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Abstract

In this paper, we propose adaptive finite element methods with error control for solving

elasticity problems with discontinuous coefficients. The meshes in the methods do not need

to fit the interfaces. We establish a residual-based a posteriori error estimate which is λ-

independent multiplicative constants; the Lamé constant λ steers the incompressibility.

The error estimators are then implemented and tested with promising numerical results

which will show the competitive behavior of the adaptive algorithm.
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1. Introduction

The interface problems which involve partial differential equations having discontinuous

coefficients across certain interfaces are often encountered in fluid dynamics, electromagnetics,

and materials science. Especially, the elasticity problems of multiple phase elastic materials

separated by phase interfaces often arise in materials science. Two important examples of

such problems occur in the microstructural evolution of precipitates in an elastic matrix due to

the diffusion of concentration and in the morphological instability due to stress-driven surface

diffusion in solid thin films, cf. e.g., [1–3] and the references therein. The understanding of

these physical processes is crucial to improve material stability properties, and in turn to develop

new and advanced materials that have many applications in automobile manufacture, aircraft

industries, and modern communication technologies.

However, solving such elasticity problems are often very difficult due to complicated geome-

tries, multiple components that appear in these problems. Moreover, the low global regularity

and the irregular geometry of the interface, the standard numerical methods which are efficient

for smooth solutions usually lead to loss in accuracy across the interface. For these reasons,

there has been a great interest recently, in materials science, scientific computing, and ap-

plied mathematics communities, in developing efficient and accurate numerical techniques for

elasticity problems with interfaces.

In this paper, we propose the elasticity problems with interfaces in which the physical

parameters are discontinuous across an interface. Let Ω be a bounded domain in R3 which is

divided into two subdomains Ω1,Ω2 by some surface Γ = Ω̄1∩Ω̄2. The problem we will consider
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is the following

−∇ · σ(u) = f in Ω1 ∪ Ω2, (1.1)

[u]Γ = 0, (1.2)

[σ(u)n]Γ = 0, (1.3)

u = 0 on ΓD, (1.4)

σ(u)n = g on ΓN . (1.5)

Here σ(u) is the stress tensor, f ∈ L2(Ω)3 is the given body force and g ∈ L2(ΓN )3 is the

surface load. u is the displacement field, [v]Γ stands for the jump of a quantity v across the

interface Γ and n denotes the unit outer normal to the boundary of one subdomain, say ∂Ω1.

The Lipschitz boundary ∂Ω consists of a Neumann part ΓN with positive surface measure and

a Dirichlet part ΓD.

Fig. 1.1. The body-fitted and non-body-fitted mesh in 2D.

We assume that the material is isotropic. So, the stress-strain relation is given by

σ(u) = 2µε(u) + λtr(ε(u))I,

where ε(u) = 1
2 (∇u+∇uT ) is the linear strain and I is the 3× 3 identity matrix.

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1 − 2ν)
(1.6)

are the Lamé coefficients, E is Youngs modulus, and ν is Poissons ratio. ν is dimensionless and

typically ranges from 0.2 to 0.49, and is around 0.3 for most materials. So µ and λ are positive

and across the interface Γ they are discontinuous. For simplicity, we assume that µ = µi and

λ = λi in Ωi for positive constants µi, λi, i = 1, 2.

For elliptic interface problems, it is known that optimal or nearly optimal convergence rate

can be achieved if bodyfitted finite element meshes are used, see e.g. [4, 5]. In a body-fitted

mesh, the sides (2D) or the edges (3D) intersect with the interface only through the vertices, see

Fig. 1.1. Unfortunately, it is usually a nontrivial and time-consuming task to construct good
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body-fitted meshes for problems involving geometrically complicated interfaces. Therefore,

numerous modified finite difference methods based only on simple Cartesian grids have been

proposed in the literature. We refer to the immersed boundary method in Peskin [14], the

immersed interface method in LeVeque and Li [7], Li and Ito [8], the ghost fluid method in

Liu et al. [13], and the references therein. In Li et al. [9], an immersed interface finite element

method is developed by a local modification of finite element basis functions. As to elasticity

interface problems, in Yang [17] and Gong [19], immersed interface method include both FE

and FEM are given.

While most of the aforementioned methods assume that the underlying solutions are smooth

in each subdomain, they are not easily applied to problems involving non-smooth interfaces.

