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Abstract

The classical eigenvalue problem of the second-order elliptic operator is approximated

with bi-quadratic finite element in this paper. We construct a new superconvergent function

recovery operator, from which the O(h8| lnh|2) ultraconvergence of eigenvalue approxima-

tion is obtained. Numerical experiments verify the theoretical results.
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1. Introduction

Many post-processing techniques have been proposed for the finite element method, and

they are widely used in scientific and engineering application. For the literature, readers are

referred to [1, 3, 4, 29,30,33], and references therein.

One of the post-processing methods is the gradient recovery technique [12,14,15,32,33]. Re-

cently, this technique has been used to improv the eigenvalue approximation by the linear finite

element method [9, 17, 20]. It turned out that the convergent rate can be doubled in the most

favorable situation. In this paper, we design a function recovery operator for the quadratic

finite element method to enhance the eigenvalue approximation. Due to the complexity nature

of the recovery operator in higher-order situation, this extension is nevertheless non-trivial as

we may see from the later sections.

For the quadratic finite element method, Lin and Yang [13] discovered and proved that

derivatives of bi-quartic interpolation I4uh of the solution of biquadratic element have 4th-

order super-convergence, and the Rayleigh quotient of I4uh has eight-order super-convergence.

One of the strategies in eigenvalue enhancement is to use the Rayleigh quotient as e.g.,

in [9, 13, 18, 26]. This is also the strategy we will use in this work. The key idea is to replace

the finite element gradient (or its resultants) on the numerator of the Rayleigh quotient by the

recovered gradient. At the same time, the denominator has to be changed in order to consistent

with the recovered gradient. Therefore, a function value recovery is also required.
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The recovery technique is most effective under uniform meshes, or the meshes with regular

refinement. In this work, we only concentrate on rectangular meshes, and leave the triangular

case to a forthcoming paper. The new recovery operator proposed here works remarkably well

for our purpose. As we shall see in Section 5, an O(h8| lnh|2) convergence rate for eigenvalue

approximation is obtained.

Different from the linear element case, in which the function value recovery has no super-

convergence [19], the function recovery operator constructed for quadratic element in our work

is superconvergent.

The paper is organized as follows. Section 2 outlines the eigenvalue problems and their

Galerkin approximation. In Section 3, the derivative recovery technique is introduced, and the

ultraconvergence of derivatives is shown for the bi-quadratic finite element. Then we construct

the function recovery operator and discuss its properties. The eigenvalue recovery is given in

the Raylaigh quotient theme in Section 4, and the main results are proved in Section 5. Finally,

numerical tests are provided in Section 6 to demonstrate the effectiveness of our method.

2. Problem and Its Galerkin Approximation

Consider the following classic eigenvalue problem of the Laplacian operator:{
Lu ≡ −∇ · (D∇u) + cu = λu, x ∈ Ω ⊂ R2

u|∂Ω = 0.
(2.1)

where Ω is a bounded polygonal domain, D is a 2× 2 positive definite matrix on Ω, and c is a

sufficiently smooth function.

Let V = H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. Then the variational formulation of the problem

(2.1) is to seek the eigenpairs (λ, u) ∈ R× V such that

a(u, v) = λb(u, v), ∀ v ∈ V, (2.2)

where

a(u, v) =

∫
Ω

(D∇u) · ∇v + cuv, b(u, v) =

∫
Ω

uv.

For simplicity, in this paper we shall discuss the case when D = I and c = 0, then the

bilinear a(·, ·) is bounded and V -elliptic, namely, there exist the constants M1 and M2 such

that
|a(u, v)| 6M1‖u‖1,Ω‖v‖1,Ω,

a(u, u) >M2‖u‖21,Ω,
∀u, v ∈ V.

Let Th be a quasi-uniform rectangulation of Ω. In this paper, the bi-quadratic finite element

method is used to solve the problem (2.1). And let Vh denote the bi-quadratic finite element

space, i.e.,

Vh =

{
v ∈ C(Ω) : v|τ ∈ Q2(τ) for every rectangle element τ ∈ Th

}
.

