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Abstract

We give general expressions, analyze algebraic properties and derive eigenvalue bounds

for a sequence of Toeplitz matrices associated with the sinc discretizations of various orders

of differential operators. We demonstrate that these Toeplitz matrices can be satisfactorily

preconditioned by certain banded Toeplitz matrices through showing that the spectra of

the preconditioned matrices are uniformly bounded. In particular, we also derive eigen-

value bounds for the banded Toeplitz preconditioners. These results are elementary in

constructing high-quality structured preconditioners for the systems of linear equations

arising from the sinc discretizations of ordinary and partial differential equations, and are

useful in analyzing algebraic properties and deriving eigenvalue bounds for the correspond-

ing preconditioned matrices. Numerical examples are given to show effectiveness of the

banded Toeplitz preconditioners.
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1. Introduction

Let L2[−π, π] be the functional space of all quadratically integrable functions defined on the

interval [−π, π]. For f ∈ L
2[−π, π], denote by

ak =
1

2π

∫ π

−π

f(θ)e−ıkθdθ, k ∈ Z,

the Fourier coefficients of f , where Z = {0,±1,±2, . . .} represents the set of all integers and ı

denotes the imaginary unit. For all n ≥ 1, we write An = (aj,k) the n-by-n Toeplitz matrix

with entries satisfying aj,k = aj−k, 1 ≤ j, k ≤ n. The function f is called the generating

function of the sequence of Toeplitz matrices An, n = 1, 2, . . .. Alternatively, we also use An[f ]

to denote the n-by-n Toeplitz matrix generated by the function f . Note that An[f ] is a non-

Hermitian matrix when f is a complex-valued function, and it is a Hermitian matrix when f is

a real-valued function. In particular, if f is real-valued and even, then An[f ] is real symmetric.

Toeplitz systems of linear equations arise in a variety of applications in mathematics and

engineering. In particular, when the sinc method is applied to discretize the linear ordinary

and partial differential equations, we can often obtain systems of linear equations whose coef-

ficient matrices are combinations of Toeplitz and diagonal matrices; see [1–3, 10, 14]. Hence, it
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is a basic requirement to discuss the algebraic properties of these Toeplitz matrices, construct

their effective preconditioners, and derive tight eigenvalue bounds for the corresponding pre-

conditioned matrices. Here, we construct banded Toeplitz preconditioners by making use of

trigonometric generating functions, which is an idea first proposed in [6] for Toeplitz matrices

with nonnegative generating functions.

In this paper, we first give the general expressions for the Toeplitz matrices associated with

the sinc discretizations of various orders of differential operators, and derive the generating

functions of these Toeplitz matrices as well as their eigenvalue bounds. According to suitable

approximations to the generating functions, we construct banded Toeplitz preconditioners and

demonstrate the uniformly bounded property about the spectra of the preconditioned matrices.

In particular, we also derive eigenvalue bounds for the banded Toeplitz preconditioners. These

results are elementary in constructing high-quality structured preconditioners for the systems

of linear equations arising from the sinc discretizations of ordinary and partial differential

equations, and are useful in analyzing algebraic properties and deriving eigenvalue bounds for

the corresponding preconditioned matrices.

The outline of the paper is as follows. In Section 2, we derive the expression of the Toeplitz

matrices from sinc methods and their properties. In Section 3, we construct the banded Toeplitz

preconditioners and analyze the eigenvalue bounds for these preconditioners. Some useful

bounds are established for the Toeplitz matrices and the banded preconditioners in Section

4. In Section 5, numerical examples are given to show the effectiveness of the banded Toeplitz

preconditioners.

2. Toeplitz Matrices

The sinc function is defined as

sinc(t) =
sin(πt)

πt
, −∞ < t < ∞,

and the corresponding sinc basis functions are given by

S(j, h)(t) :=
sin[π(t− jh)/h]

π(t− jh)/h
, −∞ < t < ∞, j ∈ Z,

where h is the step-size used in sinc methods [14]. The points tj = jh (j ∈ Z) are called the

sinc-grid points. In sinc methods, we also need to introduce a one-to-one conformal mapping,

say, φ(x), which maps a simply-connected domain onto a strip region.

