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Abstract

This paper is concerned with the initial-boundary value problems of scalar transport

equations with uncertain transport velocities. It was demonstrated in our earlier works

that regularity of the exact solutions in the random spaces (or the parametric spaces) can

be determined by the given data. In turn, these regularity results are crucial to convergence

analysis for high order numerical methods. In this work, we will prove the spectral conver-

gence of the stochastic Galerkin and collocation methods under some regularity results or

assumptions. As our primary goal is to investigate the errors introduced by discretizations

in the random space, the errors for solving the corresponding deterministic problems will

be neglected.
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1. Introduction

In numerical simulation, accounting for uncertainties in input quantities (such as model

parameters, initial and boundary conditions, and geometry) becomes an important issue in

recent years, especially in risk analysis, safety, and optimal design, see, e.g., [1, 7, 9, 20, 23, 27].

Many works have been recently devoted to the analysis and the implementation of the Stochastic

Galerkin (SG) methods and Stochastic Collocation (SC) techniques for such problems. These

methods are promising since they can exploit the possible regularity of the solution with respect

to the stochastic parameters to achieve faster convergence. SG methods and SC methods can

be classified as parametric techniques, since both approximate u, the solution of the underlying

problems as a linear combination of suitable deterministic basis functions in probability space.

The Stochastic Galerkin is a projection technique over a set of orthogonal polynomials with

respect to the probability measure at hand [25, 26] and this methods is also called the general

Polynomial Chaos (gPC) methods which is first introduced in [24], while Stochastic Collocation

is a sum of Lagrangian interpolants over the probability space (see e.g., [10, 12, 17, 18]).
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Many numerical analysis results for the linear stochastic elliptic equation have been given by

researchers. Babuška et al. [3, 4] analyze the convergence properties for both the SG methods

and SC methods for the stochastic elliptic equation, they show that both two methods achieves

exponential convergence provided that the input random data are infinitely differentiable with

respect to the random variables, under very mild assumptions on the growth of such derivatives,

as is the case for standard expansions of random fields. Schwab and co-workers [14,15] provided

similar results for the stochastic parabolic problems and the second order wave equations with

random coefficients. They also discussed the convergence properties of the Best N -term approx-

imation. The application of stochastic spectral methods to hyperbolic problems of conservation

laws poses additional challenges. Very few works have been investigated for uncertain hyper-

bolic problems, especially for theoretical part. The scalar wave equation with a random wave

number has been treated with gPC methods by Gottlieb and Xiu [13]. After that, Tang and

Zhou [22,28] give some rigorous regularity results for the similar model problem, and show that

the regularity results are important for the analysis of convergence rate of the SG methods and

SC methods. In this paper, for the initial-boundary value problems of linear transport equation,

we will show the analytic regularity of the solution with respect to the random parameter. Such

results are crucial for analyzing the convergence properties of high order numerical methods. By

using the analytic regularity results together with complex analysis, the spectral convergence

of the Stochastic Galerkin and Collocation methods are shown. We note that related works on

the second order wave equations with random data has been done by Nobile et.al. [6]. We also

remark that numerical treatment for nonlinear hyperbolic problems are also discussed by many

researchers, see, e.g., [19].

The paper is organized as follows. In Section 2, we set up the problems and discuss some

analytic regularity results of the solutions in the parametric spaces. Spectral convergence of

the Stochastic Gelerkin and collocation methods will be investigated in Section 3. Then, we

provided with an numerical example in Section 4. Some conclusion remarks will be provided

in the final section.