And we denote V 0
h = Vh

⋂
V . So the finite element approximation (λh, uh) of (λ, u) in (2.2)

can be computed as the following scheme: find (λh, uh) ∈ R× V 0
h such that

a(uh, v) = λh(uh, v), ∀ v ∈ V 0
h . (2.3)
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Since a(·, ·) is symmetric, (2.1) has a countable sequence of real eigenvalues 0 < λ1 6
λ2 6 · · · . Consequently, the corresponding form (2.3) has a finite sequence of eigenvalues

0 < λ1h 6 λ2h 6 · · · 6 λnhh where nh = dimV 0
h , and the inequalities λih > λi hold for

i = 1, 2, · · · , nh. See [2, 10,11] for more details.

For the convenience of our introduction, we adopt the Lagrange interpolation for our analy-

sis, in which it is customary to employ the equidistributed set of interpolation points. While we

denote the set of all nodes in Th for the bi-quadratic and bi-4 degree finite elements by Nh and

N̄h, respectively. And we set Mh = N̄h − Nh. In addition, let V̄h be the finite element space

of degree 4, then analogously denote V̄ 0
h = V̄h

⋂
V . The location of all nodes in the closure of

an element τ can be seen in Fig. 3.1.

In addition, Hm(Ω) is the usual Sobolev space of order m equipped with the norm ‖ · ‖m,Ω
and the semi-norm | · |m,Ω; The space of all polynomials defined on Ω of total degree 6 k is

denoted by Pk(Ω), and the one of all bi-k degree polynomials on Ω is denoted by Qk(Ω).

Now we quote the following two results. The first result is about an estimation for the

interpolation of u on Ω.

Theorem 2.1. Assume that Th is a quasi-uniform rectangulation on Ω and iku is the piecewise

bi-k polynomial interpolation of u ∈ Hk+1(Ω). Then

‖iku− u‖m,Ω 6 Chk+1−m‖u‖k+1,Ω, m = 0, 1.

And another superconvergent result can be seen in [21] (P. 44) and in [31] (P. 169).

Theorem 2.2. Assume that Th is a quasi-uniform rectangulation on Ω and uh is the bi-

quadratic finite element approximation of u ∈W 4,∞(Ω)
⋂
H1

0 (Ω). Then for every nodes z ∈ Nh,

|uh(z)− u(z)| 6 Ch4| lnh| ‖u‖4,∞,Ω.

3. The Function Recovery Operator

3.1. The derivative recovery and its superconvergence

For more than thirty years, an impressive amount of work has been done to study the post-

processing techniques for the finite element solution. In 2005, Zhang and Naga [29] generalized

the SPR technique [33] and proposed the polynomial preserving technique. By using it the

superconvergence of the recovered derivatives is obtained for the linear finite element. And

numerical tests indicate there exists the ultraconvergence of derivative for bi-quadratic finite

element, which is used and important in this paper. Moreover, we can show the numerical

result through a completely analogous analysis to the proof in Theorem 2.1 in [28].

Theorem 3.1. Assume that Th is a uniform rectangular meshes on Ω, and Ghuh ∈ [Q2(Ω)]2

is the recovered gradient of u ∈ H5
0 (Ω) by the PPR technique, then for each z ∈ Nh,

|Ghuh(z)−∇u(z)| 6 Ch4| lnh|‖u‖5,Ω, (3.1)

Further,

‖Ghuh −∇u‖0,Ω 6 Ch4| lnh|‖u‖5,Ω. (3.2)
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3.2. The construction of the function recovery operator

We’ll construct the function recovery operator Rh : Vh → V̄h to enhence the eigenvalue

approximation in this part. To define the recovered function Rhv of v ∈ Vh in the space V̄h, as

we know, it suffices to determine its function value at all nodal points in N h. So ∀ z ∈ N h,

1. when zi ∈ Nh, set Rhv(zi) = v(zi);

2. when pi ∈ Mh = N h − Nh, we assume pi is in the closure of some an element τ ∈ Th,

then we define Rhv(pi) as the following two steps: Firstly, find a polynomial Q′5(x, y) of degree

5 on τ̄ such that Q′5(zi) = v(zi) and ∇Q′5(zi) = Ghv(zi) (i = 1, 2, · · · , 9), where zi ∈ Nh ∩ τ̄
(see Fig. 3.1); Secondly, set Rhv(pi) = Q′5(pi).

It is obvious that the above defined function Rhv is continuous.

