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Abstract

We consider the inverse scattering problem for scalar waves. We analyze the conver-

gence of the inverse Born series and study its use in numerical simulations for the case of

a spherically-symmetric medium in two and three dimensions.
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1. Introduction

The inverse scattering problem (ISP) for scalar waves consists of recovering the spatially-

varying index of refraction (or scattering potential) of a medium from measurements of the

scattered field. This problem is of fundamental interest and considerable applied importance.

There is a substantial body of work on the ISP that has been been comprehensively reviewed

in [7–9]. In particular, much is known about theoretical aspects of the problem, especially

concerning the issues of uniqueness and stability. There has also been significant effort devoted

to the development of techniques for image reconstruction, including optimization, qualitative

and direct methods. There is also closely related work in which small-volume expansions have

been used to reconstruct the scattering properties of small inhomogeneities. The corresponding

reconstruction algorithms have been implemented and their stability analyzed as a function of

the signal-to-noise-ratio of the data [1–6].

In previous work, we have proposed a direct method to solve the inverse problem of optical

tomography that is based on inversion of the Born series [11–13]. In this approach, the solution

to the inverse problem is expressed as an explicitly computable functional of the scattering data.

In combination with a spectral method for solving the linear inverse problem, the inverse Born

series leads to a fast image reconstruction algorithm with analyzable convergence, stability and

error.

In this paper we apply the inverse Born series to the ISP for scalar waves. We characterize

the convergence, stability and approximation error of the method. We also illustrate its use

in numerical simulations. We find that the series converges rapidly for low contrast objects.

As the contrast is increased, the higher order terms systematically improve the reconstructions

until, at sufficiently large contrast, the series diverges.

The remainder of this paper is organized as follows. In Section 2, we construct the Born

series for scalar waves. We then derive various estimates that are later used to study the
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convergence of the inverse Born series. The inversion of the Born series is taken up in Section

3. In Section 4, the forward operators in the Born series are calculated for the case of radially

varying media. Exact solutions to the problem of scattering by spheres and annuli are discussed

in Section 5. These results are used as forward scattering data for numerical reconstructions,

which are shown in Section 6. Finally, our conclusions are presented in Section 7.

2. Born Series

We consider the propagation of scalar waves in Rn for n ≥ 2. The field u obeys the equation

∇2u(x) + k2(1 + η(x))u(x) = 0. (2.1)

It will prove useful to decompose the field into the sum of an incident field and a scattered field:

u = ui + us. (2.2)

The incident field will be taken to be a plane wave of the form

ui(x) = eikx·ξ , (2.3)

where k is the wave number and ξ ∈ Sn−1 is the direction in which the incident wave propagates.

The scattered field us satisfies

∇2us(x) + k2us(x) = −k2η(x)u(x) (2.4)

and obeys the Sommerfeld radiation condition

lim
r→∞

r

(
∂us
∂r
− ikus

)
= 0 . (2.5)

The function η(x) is the perturbation of the squared refractive index, which is assumed to be

supported in a closed ball Ba of radius a. The solution u can be expressed as the solution to

the Lippmann-Schwinger integral equation

u(x) = ui(x) + k2
∫
Ba

G(x, y)u(y)η(y)dy , (2.6)

where the Green’s function G satisfies the equation

∇2
xG(x, y) + k2G(x, y) = −δ(x− y) . (2.7)

Applying a fixed point iteration to (2.6), beginning with the incident wave, gives the well known

Born series for the total field u

u(x) =ui(x) + k2
∫
Ba

G(x, y)η(y)ui(y)dy

+ k4
∫
Ba×Ba

G(x, y)η(y)G(y, y
′
)η(y

′
)ui(y

′
)dydy

′
+ · · · . (2.8)

Let us define the scattering data

φ = ui − u. (2.9)
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The above series allows us to express this data φ as a power series in tensor powers of η:

φ = K1η +K2η ⊗ η +K3η ⊗ η ⊗ η + · · · . (2.10)

The operators {Kj} are defined as

(Kjf)(x1, ξ) =− k2j
∫
Ba×...×Ba

G(x1, y1)G(y1, y2)...G(yj−1, yj)·

· ui(yj)f(y1, ..., yj)dy1...dyj , (2.11)

where x1 is the position at which the field is measured. Note that the dependence of Kjf on

the incident direction ξ is made explicit. The series (2.10) will be referred to as the Born series.