2. Problem Set Up and Solution Regularity

2.1. Problem set up

Let x ∈ D ≡ [−1, 1] be the spatial coordinate, and t be the time variable in T ≡ [0, T ], and

(Ω,A,P) be a complete probability space, whose event(ω) space is Ω and is equipped with σ-

algebra A, and P : A → [0, 1] is a probability measure. We consider the following class of linear

scalar transport equations with random velocity: Find a random function, u : T ×D × Ω → R

such that P -almost everywhere in Ω, or in other words, almost surely the following equation

holds:

∂u(x, t, y(ω))

∂t
= c(y(ω))

∂u(x, t, y(ω))

∂x
, (2.1a)

u(x, t = 0, y(ω)) = u0(x, y(ω)). (2.1b)

A well-posed boundary conditions can be given by

u(−1, t; y(ω)) = uL(t; y(ω)) c(y(ω)) < 0, (2.2a)

u(+1, t; y(ω)) = uR(t; y(ω)) c(y(ω)) > 0. (2.2b)
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Eqs. (2.1)-(2.2) complete the set up of the problem.

In what follows, we will denote with Γ ≡ y(Ω) the image of y(ω). We will also assume for

simplicity that the random variable admits a probability density function ρ(y(ω)). For notation

simplicity, we will omit the symbol ω. Then, problem (2.1)-(2.2) appears the following formula:

∂u(x, t, y)

∂t
= c(y)

∂u(x, t, y)

∂x
, (2.3a)

u(x, t = 0, y) = u0(x, y), (2.3b)

u(−1, t; y) = uL(t; y) c(y) < 0, (2.3c)

u(+1, t; y) = uR(t; y) c(y) > 0. (2.3d)

Namely, one can view y as a parameter in the parametric space Γ. We will focus on the finite

support case and assume that Γ ≡ [−1, 1] without loss of generalization. In the following, we

also denote with Γ− ≡ [−1, 0) and Γ+ ≡ [0, 1].

2.2. Analytic regularity in the parametric space

For many stochastic PDEs, the exact solutions exhibit analytic regularity in the random

spaces even if the regularity in the physic space is low, see, e.g., [3, 4] for elliptic problems

and [6, 15, 15] for other problems, to name a few. In [22], some basic regularity results for

problem (2.3) in the parametric space are provided. For example, the following results were

obtained in [22].

Lemma 2.1. Consider the problem (2.3). If c′(y) is bounded in the distribution sense and if

the following conditions are satisfied:

∫

Γ

∫

D

ρ(y)
(
∂xu0(x, y)

)2
dxdy < ∞,

∫

Γ

∫

D

ρ(y)
(
∂yu0(x, y)

)2
dxdy < ∞, (2.4a)

∫ T

0

∫

Γ+

ρ(y)

c(y)

(
∂tuR(t; y)

)2
dydt < ∞,

∫ T

0

∫

Γ+

ρ(y)

c(y)

(
∂yuR(t; y)

)2
dydt < ∞, (2.4b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|
(
∂tuL(t; y)

)2
dydt < ∞,

∫ T

0

∫

Γ−

ρ(y)

|c(y)|
(
∂yuL(t; y)

)2
dydt < ∞, (2.4c)

then ∫

Γ

∫

D

ρ(y)
(
u2
x + u2

y

)
dxdy < C(T ), 0 < t ≤ T, (2.5)

where ρ(y) > 0 is the probability distribution function and C(T ) is a positive constant depending

on T .

We can view the regularity property in the above lemma as the regularity in the Stochas-

tic Hilbert Spaces. Using the similar technique as in [22], we can provide with the following

regularity properties with respect to the high order derivatives of the solution in the random

spaces.

max
y∈Γ

‖∂yu(·, t; y)‖L2(D) < C(T ), 0 < t ≤ T, (2.6)

where C(T ) is a finite number depending on T and the given data. Based on these basic results,

we want to give further regularity properties. It is nature that additional assumptions for the

given data should be used. More precisely, we will use the following assumptions.
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Assumption 2.1. The given initial and boundary conditions satisfy the following properties:

max
y∈Γ

|∂k
y c(y)| ≤ γk, (2.7a)

max
Γ⊗T

|∂k
ydR| ≤ δkR, max

Γ⊗T
|∂k

yuR| ≤ δkR, (2.7b)

max
Γ⊗T

|∂k
ydL| ≤ δkL, max

Γ⊗T
|∂k

yuL| ≤ δkL, (2.7c)

max
y∈Γ

‖∂k
yu

′
0‖2V ≤ ηk, max

y∈Γ
‖∂k

yu0‖2V ≤ ηk, (2.7d)

where V = L2(D), k ∈ N, γ, δR, δL, η are positive constants, u′ stands for ∂xu, and dR(y, t), dL(y, t)

stand for ∂tuR/c(y), ∂tuL/c(y) respectively. Without loss of generality, we also assume that

γ ≥ max{δR, δR, η}.