In addition, Rhv(pi) can be obtained more simply and directly in practical implement. We

first note a fact that there exist some two points inMh such that they must be always in some a

line segment with the ends which are in Nh. For example, in Fig. 3.1, in an element p15 and p16

are in the line segment −−→z4z3 and z7 is its mid-point, p11 and p6 are in the line segment −−→z4z2 and z9

is its mid-point, and p8 and p9 are in the line segment−−→z8z6 and z9 is its mid-point, etc. Generally,

it is sufficient to let q1, q2 ∈ Mh be in a line segment l with ends e1 and e2, and let em be the

mid-point of the line segment l, namely, q1 = 1
4 (3e1 + e2), q2 = 1

4 (e1 + 3e2), em = 1
2 (e1 + e2).

On the other hand, restricted to the line l, Q′5(x, y) is a one-variable polynomial of degree 5,

we denote P5(l) = Q′5(x, y)|l, Thus, Rhv(qi) = P5(qi) (i = 1, 2). Then the recovered values

Rhv(qi) (i = 1, 2) follow directly computing.

Rhv(q1) =
45v(e1) + 72v(em) + 11v(e2)

128
+
~l · (9Ghv(e1)− 36Ghv(em)− 3Ghv(e2))

256
, (3.3a)

Rhv(q2) =
11v(e1) + 72v(em) + 45v(e1)

128
+
~l · (3Ghv(e1) + 36Ghv(em)− 9Ghv(e2))

256
. (3.3b)

For simplicity, we rewrite (3.3) into the following form.

Rhv(q1) = C1v(E) + C2(~l ·Ghv(E)), (3.4a)

Rhv(q2) = C3v(E) + C4(~l ·Ghv(E)). (3.4b)

where

C1 =
1

128
[45 72 11], C2 =

1

256
[9 − 36 − 3],

C3 =
1

128
[11 72 45], C4 =

1

256
[3 36 − 9], E = [e1 em e2]T .

3.3. The properties of the function recovery operator

Proposition 3.2. The function recovery operator Rh : Vh → V̄h defined above satisfies the

following properties:

1). ∀ τ ∈ Th and v ∈ Vh, Rhv|τ is obtained by using v|Eτ , where Eτ is the union of a finite

sequence of elements around τ ;

2). Assume that u ∈W 5,∞(Ω)
⋂
H5(Ω), Th is a uniform rectangulation on Ω and uh is the

bi-quadratic finite element approximation. Then, for any zi ∈ N h, there exist the following

estimators.

|Rhuh(zi)− u(zi)| 6 Ch4| lnh|
(
‖u‖5,∞,Ω + ‖u‖5,Ω

)
, (3.5a)

|∇(Rhv − v)(zi)| 6 Ch4| lnh|
(
‖u‖5,∞,Ω + ‖u‖5,Ω

)
. (3.5b)
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Fig. 3.1. Location of all nodes in an element τ for finite element space V̄h. ◦ denote the original

nodes for finite element space Vh, i.e., zj ∈ Nh. • denote the additional nodes, i.e., pj ∈Mh.

3). ‖Rhv‖0,τ 6 C‖v‖0,Eτ ∀ v ∈ Vh, τ ∈ Th, where C > 0 is a constant independent of h;

4). ‖Rhv‖0,Ω > C‖v‖0,Ω, where C > 0 is a constant independent of h.

Proof. 1). By the definition of Ghv, it is easy to see that Ghv(z) ∀z ∈ τ̄
⋂
Nh is a linear

combination of v(zi) for zi ∈ Eτ
⋂
Nh. Furthermore, so is Rhv(z) ∀z ∈ τ̄

⋂
Nh. Thus 1) holds.

2). If u ∈ W 5,∞(Ω)
⋂
H5(Ω), and set Ghu = ∇u, then we can generalize the operator Rh

to the space W 5,∞(Ω)
⋂
H5(Ω). Obviously, Rhu = u holds for any polynomials u ∈ Q4(Ω), so

by Bramble-Hilbert Lemma we have

|u−Rhu|m,∞ 6 Ch5−m‖u‖5,∞, m = 0, 1. (3.6)

When zi ∈ Nh, Rhuh(zi) = uh(zi). Then by Theorem 2.2,

|Rhuh(zi)− u(zi)| = |uh(zi)− u(zi)| 6 Ch4| lnh|‖u‖4,∞,

i.e., (3.5a) holds. When p1, p2 ∈Mh, as discussed above, let p1, p2 ∈ l where l is a line segment

with the ends z1, z2 ∈ Nh, zm ∈ Nh is its mid-points, and p1 = 1
4 (3z1 + z2), p2 = 1

4 (z1 + 3z2).

