
l 6=r̃

(z − eiθl(ǫ))(z − e−iθl(ǫ))

+ 2iθ′r̃(ǫ)e
−iθr̃(ǫ)(z − eiθr̃(ǫ))2(z − e−iθr̃(ǫ))

k
∏

l=1
l 6=r̃

(z − eiθl(ǫ))(z − e−iθl(ǫ))

+ (z − eiθr̃(ǫ))2(z − e−iθr̃(ǫ))2
k
∑

l=1
l 6=r̃

(

− iθ′l(ǫ)e
iθl(ǫ)(z − e−iθl(ǫ))

+ iθ′l(ǫ)e
−iθl(ǫ)(z − eiθl(ǫ))

)

·
k
∏

r=1
r 6=r̃
r 6=l

(z − eiθl(ǫ))(z − e−iθl(ǫ)),

from what clearly d
dǫ
ρǫ(z̃)|ǫ=ǫl = 0. Then,

d2

dǫ2
ρǫ(z̃)

∣

∣

∣

∣

ǫ=ǫl

= −8e2iθr̃(ǫl)(θ′r̃(ǫ))
2 cos2(θr̃(ǫl))

k
∏

l=1
l 6=r̃

(eiθr̃(ǫl) − eiθl(ǫl))(eiθr̃(ǫl) − e−iθl(ǫl)),

d2

dǫdz
ρǫ(z)

∣

∣

∣

∣ǫ=ǫl
z=z̃

= −8ieiθr̃(ǫl)θ′r̃(ǫl) cos
2(θr̃(ǫl))

k
∏

l=1
l 6=r̃

(eiθr̃(ǫl) − eiθl(ǫl))(eiθr̃(ǫl) − e−iθl(ǫl)),

d2

dz2
ρǫ(z)

∣

∣

∣

∣ǫ=ǫl
z=z̃

= 8 cos2(θr̃(ǫl))

k
∏

l=1
l 6=r̃

(eiθr̃(ǫl) − eiθl(ǫl))(eiθr̃(ǫl) − e−iθl(ǫl)).

Inserting all this in (3.2) it follows that in first approximation

[−z̃2(θ′r̃(ǫl))
2η2 − 2iz̃θ′r̃(ǫl)ηr + r2]ρ′′ǫl(z̃) + 2h2σǫl(z̃) = 0.

Then, let us denote by C to σǫl(z̃)/z̃
2ρ′′ǫl(z̃), which is real because of (i). If C > 0,

r =
1

2

(

2iz̃θ′r̃(ǫl)η ±
√

−4z̃2(θ′r̃(ǫl))
2η2 − 4z̃2(−(θ′r̃(ǫl))

2η2 + 2Ch2)

)

= iz̃(ηθ′r̃(ǫl)± h
√
2C),
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so the perturbations of the double root are orthogonal to the root z̃ in first approximation. This

means that both perturbations lie on the unit circle because if that did not happen, according

to part (c) of Lemma 6.2 of [3] or Lemma 3.2 here, one of the roots should be the inverse

conjugate of the other and therefore if one had modulus greater than 1, the other should have

modulus less than 1, which is in contradiction with the fact that the perturbation is tangent to

the circumference in the point where z̃ lies.

In case

σǫl(z̃) =
d

dǫ
σǫ(z̃)|ǫ=ǫl = σ′

ǫl
(z̃) = 0,

in first approximation r = iz̃θ′r̃(ǫl)η and the conclusions would be the same.

In case C < 0, r = z̃(iθ′r̃(ǫl)η ∓ h
√
−2C) and therefore when h does not vanish, one of the

perturbations will lie outside the unit circle.
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