In order to analyze the convergence of the Born series, we need to find bounds on the norm

of the Kj operators. Assume we measure data on the boundary of a ball of radius R, ∂BR. By

proceeding with the same approach as found in [13], we find that the operators Kj are bounded

in L∞:

Kj : L∞(Ba × · · · ×Ba)→ L∞(∂BR × Sn−1).

Furthermore, if we define

µ∞ = sup
x∈Ba

k2 ‖G(x, ·)‖L1(Ba)
, (2.12)

ν∞ = k2|Ba| sup
x1∈∂BR

sup
y∈Ba

|G(x1, y)ui(y)|, (2.13)

then their operator norms satisfy the estimate

‖Kj‖∞ ≤ ν∞µ
j−1
∞ . (2.14)

We can calculate µ∞ explicity in three dimensions:

µ∞ =
k2

4π

∫
Ba

1

|x|
dx =

(ka)2

2
. (2.15)

Here we have used the fact that the Green’s function is given by

G(x, y) =
eik|x−y|

4π|x− y|
. (2.16)

We calculate ν∞ in the next section. As shown in [12] the Born series converges in the L∞

norm when

‖η‖L∞ <
2

(ka)2
. (2.17)

We can similarly bound the series terms in the L2 norm, if we view Kj as an operator

defined as follows:

Kj : L2(Ba × · · · ×Ba)→ L2(∂BR × Sn−1).

We find, again by the argument in [13], that the operator norms are bounded:

‖Kj‖2 ≤ ν2µ
j−1
2 . (2.18)

where

µ2 = sup
x∈Ba

k2 ‖G(x, ·)‖L2(Ba)
, (2.19)

ν2 = k2|Ba|
1
2 sup
x1∈∂BR

sup
y∈Ba

‖G(x1, y)ui(y)‖L2(∂BR) . (2.20)
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3. Inverse Born Series

In the inverse scattering problem we seek to recover the coefficient η within the domain Ba
from boundary measurements of the scattering data φ. Following [13], we express η as a formal

power series in tensor powers of φ of the form

η = K1φ+K2φ⊗ φ+K3φ⊗ φ⊗ φ+ · · · , (3.1)

where

K1 = K+
1 ,

K2 = −K1K2K1 ⊗K1,

K3 = −(K2K1 ⊗K2 +K2K2 ⊗K1 +K1K3)K1 ⊗K1 ⊗K1,

and for j ≥ 2,

Kj = −

 j−1∑
m=1

Km
∑

i1+...+im=j

Ki1 ⊗ ...⊗Kim

K1 ⊗ ...⊗K1. (3.2)

We will refer to equation (3.1) as the inverse Born series. We use K+
1 to denote a regularized

pseudoinverse of K1. Since K1 has singular values which decay to zero, it does not have a

bounded inverse. The following theorem on the convergence of the inverse series was proven

in [13] and improved in [10].
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Fig. 3.1. Radius of convergence of the inverse series in the L∞ norm for different values of R.

Theorem 3.1. (convergence of the inverse scattering series) The inverse Born series (3.1)

converges in the L∞ norm if ‖K1‖p < 1/(µ+ ν) and ‖K1φ‖Lp(Ba)
< 1/(µ+ ν), where µ and ν

are given by (2.12) and (2.13). Similarly, the series converges in the L2 norm if the analogous

inequalities hold with µ and ν instead given by (2.19) and (2.20). In addition, the following

estimate holds for p = 2,∞∥∥∥∥∥∥η̃ −
N∑
j=1

Kjφ⊗ · ⊗ φ

∥∥∥∥∥∥
Lp(Ba)

≤ C
((µp + νp) ‖K1φ‖Lp(Ba)

)N+1

1− (µp + νp) ‖K1φ‖Lp(Ba)

, (3.3)
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where η̃ is the limit of the inverse series and C = C(µp, νp, ‖K1‖p) does not depend on N or

the data φ.

Remark 3.1. As shown in [13], this theorem can be extended to include convergence of the

inverse series in the Lp norm for 2 ≤ p ≤ ∞.

Using the Green’s function (2.16) and setting the measurement radius R = αa for some constant

α, we have that

ν∞ ≤ k2|Ba|
1

4πdist(BR, Ba)
=

(ka)2

3(α− 1)
. (3.4)

Then the radius of convergence of the inverse series is given by

1

µ∞ + ν∞
≥ 1

(ka)2

3(α−1) + (ka)2

2

=
6(α− 1)

(ka)2(2 + 3(α− 1))
. (3.5)

Note that as α→∞,
1

µ∞ + ν∞
→ 2

(ka)2
. (3.6)

The radius of convergence as a function of ka is shown in Fig. 3.1 for various values of α. In

the far field the radius is slightly bigger than in the near field.