The n-by-n Toeplitz matrices associated with sinc discretizations of the linear ordinary and

partial differential equations are of the form

T (m) ≡
[
δ
(m)
jk

]
, j, k ∈ Z, m = 0, 1, 2, . . . , (2.1)

where δ
(m)
jk is defined as

δ
(m)
jk := hm dm

dφm
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

. (2.2)

For example, T (0) = I is the identity matrix, and for m = 1, 2, 3, 4 the Toeplitz matrices T (m)
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have the actual expressions

T (1) =




0 −1 1
2 . . . (−1)n−1

n−1

1 0
. . .

. . .
...

− 1
2 1

. . . −1 1
2

...
. . .

. . . 0 −1

− (−1)n−1

n−1 . . . − 1
2 1 0




, (2.3)

T (2) =




−π2

3 2 − 2
22 . . . 2(−1)n

(n−1)2

2 −π2

3

. . .
. . .

...

− 2
22 2

. . . 2 − 2
22

...
. . .

. . . −π2

3 2
2(−1)n

(n−1)2 . . . − 2
22 2 −π2

3




, (2.4)

T (3) =




0 −(6− π2) 6−22π2

23 . . . (−1)n−1[6−(n−1)2π2]
(n−1)3

6− π2 0
. . .

. . .
...

−(6−22π2)
23 6− π2 . . . −(6− π2) 6−22π2

23

...
. . .

. . . 0 −(6− π2)
(−1)n[6−(n−1)2π2]

(n−1)3 . . . −(6−22π2)
23 6− π2 0




, (2.5)

and

T (4) =




π4

5 4(6− π2) −4(6−22π2)
24 . . . 4(−1)n[6−(n−1)2π2]

(n−1)4

4(6− π2) π4

5

. . .
. . .

...

−4(6−22π2)
24 4(6− π2)

. . . 4(6− π2) −4(6−22π2)
24

...
. . .

. . . π4

5 4(6− π2)
4(−1)n[6−(n−1)2π2]

(n−1)4 . . . −4(6−22π2)
24 4(6− π2) π4

5




.

The following lemma presents intuitive expressions for the elements δ
(m)
jk of the Toeplitz

matrices T (m), m = 0, 1, 2, . . ..

Lemma 2.1. Let φ be an one-to-one conformal mapping from a simply connected domain onto

a strip region, and δ
(m)
jk (m = 0, 1, 2, . . .) be defined as in (2.2), with xk = φ−1(kh). Then, for

m = 0, 1, 2, . . ., it holds that

δ
(4m)
jk =





π4m

4m+1 , j = k,
(

4mπ(4m−2)

(k−j)2 − 4m(4m−1)(4m−2)π(4m−4)

(k−j)4 + · · · − 4m(4m−1)···2
(k−j)4m

)
(−1)k−j , j 6= k;
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δ
(4m+1)
jk =




0, j = k,
(

π4m

k−j − (4m+1)4mπ(4m−2)

(k−j)3 + · · ·+ (4m+1)4m···2
(k−j)4m+1

)
(−1)k−j , j 6= k;

δ
(4m+2)
jk =




−π(4m+2)

4m+3 , j = k,
(
− (4m+2)π4m

(k−j)2 + (4m+2)(4m+1)4mπ(4m−2)

(k−j)4 − · · · − (4m+2)(4m+1)···2
(k−j)4m+2

)
(−1)k−j , j 6= k;

(2.6)

δ
(4m+3)
jk =




0, j = k,
(
−π(4m+2)

k−j + (4m+3)(4m+2)π4m

(k−j)3 − · · ·+ (4m+3)(4m+2)···2
(k−j)4m+3

)
(−1)k−j , j 6= k.

Proof. Because

dm

dφm
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

=
dm

dxm

[
sinc

(
x− jh

h

)] ∣∣∣∣
x=kh

(2.7)

and

sinc

(
x− jh

h

)
=

h

2π

∫ π/h

−π/h

e−ıxteıjht dt, (2.8)

by combining (2.2), (2.7) and (2.8) we can obtain the formulas

d4m

dx4m

[
sinc

(
x− jh

h

)]
=

h

π

∫ 0

−π

h

t4m cos[t(x− jh)] dt,

d4m+1

dx4m+1

[
sinc

(
x− jh

h

)]
=

−h

π

∫ 0

−π

h

t4m+1 sin[t(x− jh)] dt,

d4m+2

dx4m+2

[
sinc

(
x− jh

h

)]
=

−h

π

∫ 0

−π

h

t4m+2 cos[t(x− jh)] dt,

d4m+3

dx4m+3

[
sinc

(
x− jh

h

)]
=

h

π

∫ 0

−π

h

t4m+3 sin[t(x − jh)] dt.