Moreover, we denote Z = [z1, zm, z2]T . Then

|Rhuh(p1)− u(p1)|

=|C1uh(Z) + C2(~l ·Ghuh(Z))− u(p1)|

6|C1(uh(Z)− u(Z)) + C2(~l · (Ghuh(Z)−∇u(Z)))|

+ |C1U + C2(~l · ∇u(Z))− u(p1)|
≡E1 + E2. (3.7)

By Theorem 2.2, Theorem 3.1 and (3.6),we have

|Rhuh(p1)− u(p1)| 6 Ch4| lnh|
(
‖u‖5,∞,Ω + ‖u‖5,Ω

)
.
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By the same method we may prove

|Rhuh(p2)− u(p2)| 6 Ch4| lnh|
(
‖u‖5,∞,Ω + ‖u‖5,Ω

)
.

Summarizing the above analysis, (3.5a) holds. Similarly to the above process, (3.5b) holds.

3). From the definition of Gh and Rh, it is obvious that for zi ∈ τ̄
⋂
Nh Ghv(zi) is a linear

combination of {v(zj) : zj ∈ Eτ
⋂
Nh} and Rhv(pi) is a linear combination of{

v(z1), v(z2), v(zm),~l ·Ghv(z1),~l ·Ghv(z2),~l ·Ghv(zm) :

zj ∈ τ̄
⋂
Nh, ~l = −−→z1z2, pi =

1

4
(z1 + 3z2)} or pi =

1

4
(3z1 + z2)

}
.

So for zi ∈ τ̄
⋂
Nh,Rhv(zi) is a linear combination of {v(zj) : zj ∈ Eτ

⋂
Nh}, thus

|Rhv(zi)| 6 C max
{
|v(zj)| : zj ∈ Eτ

⋂
Nh
}
6 C‖v‖∞,Eτ .

Hence,

‖Rhv‖∞,τ 6 C‖v‖∞,Eτ .

By the equivalence of the norms on the finite dimensional space, 3) holds. Moreover, 4) follows

from the similar reason as 3). �

4. The Recovery of Eigenvalues

In [18], Naga and Zhang recovered eigenvalues by the Rayleigh quotient. Here we still adopt

the method to obtain the recovered eigenvalues λ̂h, i.e.,

λ̂h =
a(Rhuh, Rhuh)

b(Rhuh, Rhuh)
. (4.1)

To prove the ultraconvergence of λ̂h the following lemma is important [2].

Lemma 4.1. Let (λ, u) be a solution of (2.1) and a(·, ·) symmetric. Then for any w ∈ V \{0},
there holds

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λb(w − u,w − u)

b(w,w)
. (4.2)

5. The Proof of the Main Results

Theorem 5.1. Assume that u ∈ H1
0 (Ω)

⋂
W 5,∞(Ω), Th is a quasi-uniform rectangulation over

Ω, and Rhuh is the above recovered function of the bi-quadratic finite element uh. Then

‖u−Rhuh‖0,Ω 6 Ch4| lnh|‖u‖5,∞,Ω, (5.1a)

‖u−Rhuh‖1,Ω 6 Ch4| lnh|‖u‖5,∞,Ω. (5.1b)

Proof. Let τ be any an element, and i4u be the piecewise interpolation of degree 4 of function

u on Th. From Theorem 2.1 and

‖u−Rhuh‖0,Ω 6 ‖u− i4u‖0,Ω + ‖i4u−Rhuh‖0,Ω,
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it is sufficient to show that ‖i4u−Rhuh‖0,Ω 6 Ch4(‖u‖5,Ω + ‖u‖4,∞,Ω). On the other hand, by

Proposition 3.2 2) we have

‖i4u−Rhuh‖20,Ω =
∑
τ∈Th

‖i4u−Rhuh‖2e

=
∑
τ∈Th

∫
τ

 25∑
j=1

(u(zj)−Rhuh(zj))lj(x, y)

2

dxdy

6 max
zj∈Nh

|u(zj)−Rhuh(zj)|2
∑
τ∈Th

∫
τ

 25∑
j=1

|lj(x, y)|

2

dxdy

6 Ch8| lnh|2‖u‖25,∞,Ω,

which is the desired results in (5.1a).