4. Forward Operators for Radially-Varying Media

4.1. Two-dimensional problem

We now calculate explicitly the terms in the forward series for the two-dimensional case

where Ω = R2. We take BR to be a disk of radius R centered at the origin such that Ba ⊂ BR.

We assume that the coefficient η depends only on the radial coordinate r = |x|. The fundamental

solution is given by

G(x, y) =
i

4
H

(1)
0 (k|x− y|), (4.1)

which has the Bessel series expansion

G(x, y) =
i

4

∞∑
n=−∞

ein(θx−θy)gn(x, y), (4.2)

where

gn(x, y) = H(1)
n (kr>)Jn(kr<). (4.3)

Here Jn are the Bessel functions of the first kind, H
(1)
n are the Hankel functions, and r< and

r> are defined as

r< = min(|x|, |y|), r> = max(|x|, |y|). (4.4)

We take ui to be a plane wave given by

ui(x) = eikx·ξ, (4.5)

which has the series expansion

ui(x) =

∞∑
n=−∞

i|n|ein(θ−θ0)J|n|(kr), (4.6)
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where, in polar coordinates, x = (r, θ) and θ0 is the polar angle of the unit vector ξ on S1. The

first term in the forward series is given by

φ(1)(θ, θ0) = −k2
∫
Ba

G(x, x1)ui(x1)η(x1)dx1. (4.7)

If y ∈ ∂BR, the functions gn become

gn(x, y) = g̃n(x) = Hn(kR)Jn(kr). (4.8)

If we introduce polar coordinates

x1 = (r1, θ1) , (4.9)

take x to be on ∂BR and insert the formulas (4.2), (4.8) and (4.6) into (4.7) and carry out the

angular integral, we obtain

φ(1)(θ, θ0) = −πik
2

2

∫ R

0

∑
m

eim(θ−θ0)Hm(kR)Jm(kr1)imJm(kr1)η(r1)r1dr1 . (4.10)

We can therefore calculate the Fourier coefficients

φ(1)m1,m2
=

∫ 2π

0

∫ 2π

0

e−im1θ−im2θ0φ(1)(θ, θ0)dθdθ0

= −2im+1k2π3Hm(kR)

∫ R

0

(Jm(kr1))2η(r1)r1dr1, (4.11)

which is only nonzero when m1 = m2, so we put m = m1 = m2. We introduce a rescaling of

the Fourier coefficients of the form

ψ(1)
m =

(
1

Hm(kR)2π3im+1

)
φ(1)m . (4.12)

Then, the first term in the series is given by

ψ(1)
m = −k2

∫ R

0

(Jm(kr1))2η(r1)r1dr1. (4.13)

Repeating this process, we can calculate the second term in the forward series

φ(2)(θ, θ0) = −k4
∫
Ba×Ba

G(x, x1)η(x1)G(x1, x2)η(x2)ui(x2)dx1dx2. (4.14)

As above, we rescale the Fourier coefficients

ψ(2)
m =

−ik4π
2

∫ R

0

∫ R

0

Jm(kr1)η(r1)Hm(kmax(r1, r2))Jm(kmin(r1, r2))

· η(r2)Jm(kr2)r1r2dr1dr2. (4.15)

For the nth term in the series, we have the general formula

ψ(n)
m =

−in+1k2nπn−1

2n−1

∫ R

0

· · ·
∫ R

0

Jm(kr1)η(r1)Hm(kmax(r1, r2))

· Jm(kmin(r1, r2)) · η(r2) · · ·Hm(kmax(rn−1, rn))Jm(kmin(rn−1, rn))

· η(rn)Jm(krn)r1 · · · rndr1 · · · drn. (4.16)
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4.2. Three-dimensional problem

The setup here is strictly analogous to that of the two-dimensional case. The Green’s

function is given by (2.16) and is expressible as the series expansion

G(x, y) = ik

∞∑
l=0

l∑
m=−l

gl(x, y)Ylm(x̂)Y ∗lm(ŷ), (4.17)

where

gl(x, y) = h
(1)
l (kr>)jl(kr<). (4.18)

Here jl are the spherical Bessel functions and h
(1)
l are the spherical Hankel functions of the first

kind. If y ∈ ∂BR, gl takes the form

gl(x, y) = g̃l(x) = h
(1)
l (kR)jl(kr). (4.19)