Now, through integrating by parts, the above formulas immediately lead to the expressions in

(2.6). 2

We remark that by setting m = 0 in Lemma 2.1, we can straightforwardly get the Toeplitz

matrices in (2.3)-(2.5).

About generating functions and eigenvalue bounds for the Toeplitz matrices T (m), m =

1, 2, . . ., we have the following results.

Theorem 2.1. [14] Let T (m) be the n-by-n Toeplitz matrices defined in (2.1). Then the fol-

lowing statements hold true:

(i) its generating function is f(θ) = (ıθ)m;

(ii) if m is an odd positive number, i.e., m = 2p+1, T (m) is a singular skew-symmetric matrix

with eigenvalues ıλj, where

−π2p+1 ≤ λj ≤ π2p+1;
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(iii) if m is an even positive number, i.e., m = 2p, T (m) is a nonsingular symmetric matrix

with eigenvalues (−1)pλj, where λj ∈ (0, π2p).

In particular, the eigenvalues −λ
(2)
j of T (2) are bounded as

4 sin2
(

π

2n+ 2

)
≤ λ

(2)
j ≤ π2.

3. Banded Toeplitz Preconditioners

For the Toeplitz matrices T (1) and T (2), in [12] and [13] the authors proposed to use the

banded Toeplitz matrices B(1) and B(2), defined by the tridiagonal matrices

B(1) = tridiag

[
1

2
, 0,−1

2

]
and B(2) = tridiag[1,−2, 1], (3.1)

as their preconditioners, respectively. Theoretical analyses and numerical experiments showed

that these preconditioners possess satisfactory algebraic properties and high computational

efficiency. Following this approach, in general, we construct the following banded Toeplitz

matrices B(m) as the preconditioners for the Toeplitz matrices T (m):

(a) if m is an odd positive number, i.e., m = 2p+1, then B(m) is a Toeplitz matrix generated

by g(θ) = ı sin θ(2 cos θ − 2)p;

(b) if m is an even positive number, i.e., m = 2p, then B(m) is a Toeplitz matrix generated

by g(θ) = (2 cos θ − 2)p.

For example, the banded Toeplitz matrices B(3) and B(4) are penta-diagonal matrices and given

by

B(3) = pentadiag

[
1

2
,−1, 0, 1,−1

2

]
and B(4) = pentadiag [1,−4, 6,−4, 1] , (3.2)

respectively. We remark that the preconditioners B(m) are banded Toeplitz matrices with

bandwidth being m+ 1 when m is even and being m+ 2 when m is odd.

The following theorem describes estimates about bounds on the eigenvalues of the banded

Toeplitz matrices B(m).

Theorem 3.1. Let B(m) be the n-by-n banded Toeplitz matrices defined in (a)-(b). Then the

following statements hold true:

(i) if m is an odd positive number, i.e., m = 2p + 1, B(m) is a singular skew-symmetric

matrix with eigenvalues ıλj , where

−2p(2p+ 1)p+
1
2

(p+ 1)p+1
< λj <

2p(2p+ 1)p+
1
2

(p+ 1)p+1
;

(ii) if m is an even positive number, i.e., m = 2p, B(m) is a nonsingular symmetric matrix

with eigenvalues (−1)pλj, where

0 < λj < 4p.
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Proof. We first verify the validity of (i). Because the generating function ofB(m) (m = 2p+1)

is

g(θ) = ı sin θ(2 cos θ − 2)p ≡ ıg̃(θ), θ ∈ [−π, π],

where

g̃(θ) = sin θ(2 cos θ − 2)p,

from [9, Theorem 1.11] we have

min
−π≤θ≤π

g̃(θ) < min Im(λ(B(m))) ≤ max Im(λ(B(m))) < max
−π≤θ≤π

g̃(θ),

where Im(·) denotes the imaginary part of the corresponding complex number. By directly

calculating the minimum and the maximum values of g̃(θ), we obtain (i).