Numerical solutions to this class of problems are challenging in science and engineering ap-

plications. It is well-known that the regularity of the solution for interface problems strongly

depends on the geometry of the interface and discontinuity of the coefficients in the equation.

For interface problems, an exact solution can have strong singularity, so it is essential to de-

velop an adaptive immersed interface finite element method (AIIFEM). In [21], the AIIFEM is

developed for solving elliptic and Maxwell interface problems with singularity. They introduce

new finite element basis functions for the elements having nonempty intersection with the in-

terface and obtain an AIIFEM which is quasi-optimal in the sense that the energy error decays

as CN−
1

3 , where N is the number of degrees of freedom. Motivated by [21], we deal with our

elasticity interface problems using the AIIFEM.

In this paper we assume the interface can be of arbitrary shape and the finite element

mesh whose vertices are not necessarily located on the interface. The layout of this paper is as

follows. In Section 2, we give some precise notations. In Section 3, we derive the a posteriori

error analysis and efficient adaptive strategy is proposed. In Section 4, numerical examples are

given to support the theoretical results.

2. Finite Element Approximation

Let Ω be a polyhedral domain in R3. For each integer m ≥ 0 and real p with a ≤ p ≤ ∞;

Wm,p denotes the standard Sobolev space of real scalar functions with their weak derivatives

of order up to m in the Lebesgue space Lp. When p = 2, we use Hm to stand for Wm,2. Let

H1
D = {v ∈ H1, v|ΓD

= 0}.

The weak formulation of (1.1)-(1.5) is to find u ∈ H1
D(Ω)3 such that

(σ(u), ε(v)) = (f,v) + (g,v)ΓN
∀v ∈ H1

D(Ω)3. (2.1)

Let Mh be a regular tetrahedral partition of the domain Ω. We call an element K ∈ Mh

an interface element if the interface passes through the interior of K; otherwise we call K a

non-interface element. The set of all interface elements is denoted by M∗
h. We assume that for

any K the edge e ⊂ K either belongs to ΓD or e ∩ ΓD has vanishing surface measure, so there

is no change of boundary conditions within one edge e ∈ ∂Ω. For any element K ∈ M∗
h, the

set of all elements that have nonempty intersection with the interface, we distinguish four cases

of how Γ intersects with K:

(i) All four vertices lie in one of the two subdomains (Fig. 2.1 (left)).

(ii) Three vertices A1; A2; A3 lie in one subdomain, the forth vertex A4 lies in the other

subdomain, and C intersects each edge A1A4; A2A4; A3A4 at only one point (Fig. 2.1 (right)).
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(iii) Two vertices A1; A2 lie in one subdomain, the other two vertices A3; A4 lie in another

subdomain, and the interface intersects each edge A1A3; A1A4; A2A3; A2A4 at only one point

(Fig. 2.2 (left)).

(iv) The four vertices do not lie in one subdomain and the interface intersects at least one

edge of K whose vertices lie in different subdomains at more than one point (Fig. 2.2 (right)).

Fig. 2.1. The intersection of Γ with the interface element K: case (i) (left) and case (ii) (right).

Fig. 2.2. The intersection of Γ with the interface element K: case (iii) (left) and case (iv) (right).

We define the discrete coefficient function µh as

µh =

{
µ if x ∈ K, K non-interface element,

µK if x ∈ K, K interface element.
(2.2)

For each interface element K ∈ M∗
h, µK is defined according to the four cases as follows. In

case (i) we define µK = µi if all four vertices lie in Ωi, i = 1, 2. In the cases (ii) and (iii) we

first approximate the interface by plane patches connecting the intersection points between the

interface and the edges of K as illustrated in Fig. 2.1 (right) and Fig. 2.2 (left). The plane

patches divide K into two parts K1 and K2 so that Ki ⊂ Ωi. For each part, we set µK = µi if

that part lies in Ωi, i = 1, 2. In the exceptional case (iv) as illustrated in Fig. 2.2 (right), we

simply define µK = min
x∈K

µ. Also, we define the discrete coefficient function λh similarly.
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Now to derive our discrete approximation to (2.1), we introduce an intermediate conforming

mesh M̂h which is the refinement of Mh by breaking each interface tetrahedron into several

small tetrahedra as illustrated in Fig. 2.3 for case (ii). M̂h is then a body-fitted mesh. Let

V̂h be the H1-conforming linear finite element space over M̂h. Set V̂ D
h = V̂h ∩ H1

D(Ω). The

discrete problem is then to find ûh ∈ (V̂ D
h )3 such that

(σh(ûh), ε(vh)) = (f,vh) + (g,vh)ΓN
∀vh ∈ (V̂ D

h )3, (2.3)

where

σh(ûh) = 2µhε(ûh) + λhtr(ε(ûh))I.