Note that Assumption 2.1 covers assumptions used in Lemma 2.1, which also implies the

result of (2.6). We are now ready to state and prove the following result.

Theorem 2.1. Under Assumption 2.1, we have

max
Γ

‖∂k
yu(·, t, ·)‖2V ≤ Ck(T )

(
δkR + δkL + ηk

)
< +∞, (2.8)

for every k ∈ N, where Ck(T ) is a constant related to k, γ and T.

Proof. Using the basic results of (2.6), we can conduct on the index k. Assume for the index

i ≤ k, the solution u of problem (2.1) satisfies

max
Γ

‖∂i
yu(·; y)‖2V ≤ Ci(T )

(
δiR + δiL + ηi

)
, (2.9)

provided that the given initial and boundary condition satisfy (2.7). Then, for index of k + 1,

we have

d

dt
(∂k+1

y u) =

k+1∑

l=0

(lk)
(
∂k−l+1
y c

) (
∂l
yux

)

=
k∑

l=0

(lk)
(
∂k−l+1
y c

) (
∂l
yux

)
+ c(y)

(
∂k+1
y ux

)
. (2.10)

Multiply ∂k+1
y u in both sides and integral in D one gets

d

dt
‖∂k+1

y u‖2V =

∫

D

(∂k+1
y u)

k∑

l=0

(lk)
(
∂k−l+1
y c

) (
∂l
yux

)
dx+ c(y)

∫ 1

−1

(
∂k+1
y u

)2
x
dx

≤
k∑

l=0

(lk)
(
∂k−l+1
y c

)
‖(∂k+1

y u)‖2V +

k∑

l=0

(lk)
(
∂k−l+1
y c

)
‖(∂l

yux)‖2V

+ C0

[
(∂k+1

y uR)
2 + (∂k+1

y uL)
2
]
,

which yields

max
y∈Γ

‖∂k+1
y u‖2V

≤
(

k∑

l=0

(lk)
(
∂k−l+1
y c

)
)∫

T

max
y∈Γ

‖(∂k+1
y u)‖2V dt+

k∑

l=0

(lk)γ
k−l+1

∫

T

max
y∈Γ

‖(∂l
yux)‖2V dt

+C0

∫

T

max
y∈Γ

(
|∂k+1

y uR|2 + |∂k+1
y uL|2

)
dt+max

y∈Γ
‖∂k+1

y u0‖2V . (2.11)
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Note that v = ux satisfies the following problem:

∂v(x, t, y)

∂t
= c(y)

∂v(x, t, y)

∂x
,

v(x, t = 0, y) = u′
0(x, y),

v(−1, t; y) = ux(−1, t, y) = dR(t, y) c(y) < 0,

v(+1, t; y) = ux(+1, t, y) = dL(t, y) c(y) > 0.

That is, ux satisfies a problem similar with (eqn2.1). Note that the initial and boundary

conditions are given in a general setting, and u′
0, dR, dL are supposed to have the same properties

as u0, uR, uL (see Assumption 2.1). Consequently, by the conduction assumption (2.9), we have

max
Γ

‖∂i
yux(·, t; y)‖2V ≤ Ci(T )