Analogously, because the generating function of B(m) (m = 2p) is (2 cos θ − 2)p, from [9,

Theorem 1.11] again we have

0 = min
−π≤θ≤π

(2− 2 cos θ)p < (−1)pλmin(B
(m))

≤(−1)pλmax(B
(m)) < max

−π≤θ≤π
(2− 2 cos θ)p = 4p,

where λmin(·) and λmax(·) denote the minimal and the maximal eigenvalues of the corresponding

Hermitian matrix, respectively. This shows that (ii) is true. 2

Specially, for B(1), B(2), B(3) and B(4), we have the following sharper bounds about their

eigenvalues.

Theorem 3.2. Let B(m) (m = 1, 2, 3, 4) be the n-by-n banded Toeplitz matrices defined in

(3.1)-(3.2). Then the following statements hold true:

(i) B(1) is a skew-symmetric matrix and its eigenvalues ıλ
(1)
j satisfy

− cos

(
π

n+ 1

)
≤ λ

(1)
j ≤ cos

(
π

n+ 1

)
;

(ii) B(2) is a symmetric negative-definite matrix and its eigenvalues −λ
(2)
j satisfy

4 sin2
(

π

2n+ 2

)
≤ λ

(2)
j ≤ 4 cos2

(
π

2n+ 2

)
;

(iii) B(3) is a skew-symmetric matrix and its eigenvalues ıλ
(3)
j satisfy

−3
√
3

2
< λ

(3)
j <

3
√
3

2
;

(iv) B(4) is a symmetric positive-definite matrix and its eigenvalues λ
(4)
j satisfy

16 sin4
(

π

2n+ 2

)
≤ λ

(4)
j < 16.
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Proof. (i) and (ii) can be found in [8, pp. 65-67]; see also [3, 7]. By making use of The-

orem 3.1, we can obtain (iii) and the upper bound in (iv). It turns out that we only need to

demonstrate the validity of the lower bound in (iv).

To this end, we observe that

B(4) = (B(2))2 +W,

with

W =




1 0 0 . . . 0

0 0
. . .

. . .
...

0 0
. . . 0 0

...
. . .

. . . 0 0

0 . . . 0 0 1




being a symmetric positive-semidefinite matrix. From (ii) we know that the minimal eigenvalue

of (B(2))2 is 16 sin4[π/(2n+2)]. Therefore, according to Weyl’s Monotonicity Theorem [15, pp.

101-102] we see that the minimal eigenvalue of B(4) is bounded below by 16 sin4[π/(2n+2)]. 2

4. Some Useful Bounds

In this section, we will demonstrate that the spectra of (B(m))−1T (m) are uniformly bounded

by constants when m is even, and derive other bounds about the generalized Rayleigh quotients

associated with the matrix sequences {B(m)} and {T (m)} when m is odd. These estimates are

useful in obtaining eigenvalue bounds for the preconditioned matrices when the generalized

Bendixson theorem is employed; see [2–4].

Theorem 4.1. Let T (m) and B(m) be the Toeplitz matrices defined in (2.1) and (a)-(b) in

Section 3, fm(θ) and gm(θ) be the generating functions of T (m) and B(m) respectively, and D

is a given positive diagonal matrix. Then, for all x 6= 0, the following statements hold true:

(i) if m is an even positive number, i.e., m = 2p,

1 ≤ x∗T (m)x

x∗B(m))x
≤ π2p

4p
;

(ii) if m is an odd positive number, i.e., m = 2p+ 1,

max
x 6=0

{
x∗T (m)(T (m))∗x

x∗(T (m−1) +D)x

}
< π2p+2 and max

x 6=0

{
x∗B(m)(B(m))∗x

x∗(B(m−1) +D)x

}
<

(4p+ 4)p+1

(p+ 2)p+2

when p is even, and

max
x 6=0

{
x∗T (m)(T (m))∗x

x∗(T (m+1) +D)x

}
< π2p and max

x 6=0

{
x∗B(m)(B(m))∗x

x∗(B(m+1) +D)x

}
<

(4p)p

(p+ 1)p+1

when p is odd.

Here (·)∗ denotes the conjugate transpose of either a vector or a matrix.
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Proof. We first demonstrate (i). When m is an even positive number, recall that the

generating functions of T (m) and B(m) (m = 2p) are (−θ2)p and (2 cos θ − 2)p, respectively.