We note that the resulting linear system (2.3) is solved on the intermediate mesh M̂h. In

the following, however, the a posteriori error estimate will be performed on Mh, not M̂h.

Moreover, Mh will be refined to produce the new mesh in the adaptive computations. As

in [21], we can see that the mesh quality will not deteriorate during the adaptive iterations if

the newest vertex bisection algorithm is used to refine the meshes.

Fig. 2.3. Add new nodal points at intersections.

3. A Posteriori Error Analysis

A posteriori error estimates for the elasticity problems without interface have been given

in some papers such as [26–29]. Among of them, [23] establishes a kind of robust a posteriori

error estimate with λ-independent multiplicative constant. It is very important because the

lamé coefficient function λ steers the incompressibility and the usual residual-based a posteriori

estimate will lose the efficiency if λ is large. In this part, we will use the idea of [23] to carry

out the a posteriori error analysis for our interface problems.

Now, for brevity, we define the errors

e = u− ûh, δ = λdiv(u− ûh),

and frequently write ‖ · ‖L2 = ‖ · ‖L2(Ω) and ‖ · ‖H1 = ‖ · ‖H1(Ω) if there is no risk of confusion.
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Lemma 3.1. [24] There exist a constant c1(Ω,ΓN ) and w ∈ H1
D(Ω)3 function with

−divw = δ and ‖w‖H1 ≤ c1‖δ‖L2. (3.1)

Similar to [23] we employ w to define functions

λmax = max(λ1, λ2), µmax = max(µ1, µ2), ζ = 2µmaxc
2
1e−w ∈ H1

D(Ω)3. (3.2)

Lemma 3.2. There exists a constant c2 depending on c1 such that

‖2µε(e)‖2L2 + ‖δ‖2L2 ≤ c2(2µε(e) + δI,∇ζ). (3.3)

Proof. A direct calculation employing the definitions above yields

(2µε(e) + δI,∇ζ) =(2µε(e) + δI, 2µmaxc
2
1∇e−∇w)

=(4µµmaxc
2
1ε(e),∇e) + (δI,−∇w) + (δI, 2µmaxc

2
1∇e)− (2µε(e),∇w)

≥ c21‖2µε(e)‖
2
L2 + (1 + 2c21

µmax

λmax
)‖δ‖2L2 − (2µε(e),∇w). (3.4)

Employing (3.1), Cauchy’s and Young’s inequalities we deduce

(2µε(e),∇w) ≤
1

2
c21‖2µε(e)‖

2
L2 +

1

2
‖δ‖2L2, (3.5)

A combination of (3.4) and (3.6) shows the assertion (3.3). �

Using lemmas above, we can prove the following a posteriori error estimate.

Theorem 3.1. Let u and uh be the solution of (2.1) and (2.3), respectively. There exists a

constant C > 0 depending on the minimum angle of Mh, Ω, c1, c2,
µmax

µmin
. Then, we have

‖2µε(e)‖2L2 + ‖δ‖2L2 ≤ C

( ∑

K∈Mh

η2K

)
, (3.6)

where the local error indicator ηK is defined as

η2K =h2
K‖f‖2L2(K) +

∑

ê⊂K,ê*∂Ω

hK‖[σh(ûh)n]‖
2
L2(ê)

+
∑

ê⊂K,ê⊂ΓN

hK‖g− σh(ûh)n‖
2
L2(ê)

+ βK‖2(µ− µh)ε(ûh) + (λ− λh)divûhI‖
2
L2(K).

Here βK = 1 if K is an interface element, and βK = 0 otherwise. Moreover, ê denotes the edge

of tetrahedron of partition M̂h.