(
δiR + δiL + ηi

)
, (2.13)

which leads to

k∑

l=0

(lk)γ
k−l+1

∫

T

‖(∂l
yux)‖2V dt

≤ CM (T )
(
(γ + δR)

k+1 + (γ + δL)
k+1 + (γ + η)k+1

)
, (2.14)

where CM (T ) = maxi≤k Ci(T ). Substitute (2.14) into (2.11) one gets

max
y∈Γ

‖∂k+1
y u‖2V ≤ (1 + γ)k+1

∫

T

max
y∈Γ

‖∂k+1
y u‖2V dt+ C0(T )

(
δk+1
R + δk+1

L + ηk+1
)

+CM (T )
(
(γ + δR)

k+1 + (γ + δR)
k+1 + (γ + η)k+1

)

≤ (1 + γ)k+1

∫

T

max
y∈Γ

‖∂k+1
y u‖2V dt+ C̃(T )

(
δk+1
R + δk+1

L + ηk+1
)
,(2.15)

where C̃(T ) = C0(T )+2k+1CM (T ). Then, the desired result (2.8) follows by using the Gronwell

inequality with Ck+1(T ) = C̃(T )eT (1+γ)k+1

. �

Some simple remarks are listed below:

• Regularity results of weaker norms can also be derived, for example, the above results

imply the following:

‖∂k
yu(·, t, ·)‖2Mean−Square

=

∫

Γ

∫

D

(∂k
yu)

2dxdy ≤ Ck(T )
(
δkR + δkL + ηk

)
< +∞. (2.16)

This norm was used in [22] to analyze the convergence property of the stochastic colloca-

tion methods.

• We remark that the estimation in the above theorem is not optimal in the sense that

Ck(T ) is related to k, γ and T in general case (even not uniform bounded). This is

different from the cases of problems involving symmetric Laplace operator. However, for

some special cases, for instance, the initial conditions and the boundary conditions are

compatible, then, the solution will has similar properties as the initial function, and we

can expect that Ck(T ) can be bounded by a positive constant uniformly. An spacial case
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is “c(y)=y” which was used as an example in [13,22]. We also remark that one usually use

the Karhunen-Lòeve expansion to deal with the stochastic functions when space variable

is involved:

κ(x, ω) = κ0(x) +
∞∑

i=1

√
λiκi(x)yi(ω),

where {λi}∞i=1 and {κi}∞i=1 are the eigenvalues and orthogonal eigenfunctions of Covκ(x, x
′),

i.e.,
∫

Ω

Covκ(x, z)κi(z)dz = λiκi(x).

Note the expansion above is a linear combination of random variables, and thus, for such

cases, we may also expect that Ck(T ) can also be bounded by a uniform constant with

compatible assumption.

For ease of notations, we denote with ζk = max{δkR, δkL, ηk}, and we will also assume that

the coefficients {Ck(T )}∞k=0 can be bounded by a constant C(T ) which is independent of k. We

will use the following functional spaces

C0(Γ, V ) =

{
u : Γ → V, u continuous in y, max

y∈Γ
‖u(y)‖V < +∞

}
, (2.17a)

L∞[T,C0(Γ, V )] =

{
u : T → C0(Γ, V ), max

t∈T
‖u(t)‖C0(Γ,V ) < +∞

}
, (2.17b)

L1[T,C0(Γ, V )] =

{
u : T → C0(Γ, V ),

∫

T

‖u(t)‖C0(Γ,V )dt < +∞
}
. (2.17c)

It is clear that Theorem 2.1 implies that u ∈ L∞[T,C0(Γ, V )]. We are ready to give the following

result whose proof follows very closely with [3, 4].

Theorem 2.2. The solution u(x, t; y) as a function of y, u : Γ → L∞(T, V ) admits an analytic

extension u(x, t; z), z ∈ C in the region of the complex plane

Σ(Γ, τ) ≡ {z ∈ C, dist(z,Γ) ≤ τ} (2.18)

with 0 < τ < 1/
√
ζ.