Hence, for any x 6= 0 we have

x∗T (m)x

x∗B(m)x
=

∫ π

−π |
∑n

j=1 xje
−ıjθ|2(−θ2)p dθ

∫ π

−π |
∑n

j=1 xje−ıjθ|2(2 cos θ − 2)p dθ
. (4.1)

Define

f̃(θ) =





(θ2)p

(2− 2 cos θ)p
, for θ ∈ [−π, π] \ {0},

1, for θ = 0.

Then by straightforward computations we obtain

1 ≤ f̃(θ) ≤ π2p

4p
, ∀ θ ∈ [−π, π].

Now, by making use of (4.1) we immediately get

1 ≤ x∗T (m)x

x∗B(m)x
≤ π2p

4p
.

We now turn to verify the validity of (ii). When p is an even number, from Theorem 2.1 we

know that T (m) (m = 2p+1) is a skew-symmetric Toeplitz matrix with its generating function

in the Wiener class. By making use of Theorems 3.1 and 3.3 in [5], we see that for any ǫ > 0

there exist a positive semidefinite matrix Rm of fixed rank and a matrix Em of small norm such

that ‖Em‖2 < ǫ and

T (m)(T (m))∗ +Rm + Em = T̂ (m),

where T̂ (m) is the Toeplitz matrix generated by the positive function |fm(θ)|2. Because T (m−1)

(m = 2p+ 1) is positive definite when p is even, we have

x∗Rmx

x∗(T (m−1) +D)x
≥ 0 and

∣∣∣∣
x∗Emx

x∗(T (m−1) +D)x

∣∣∣∣ ≤ ǫ, ∀x 6= 0.

It then follows from the above matrix decompositions that

max
x 6=0

{
x∗T (m)(T (m))∗x

x∗(T (m−1) +D)x

}
< max

x 6=0

{
x∗T̂ (m)x

x∗(T (m−1) +D)x

}
+ ǫ.

Since ǫ is arbitrary, this inequality readily implies

max
x 6=0

{
x∗T (m)(T (m))∗x

x∗(T (m−1) +D)x

}
≤ max

x 6=0

{
x∗T̂ (m)x

x∗(T (m−1) +D)x

}
< max

−π≤θ≤π

{ |fm(θ)|2
fm−1(θ)

}

= max
−π≤θ≤π

θ4p+2

(−1)pθ2p
= π2p+2.

In addition, when p is an even number, from Theorem 3.2 we know that B(m) (m = 2p+ 1) is

a skew-symmetric Toeplitz matrix. By making use of [5, Theorem 3.1] again we see that there

exists a positive semidefinite matrix Fm of fixed rank such that

B(m)(B(m))∗ + Fm = B̂(m),
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where B̂(m) is the Toeplitz matrix generated by the positive function |gm(θ)|2. Because B(m−1)

(m = 2p+ 1) is positive definite when p is even, we have

x∗Fmx

x∗B(m−1)x
≥ 0, ∀x 6= 0.

It then follows from the above matrix decompositions that

max
x 6=0

{
x∗B(m)(B(m))∗x

x∗(B(m−1) +D)x

}
≤ max

x 6=0

{
x∗B̂(m)x

x∗(B(m−1) +D)x

}
< max

−π≤θ≤π

{ |gm(θ)|2
gm−1(θ)

}

= max
−π≤θ≤π

sin2 θ(2 cos θ − 2)2p

(2 cos θ − 2)p
=

(4p+ 4)p+1

(p+ 2)p+2
.

By similar arguments, we can obtain the upper bounds in (ii) when p is an odd number. 2

Remark 4.1. Theorem 4.1 (i) can be regarded as a special case in [6, Theorem 2]. Theorem 4.1

(ii) can be used to estimate generalized Rayleigh quotients of the Hermitian and skew-Hermitian

parts of the coefficient matrices obtaining from the sinc discretization for linear ordinary or par-

tial differential equations, as the Hermitian parts of the coefficient matrices are combinations

of T (m) (m is even) and diagonal matrices D; see [1–3]. Because preconditioners for the co-

efficient matrices can be formed as the same structure as the coefficient matrices, we can also

employ Theorem 4.1 (ii) to estimate generalized Rayleigh quotients of the Hermitian and skew-

Hermitian parts of the corresponding structured preconditioners.