If the incident wave, ui is a plane wave as in the two dimensional case, then ui has the series

expansion

ui(x) = 4π
∑
l,m

iljl(kr)Ylm(x̂)Y ∗lm(ξ). (4.20)

Introducing spherical coordinates with x ∈ ∂BR

x1 = (r1, x̂1) and x = (R, x̂), (4.21)

and making use of (4.17), (4.19) and (4.20), we obtain

φ(1)(x̂, ξ) = −k2
∫
Ba

G(x, x1)ui(x1)η(x1)dx1

= −4πik3
∫ R

0

∑
l,m

Ylm(x̂)g̃l(r1)iljl(kr1)Y ∗lm(ξ)η(r1)r21dr1 . (4.22)

Now, taking the Fourier transform we have

φ
(1)
l1,m1,l2,m2

=

∫
S2

∫
S2

Y ∗l1m1
(x̂)Yl2m2

(ξ)φ(1)(x̂, ξ)dx̂dξ

= −4πik3δl1l2

∫ R

0

g̃l1(r1)il1jl1(kr1)η(r1)r21dr1. (4.23)

Since the right hand side no longer depends on m1 and m2, we define l = l1 = l2 so that

φ
(1)
l = −4πk3il+1h

(1)
l (kR)

∫ R

0

(jl(kr1))2η(r1)r21dr1. (4.24)

As in the two dimensional case, we can repeat this process for higher order terms, and find the

following generalized form for the nth term in the series:

φ
(n)
l = −4πk3nil+nh

(1)
l (kR)

∫ R

0

· · ·
∫ R

0

jl(kr1)η(r1)h
(1)
l (kmax(r1, r2))

· jl(kmin(r1, r2))η(r2) · · ·h(1)l (kmax(rn−1, rn))jl(kmin(rn−1, rn))

· η(rn)jm(krn)r21 · · · r2ndr1 · · · drn. (4.25)
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5. Exact Solutions for Spheres and Annuli

5.1. Spherical scatterer

For the problem of a ball shaped scatterer centered at the origin, the coefficient η is given

by

η(r) =

{
η1 0 < r ≤ R1,

0 R1 < r.
(5.1)

The solution will then be computed on two subdomains. The first is the inner disk or sphere

B = {x | |x| ≤ R1} , (5.2)

the second is the exterior domain. The system of equations corresponding to (2.1) with appro-

priate interface matching conditions is given by:

∇2u1 + k21u1 = 0 in B, (5.3a)

∇2u2 + k2u2 = 0 in Rn \B, (5.3b)

u1 = u2 on ∂B, (5.3c)

∂u1
∂ν

=
∂u2
∂ν

on ∂B, (5.3d)

where k21 = k2(1 + η1) is the coefficient in the inner region.

5.1.1. Disk in two dimensions

We use the Bessel series expansion (4.6) for the incident wave ui where θ0 is the polar angle of

the incident direction ξ. We express the solution to (5.3) in a Bessel series expansion,

u1(x) =

∞∑
n=0

ane
in(θ−θ0)Jn(k1r), (5.4)

u2(x) = ui(x) +

∞∑
n=0

bne
in(θ−θ0)Hn(kr). (5.5)

Applying the interface conditions allows us to obtain the following system to solve for the

coefficients {an, bn}:[
Jn(k1R1) −Hn(kR1)

k1J
′

n(k1R1) −kH ′

n(kR1)

] [
an
bn

]
= i|n|

[
J|n|(kR1)

kJ
′

|n|(kR1)

]
. (5.6)

We thus obtain an expression for φ for x ∈ ∂BR:

φ(θ0, θ) = −
∞∑

n=−∞
ein(θ−θ0)bnHn(kR). (5.7)

Computing its Fourier coefficients gives

φm,n =

∫ 2π

0

∫ 2π

0

e−imθ1e−inθ2φ(θ1, θ2)dθ1dθ2

= −(2π)2δm,−nb−mHm(kR)(−1)m. (5.8)
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Using the fact that the above expression is independent of n we can define

φm = φm,−m = −(2π)2b−mHm(kR)(−1)m. (5.9)

Using the same rescaling as in equation (4.12) gives

ψm =

(
1

Hm(kR)2π3im+1

)
φm = −2b−m(−1)m

πim+1
. (5.10)