Proof. We define for every y ∈ Γ, the power series u : C → L∞(T, V ) as

u(z, x, t) =

∞∑

k=0

(z − y)k∂k
yu(y, x, t),

which yields

‖u(z)‖L∞[T,V ] ≤
∞∑

k=0

|z − y|k‖∂k
yu(y)‖L∞(T,V ) ≤ C(T )

∞∑

k=0

(|z − y|
√
ζ)k. (2.19)

The series converges for all z ∈ C satisfying |z−y| ≤ τ < 1/
√
ζ. Moreover, in the ball |z−y| ≤ τ,

we have

‖u(z)‖L∞(T,V ) ≤
C(T )

1− τ
√
ζ
. (2.20)

The power series converges for every y ∈ Γ; hence, the function u can be extended analytically

on the whole region Σ(Γ, τ) by a continuation argument. �
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3. Spectral Convergence Analysis

For the convergence analysis of stochastic numerical methods such as SG methods and

SC methods, the key point is to analyze the regularity properties of the corresponding exact

solution in the random spaces. Once we have the regularity results, we can use the framework

in [3, 4] (for elliptic model problem) to get the convergence results for SG and SC methods.

The framework is also used in [16] to analyze the convergence property for stochastic parabolic

equations and in [6] for second order wave equations with a random speed. In the following, we

will give the convergence analysis for model problem (2.1)-(2.2). We remark that the following

results are also based on framework in [3,4] although different models are considered. Some of

the following results are slightly extension of results in [3, 4] and some are direct consequence

of results in [3, 4].

3.1. Stochastic collocation methods

In stochastic collocation methods, we use the roots of the corresponding orthogonal poly-

nomials as the collocation points, and the type of the polynomials is decided according to

the distribution information of the random parameter. The commonly seen correspondences

between the polynomials {Pk(y)} and the distribution of the random variable y include Hermite-

Gaussian, Legendre-uniform, etc., cf. [2, 25]. Let Θ = {yk}pk=0 ∈ Γ (the parameter space) be

such a set of nodes. A Lagrange interpolation of the solution u(x, y) can be written as

Ipu(x, y) =
p∑

k=0

ũ(yk)lk(y), (3.1)

where

lk ∈ Pp, li(yk) = δik, 1 ≤ i, k ≤ N, (3.2)

are the Lagrange interpolation polynomials. In this section, we prove the spectral convergence

of such methods. As the primary goal of this paper is to investigate the error introduced by the

random space, therefore we will neglect the error introduced when solving the corresponding

deterministic problems. We will need the following lemmas which slightly generalize those in [3].

Lemma 3.1. The operator Ip : L∞[T,C0(Γ, V )] → L∞(T, L2
ρ(Γ, V )) is continuous.

Proof. Observe that

‖Ipu‖L∞(T,L2
ρ(Γ,V )) =

∥∥∥∥∥

∫

Γ

ρ(y)‖
p∑

k=0

u(·, ·, yk)lk(y)‖2V dy
∥∥∥∥∥
L∞(T )

≤

∥∥∥∥∥∥

∫

Γ

ρ(y)

(
p∑

k=0

‖u(·, ·, yk)‖V lk(y)
)2

dy

∥∥∥∥∥∥
L∞(T )

. (3.3)

It follows from the orthogonality property of Lagrange interpolation functions that

‖Ipu‖L∞(T,L2
ρ(Γ,V )) ≤

∥∥∥∥∥

∫

Γ

ρ(y)

(
p∑

k=0

‖u(·, ·, yk)‖2V l2k(y)
)
dy

∥∥∥∥∥
L∞(T )

≤
(

p∑

k=0

ωk

)∥∥∥∥ max
k=0,1,···,p

‖u(·, ·, yk)‖2V
∥∥∥∥
L∞(T )

≤ C‖u‖L∞[T,C0(Γ,V )]. (3.4)
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This completes the proof. �

Lemma 3.2. For every function u ∈ L∞[T,C0(Γ, V )], the interpolation error satisfies

‖u− Ipu‖L∞[T,L2
ρ(Γ,V )] ≤ C̃ inf

v∈L∞[T,Pp(Γ)⊗V ]
‖u− v‖L∞[T,C0(Γ,V )]. (3.5)