Proof. Let Vh be the piecewise linear H1-conforming finite element space over Mh. We

know that there exists the Clément interpolant Ph : H1
D(Ω) → Vh in [6]. For vector-valued

functions, Ph is defined by applying it to the components of the function. Then, we have the

following stability properties: For any element K and edge e,

‖V − PhV‖L2(K) ≤ ChK‖∇V‖L2(ωK), ‖V− PhV‖L2(e) ≤ Ch
1

2

e ‖∇V‖L2(ωe). (3.7)
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Moreover, we can deduce that the properties follows: For any element K̂ ∈ M̂h, K̂ ⊂ K and

edge ê ⊂ K̂,

‖V− PhV‖L2(K̂) ≤ ChK‖∇V‖L2(ωK), ‖V − PhV‖L2(ê) ≤ Ch
1

2

K‖∇V‖L2(ωK). (3.8)

Here C depends on the minimum angle of Mh.

By (2.1) and (2.3), because of Lemma 3.2 and integrating by parts, we have

‖2µε(e)‖2L2 + ‖δ‖2L2 ≤ c2(2µε(e) + δI,∇ζ)

=c2(2µε(u) + λdivuI,∇ζ −∇Phζ)

− c2(2µhε(ûh) + λhdivûhI,∇ζ −∇Phζ)

− c2
∑

K∈M∗

h

(2(µ− µh)ε(ûh) + (λ− λh)divûhI,∇ζ)K

=c2
∑

K∈Mh

(
(f , ζ − Phζ)K +

∑

ê⊂K,ê*∂Ω

([σh(ûh)n], ζ − Phζ)ê

+
∑

ê⊂K,ê⊂ΓN

(g − σh(ûh)n, ζ − Phζ)ê

)

− c2
∑

K∈M∗

h

(2(µ− µh)ε(ûh) + (λ− λh)divûhI,∇ζ)K . (3.9)

By (3.8) and a few applications of Cauchy’s inequality we can have

‖2µε(e)‖2L2 + ‖δ‖2L2 ≤ C(c2,Mh)(
∑

K∈Mh

η2K)
1

2 ‖∇ζ‖L2 .

By Korn’s inequality, the definition of ζ and Lemma 3.1, we obtain

‖∇ζ‖L2 ≤ C(Ω, c1,
µmax

µmin
)

(
‖2µε(e)‖L2 + ‖δ‖L2

)
. (3.10)

Thus, using Young’s inequality, we can get the assertion of (3.6). �

4. Adaptive Algorithm and Numerical Experiments

The implementation of our 3D AIIFEM method is based on the parallel adaptive finite

element package PHG [15, 16]. The computation is carried out on O3800 in the State Key

Laboratory on Scientific and Engineering Computing of Chinese Academy of Sciences.

Algorithm 4.1.

Given tolerance TOL > 0.

• Generate an initial mesh M0, k = 0;

• While Ek = (
∑

K∈Mh

η2K) > TOL, do

- Designate the discrete coefficient functions µK , λK on Mk;

- add new elements in interface elements to generate intermediate conforming mesh M̂k;

- Solve the discrete problem on M̂k;

- Compute the local error indicator ηK on each K ∈ Mk;

- Refine all K ∈ Mk satisfying ηK > 1
2 max
K∈Mk

ηK to construct conforming mesh Mk+1;

- Set k = k + 1.

• End while
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Fig. 4.1. The quasi-optimal convergence of the a posteriori error estimates (Example 4.1).

Now we report several numerical experiments to demonstrate the competitive behavior of the

algorithm. The discrete system of linear equations is solved by preconditioned CG method.

Example 4.1. Let Ω = (−2, 2)3 and the interface be a unit sphere centered at the origin. The

exact solution is given in the spherical coordinates as

u1(r) = u2(r) = u3(r) =

{
(r2 − 1)/R+ 1 if r ≤ 1;

r2 if r > 1.
(4.1)

We set the λ(x) = µ(x) = R inside the sphere and λ(x) = µ(x) = 1 outside.

Fig. 4.1 shows the logE-logN curves for different values of R, where E is the a posteriori

error estimate and N is the number of degrees of freedom. It indicates that the adaptive
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Fig. 4.2. The quasi-optimal convergence of the error (Example 4.1).
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Fig. 4.3. A slice of adaptively refined mesh at x1 = 0 (Example 4.1).

meshes and the associated computational complexity are quasi-optimal: E = CN−1/3 is valid

asymptotically. Fig. 4.2 shows the logErr-logN curves for different values of R, where Err is

the error in the norm defined above. Fig. 4.3 shows an adaptive mesh using 94099 degrees of

freedom when R = 100.