5.1.2. Sphere in three dimensions

In the three-dimensional case, the incident wave ui has the Bessel series expansion (4.20). The

solution to the system (5.3) can be expressed as

u1(x) =
∑
l,m

almjl(k1r)Ylm(x̂)Y ∗lm(ξ), (5.11)

u2(x) = ui(x) +
∑
l,m

blmh
(1)
l (kr)Ylm(x̂)Y ∗lm(ξ). (5.12)

After applying the interface boundary conditions, we obtain a system of equations to solve for

the coefficients {alm, blm}:[
jl(k1R1) −h(1)l (kR1)

k1j
′

l (k1R1) −k(h
(1)
l )

′
(kR1)

][
alm
blm

]
= 4πil

[
jl(kR1)

kj
′

l (kR1)

]
. (5.13)

Now, substituting in x ∈ ∂BR we get a formula for the data function

φ(ξ, x̂) = −
∑
m,l

blmh
(1)
l (kr)Ylm(x̂)Y ∗lm(ξ). (5.14)

We can compute its Fourier coefficients

φl2m2

l1m1
=

∫
S2×S2

Yl1m1(x̂1)Y ∗l2m2
(x̂2)φ(x̂1, x̂2)dx̂1dx̂2

= −δl1,l2δm1,m2bl1m1h
(1)
l1

(kR) (5.15)

and, as before, define

φm = φmm2
mm1

= −bmh(1)m (kR). (5.16)

5.2. Annular scatterer

The coefficient η is now assumed to be of the form

η(r) =


0 0 < r ≤ R1,

η1 R1 < r ≤ R2,

0 R2 < r.

(5.17)

The domain is then divided into three subdomains. The first is the inner disk or sphere

B = {x | |x| ≤ R1} , (5.18)



610 K. KILGORE, S. MOSKOW AND J. C. SCHOTLAND

the second is the middle annulus

A = {x | R1 < |x| ≤ R2} , (5.19)

and the third is the exterior region. The system of equations corresponding to (2.1) with

interface matching conditions is given by:

∇2u1 + k2u1 = 0 in B, (5.20a)

∇2u2 + k21u2 = 0 in A, (5.20b)

∇2u3 + k2u3 = 0 in Rn \ (B ∪A), (5.20c)

u1 = u2 on ∂B, (5.20d)

∂u1
∂ν

=
∂u2
∂ν

on ∂B, (5.20e)

u2 = u3 on (∂A)+, (5.20f)

∂u2
∂ν

=
∂u3
∂ν

on (∂A)+, (5.20g)

where (∂A)+ is the outer boundary of A, and k21 = k2(1 + η1) is the coefficient in the middle

annulus.

5.2.1. Annulus in two dimensions

The incident wave ui is given above in (4.6). The solution to (5.20) can be expressed as

u1(x) =

∞∑
n=−∞

anJn(kr)ein(θ−θ0), (5.21a)

u2(x) =

∞∑
n=−∞

bnJn(k1r)e
in(θ−θ0) + cnHn(k1r)e

in(θ−θ0), (5.21b)

u3(x) = ui(x) +

∞∑
n=−∞

dnHn(kr)ein(θ−θ0). (5.21c)

After applying the interface boundary conditions, we obtain the following system of equations

which can be solved for the four coefficients {an, bn, cn, dn}:
Jn(kR1) −Jn(k1R1) −Hn(k1R1) 0

0 Jn(k1R2) Hn(k1R2) −Hn(kR2)

kJ
′

n(kR1) −k1J
′

n(k1R1) −k1H
′

n(k1R1) 0

0 k1J
′

n(k1R2) k1H
′

n(k1R2) −kH ′

n(kR2)



an
bn
cn
dn



= i|n|


−J|n|(kR1)

J|n|(kR2)

−kJ ′

|n|(kR1)

J
′

|n|(kR2)

 . (5.22)

The exact solution has the form:

ψm = −2d−m(−1)m

πim+1
. (5.23)
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5.2.2. Annulus in three dimensions

Using the expansion of the incident wave (4.20), the solution to the three dimensional annulus

problem can be expressed as

u1(x) =
∑
l,m

almjl(kr)Ylm(x̂)Y ∗lm(ξ), (5.24a)

u2(x) =
∑
l,m

blmh
(1)
l (k1r)Ylm(x̂)Y ∗lm(ξ) + clmjl(k1r)Ylm(x̂)Y ∗lm(ξ), (5.24b)

u3(x) = ui(x) +
∑
l,m

dlmh
(1)
l (kr)Ylm(x̂)Y ∗lm(ξ). (5.24c)