5. Numerical Examples

In this section, we will show the effectiveness of the banded Toeplitz preconditioners. Here,

we first apply Krylov subspace method, incorporated with the banded Toeplitz preconditioner

B(m), to the system of linear equations

(B(m))−1T (m)x = (B(m))−1b, (5.1)

where m is an even number. We note that when m = 4, T (4) and B(4) are symmetric positive-

definite Toeplitz matrices and conjugate gradient (CG) method can be used to solve (5.1).

When m = 2 or m = 6, T (m) and B(m) are symmetric negative-definite Toeplitz matrices and

we multiply −1 on these matrices so that CG method can also be used.

Table 1 lists the number of iteration steps required for convergence when CG method is

applied to solve the linear system (5.1). In actual computations, we choose the right-hand-side

vector b such that the exact solution of the linear system (5.1) is ones. All runs are started from

the initial vector x(0) = 0 and terminated if the current residual satisfies ||r(j)||2/||r(0)||2 ≤ 10−6.

In the table, I denotes no preconditioner is used.

From Table 1, we see that if no preconditioner is used, CG method converges very slowly and

the number of iteration steps increases very fast when n is growing. However, when the banded

Toeplitz preconditioner B(m) is used, the preconditioned CG method converges in much less

iteration steps and the number of iteration steps keeps almost invariant when n is becoming

large. Hence, the banded Toeplitz preconditioner B(m) is very effective in accelerating the

convergence rates of CG method when m is even.

Note that when m is an odd number, T (m) and B(m) are singular skew-symmetric matrices.

So we can not solve the system of linear equations as (5.1). However, these matrices are
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Table 5.1: Numbers of iterations for the linear system (5.1)

T (2) T (4) T (6)

n
I B(2) I B(4) I B(6)

16 8 7 9 7 13 8

32 16 9 28 11 49 12

64 37 10 98 13 161 16

128 82 10 384 15 620 20

256 176 10 1093 16 2243 23

512 370 10 3595 16 6404 24

Table 5.2: Numbers of iterations for the linear system (5.3)

GMRES BiCGSTAB
N n

I P I P

16 33 22 14 46 10

32 65 51 19 152 12

64 129 114 23 856 15

128 257 239 26 ∗ 17

256 513 494 27 ∗ 17

512 1025 1004 28 ∗ 18

used in the systems of linear equations arising from sinc discretizations of ordinary and partial

differential equations.

Now we consider a fourth-order linear homogeneous boundary-value problem in [11]





d4

dx
u(x) =

9

16
x−5/2(1− x)−5/2,

u(0) = u(1) = 0,

d

dx
u(0) =

d

dx
u(1) = 0.

(5.2)

After discretizing the problem (5.2) by sinc-collocation method, we obtain a system of linear

equations as follows

Au = b, (5.3)

where

A = T (4) +D(3)T (3) +D(2)T (2) +D(1)T (1) +D(0)

is a n×n matrix with D(i) being diagonal matrices; see [11] for more details. We construct the

following structured preconditioner P for the coefficient matrix A

P = B(4) +D(3)B(3) +D(2)B(2) +D(1)B(1) +D(0).

Then we apply GMRES and BiCGSTAB, incorporated with the preconditioner P , to the system

of linear equations obtained from the sinc discretization of the problem (5.2).

Table 2 lists the number of iteration steps required for convergence when GMRES and

BiCGSTAB methods are used to solve the linear system (5.3). In our tests, the initial guess

is taken to be ones and the iteration process is terminated once the current iteration satisfies

||r(j)||2/||r(0)||2 ≤ 10−6. In the table, we use “∗” to indicate that the iteration method does not
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converge within 10000 iterations, I to represent the iteration method with no preconditioner,

and P to denote the iteration method with the structured preconditioner P .

From Table 2, we see that if no preconditioner is used, GMRES converges very slowly

and the number of iteration steps increases approximately like n. BiCGSTAB converges more

slowly than GMRES for this problem, and it even fails to solve the linear system (5.3) when

n ≥ 257. However, when the preconditioner P is used, the preconditioned GMRES and the

preconditioned BiCGSTAB can successfully compute satisfactory approximations to the exact

solutions of the problem (5.2), and both methods converge in much less iteration steps. Hence,

for this example the structured preconditioner P is very effective in accelerating the convergence

rates of GMRES and BiCGSTAB. Therefore, the preconditioner B(m) is a good approximation

to the Toeplitz matrix T (m).
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