Now we prove (5.1b). Let i3
(
∂u
∂x

)
be the piecewise interpolation of degree 3 of function ∂u

∂x

on Th, and the set of the interpolation nodes is N̂h. Then for every element τ ∈ Th,

i3

(
∂u

∂x

)
(x, y) =

∑
zj∈τ̄

⋂
N̂h

∂u

∂x
(zj)lj(x, y), (x, y) ∈ τ̄ ,

∂Rhuh
∂x

(x, y) =
∑

zj∈τ̄
⋂
N̂h

∂Rhuh
∂x

(zj)lj(x, y), (x, y) ∈ τ̄ .

So by (3.5b),

∥∥∥∥∂Rhuh∂x
− i3(

∂u

∂x
)

∥∥∥∥2

0,Ω

=
∑
τ∈Th

∫
τ

 16∑
j=1

(
∂Rhuh
∂x

(zj)−
∂u

∂x
(zj))lj(x, y)

2

dxdy

6 max
zj∈N̂h

|(∂Rhuh∂x − ∂u
∂x )(zj)|

∑
τ∈Th

∫
τ

 16∑
j=1

|lj(x, y)|

2

dxdy

6 Ch8| lnh|2‖u‖24,∞,Ω,

where lj(x, y) is the interpolating basic function with respecting to the point zj ∈ τ̄
⋂
N̂h.

Hence, from Theorem 2.1 and the above inequality, we have∥∥∥∥∂Rhuh∂x
− ∂u

∂x

∥∥∥∥
0,Ω

6

∥∥∥∥∂Rhuh∂x
− i3

(∂u
∂x

)∥∥∥∥
0,Ω

+

∥∥∥∥i3(∂u∂x)− ∂u

∂x

∥∥∥∥
0,Ω

6 Ch4| lnh|‖u‖5,∞,Ω.

Similarly, ∥∥∥∥∂Rhuh∂y
− ∂u

∂y

∥∥∥∥
0,Ω

6 Ch4| lnh|‖u‖5,∞,Ω.

So (5.1b) has been shown. �

Theorem 5.2. Assume that Th is a quasi-uniform rectangulation over Ω, u ∈ H1
0 (Ω)

⋂
W 5,∞(Ω),

and λ̂h is defined as (4.1), then

λ̂h − λ 6 Ch8| lnh|2‖u‖5,∞,Ω.
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Fig. 6.1. (a) The convergent rate of Rhuh. (b) The convergent rate of λ̂h.

Proof. By (4.2), we have

λ̂h − λ =
a(u−Rhuh, u−Rhuh)

‖Rhuh‖2
− λ‖u−Rhuh‖

2

‖Rhuh‖2
.

So the desirable inequality holds by using Theorem 5.1 and Proposition 3.2 4). �

6. A Numerical Example

Consider the problem {
−4u = λu, in Ω = [−1, 1]2

u = 0, on ∂Ω.
(6.1)

As is known, the eigenvalues of (6.1) are λmn =
(
mπ
2

)2
+
(
nπ
2

)2
and the corresponding eigen-

functions are

umn(x, y) = sin
mπ(x+ 1)

2
sin

nπ(y + 1)

2
for m,n ∈ N+.

To compute the solution of (6.1), the bi-quadratic finite element method and the above

eigenvalue recovery technique are used in this example, where the meshes Th are uniform.

Here, we recover the first eigenvalue approximation of the problem (6.1) by (4.1), and the

convergence of the first recovered eigenvector Rhuh is given in Fig. 6.1(a), the convergence of

the first eigenvalue approximation λh and its recovery λ̂h is done in Fig. 6.1(b).

As we can see in Fig. 6.1, the convergent rate of Rhuh overruns 4, which confirms the

estimates in Theorem 5.1, and the convergent rate of λ̂h is close to 8, which demonstrates the

results in Theorem 5.2.
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