In this case, applying the interface boundary conditions, we have the following system of equa-

tions which can be solved for the four coefficients {alm, blm, clm, dlm}:
jl(kR1) −h(1)l (k1R1) −jl(k1R1) 0

0 h
(1)
l (k1R2) jl(k1R2) −h(1)l (kR2)

kj
′

l (kR1) −k1(h
(1)
l )

′
(k1R1) −k1j

′

l (k1R1) 0

0 k1(h
(1)
l )

′
(k1R2) k1j

′

l (k1R2) −k(h
(1)
l )

′
(kR2)



alm
blm
clm
dlm



= 4πil


−jl(kR1)

jl(kR2)

−kj′l (kR1)

j
′

l (kR2)

 . (5.25)

Again, we can define

φm = −dmhm(kR). (5.26)

6. Numerical Results

We now present the results of numerical reconstructions for the four model systems we have

discussed. When computing the terms of the inverse series, we use recursion to implement the

formula (3.2). The scattering data is computed from the formulas (5.10),(5.23),(5.16) and (5.26).

The forward operators are implemented using the formulas (4.16) and (4.25) . We compute

the pseudo-inverse K1 = K+
1 by using MATLAB’s built-in singular value decomposition. Since

the singular values of K1 are exponentially small, we set the recipricals of all but the largest

M = 6 singular values to zero. When computing the data (4.16) and (4.25) we use m = 40

modes and discretize the integral operators on a spatial grid of 40 uniformly-spaced nodes in

the radial direction. We found that increasing the number of modes and spatial grid points did

not significantly change the reconstructions.

Fig. 6.1 shows reconstructions for low contrast with measurements in the near-field. In

each case, five terms in the inverse series are computed. We also show the projection of η onto

the subspace generated by the first M singular vectors, which gives a sense for what can be

reconstructed at low frequencies, for a particular regularization. Note that the series appears

to converge quite rapidly to a reconstruction that is close to the projection. As the contrast

is increased, as shown in Fig. 6.2, the higher order terms lead to significant improvements

compared to the linear reconstructions.

In Fig. 6.3 we present reconstructions for the high contrast case, but with measurements

carried out in the intermediate field. In this situation we make use of M = 10 modes. Finally,
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Fig. 6.1. Numerical results for small contrast measured in the near field. From top left: two

dimensional disk, two dimensional annulus, three dimensional sphere, and three dimensional

annulus. Here k1 = 1.03, k = 1, R1 = 1, R2 = 1.5 (for annulus), and measurements are at

R = 3. We take 6 modes in the regularized pseudoinverse K+
1 .
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Fig. 6.2. Numerical reconstructions for larger contrast measured in the near field. From

top left: two dimensional disk, two dimensional annulus, three dimensional sphere, and three

dimensional annulus. Here k1 = 1.3, k = 1, R1 = 1, R2 = 1.5 (for annulus), and measurements

are at R = 3. We take 6 modes in the regularized pseudoinverse K+
1 .

in Fig. 6.4 we show reconstructions of the high contrast case with measurements in the far field

using M = 15 modes. In both cases, the results are comparable to the near-field reconstructions

shown in Fig. 6.2.
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Fig. 6.3. Numerical reconstructions for larger contrast measured in the intermediate field. From

top left: two dimensional disk, two dimensional annulus, three dimensional sphere, and three

dimensional annulus. Here k1 = 1.3, k = 1, R1 = 1, R2 = 1.5 (for annulus), and measurements

are at R = 5. We take 10 modes in the regularized pseudoinverse K+
1 .
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Fig. 6.4. Numerical reconstructions for larger contrast measured in the far field. From top left:

two dimensional disk, two dimensional annulus, three dimensional sphere, and three dimensional

annulus. Here k1 = 1.3, k = 1, R1 = 1, R2 = 1.5 (for annulus), and measurements are at

R = 10. We take 15 modes in the regularized pseudoinverse K+
1 .

7. Discussion

In conclusion, we have studied numerically the convergence of the inverse Born series for

scalar waves. Exact solutions to the forward problem were used as scattering data and recon-
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structions were computed to fifth order in the inverse series. We found that the series appears

to converge quite rapidly for low contrast objects in both two and three dimensions. As the con-

trast is increased, the higher order terms systematically improve the reconstructions. We note

that the results at high contrast in both the near, intermediate and far fields are qualitatively

similar. We do not expect that this observation will hold up in the case of electromagnetic

scattering since solutions to the Maxwell equations in the near field decay more rapidly than

in the far zone.
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