Example 4.2. Let Ω = (−2, 2)3 and the interface be a unit sphere centered at the origin.

The exact solution is the same as the one given in Example 1. But here we set the λ(x) =

50×R, µ(x) = R inside the sphere and λ(x) = 50, µ(x) = 1 outside.

Fig. 4.4 shows the logE-logN curves for different values of R, where E is the a posteriori

error estimate and N is the number of degrees of freedom. It indicates that the adaptive

meshes and the associated computational complexity are quasi-optimal: E = CN−1/3 is valid

asymptotically. Fig. 4.5 shows the logErr-logN curves for different values of R, where Err is

the error in the norm defined above. Fig. 4.6 shows an adaptive mesh using 232999 degrees of

freedom when R = 10.
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Fig. 4.4. The quasi-optimal convergence of the a posteriori error estimates (Example 4.2).
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Fig. 4.5. The quasi-optimal convergence of the error (Example 4.2).

Example 4.3. Let Ω = (−2, 2)3 and the interface be a unit sphere centered at the origin. Let

f = 0 The boundary condition is given as

u1|∂Ω = u2|∂Ω = u3|∂Ω

=sin((x + 2) ∗ (y + 2) ∗ (z + 2)) + (x+ 2) ∗ (y + 2) ∗ (z + 2). (4.2)

We set the λ(x) = 40×R, µ(x) = 10×R inside the sphere and λ(x) = 25, µ(x) = 10 outside.

Fig. 4.7 shows the logE-logN curves for different values of R, where E is the a posteriori

error estimate and N is the number of degrees of freedom. It indicates that the adaptive

meshes and the associated computational complexity are quasi-optimal: E = CN−1/3 is valid

asymptotically. Fig. 4.8 shows an adaptive mesh using 217239 degrees of freedom when R =

100.

Example 4.4. In this example we consider an problem involving an interface having cusps see

Fig. 4.9. We set the computational domain Ω = (−2, 2)3, Ω1 = {x = (x1, x2, x3), x1 > 0, x2 >

Fig. 4.6. A slice of adaptively refined mesh at x1 = 0 (Example 4.2).
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Fig. 4.7. The quasi-optimal convergence of the a posteriori error estimates (Example 4.3).

Fig. 4.8. A slice of adaptively refined mesh at x1 = 0 (Example 4.3).

Fig. 4.9. The configuration of the interface used in Example 4.4.
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Fig. 4.10. The quasi-optimal convergence of the a posteriori error estimates (Example 4.4).

0,x ∈ S1\S2}, where S1 and S2 are defined by:

S1 :
x2
1

1.52
+

x2
2

1.52
+ x2

3 < 1, (4.3)

S2 : x2
1 + x2

2 + x2
3 ≤ 1. (4.4)

Note that the interface Γ is not even Lipschitz continuous and has the singularity at the cusp

points (0, 0,±1). We set the λ(x) = 40 × R, µ(x) = 10 × R in Ω1 and λ(x) = 25, µ(x) = 10

outside. Moreover, f = −10 in Ω, and u = 0 on the boundary.

Fig. 4.10 shows the logE-logN curves for different values of R, where E is the a posteriori

error estimate and N is the number of degrees of freedom. It indicates that the adaptive

meshes and the associated computational complexity are quasi-optimal: E = CN−1/3 is valid

asymptotically. Fig. 4.11 shows an adaptive mesh using 215009 degrees of freedom when

R = 0.1.

Fig. 4.11. A slice of adaptively refined mesh at x1 = 0 (Example 4.4).
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5. Concluding Remarks

In this paper we develop the adaptive immersed interface finite element method for solving

the elasticity interface problems. The finite element meshes are adaptively refined according to

local a posteriori error estimators which are λ-independent multiplicative constants and need

not fit with the interfaces. Our extensive numerical experiments indicate that the proposed

algorithm can handle geometrically complicated interfaces that may have tips or cusps so that

the exact solution of the problems may have strong singularities. For the nearly incompressible

case (λ approaches infinity), we will extend the adaptive methods to solve it.
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