Proof. Let us note that for all v ∈ L∞[T,Pp(Γ)⊗ V ], it holds that Ipv = v. Hence,

‖u(·, ·, t)− Ipu(·, ·, t)‖L2
ρ(Γ,V ) ≤ ‖u(·, ·, t)− v(·, ·, t)‖L2

ρ(Γ,V ) + ‖Ip(u− v)(·, ·, t)‖L2
ρ(Γ,V ), (3.6)

and the desired result follows by using Lemma 3.1. �

Now, we are ready to give the spectral convergence of the Stochastic Collocation methods

for which the proof is omitted, and one can find the proof in [3].

Theorem 3.1. Given a function u ∈ L∞[T,C0(Γ, V )] which admits an analytic extension in

the region of complex plane

Σ(Γ, τ) ≡ {z ∈ C, dist(z,Γ) ≤ τ}

for some τ > 0, it holds that

min
v∈L1[T,Pp(Γ)⊗V ]

‖u− v‖L∞[T,C0(Γ,V )]

≤ 2

̺− 1
e−plog(̺) max

z∈Σ(Γ,τ)
‖u(z)‖L∞(T,V ), (3.7)

where 1 < ̺ = τ +
√
1 + τ2.

3.2. Stochastic Galerkin methods

Following the standard gPC expansion, we assume that u(x, t, y) has a converging expansion

of the form

u(x, t, y) =

∞∑

k=0

ũk(x, t)Pk(y). (3.8)

Similar to the Stochastic Collocation methods, the orthogonal polynomials {Pk(y)}∞k=0 are

chosen according to the distribution of the random variable y. For simplicity we will discuss

in this paper the case of random variable y with uniformly distributed random variable y, for

which the corresponding polynomials are Legendre polynomials. By truncating the expansion

(3.8) with the first P + 1 terms and employing a Galerkin projection, it is straightforward to

verify that the first p+ 1 coefficients {ũk}pk=0 satisfy the following system of equations

∂ũk(x, t)

∂t
=

p∑

j=0

aj,k
∂ũk(x, t)

∂x
, j = 0, · · ·, p, (3.9)

with the vector form
∂~v(x, t)

∂t
= A

∂~v(x, t)

∂x
, (3.10)

where ~v = (ũ0, · · ·, ũp)
T and

A = (ajk), 0 ≤ j, k ≤ p,

ajk =

∫

Γ

ρ(y)c(y)Pj(y)Pk(y)dy.
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Basic properties of the coefficient matrix are given in [13]. For details of this numerical methods,

see [13]. As to the convergence property for SG methods, we can use the error estimate results

for polynomial approximation. We give the lemma in the following:

Lemma 3.3. Suppose that u ∈ Hm(I) and m ≥ 1, then, for sufficient large N, the projection

error satisfy [5, 21]

||u−ΠNu||L2(I) ≤ CIN
−m|u|Hm(I),

where |u|Hm(I) = ||∂mu||L2(I) and CI is a constant independent of N .

Using together Theorem 2.1 and Lemma 3.3, it is easy to get the following convergence result

Theorem 3.2. The error estimate of the N -term SG methods satisfy

||
(
u− uN

SG

)
(·, t, ·)||L2(Γ,V ) ≤ CΓ

√
C(T )(

√
ζN)−m,

where m is an integer index related to the regularity of the solution in the random spaces.

Remark 3.1. The error estimate in Theorem 3.2 is rather rough. A better estimation can

be done using complex analysis with the usage of Theorem 2.2. But, unlike the random el-

liptic/parabolic problems, the solutions of the random hyperbolic equations are not analytic

in general with respect to the random parameters, and the solution can not be extend to a

complex region like Στ (z) = {z ∈ C, |z| ≤ 1 + τ}, where τ has the same definition as theorem

2.2. The extension can be done only for very spacial cases, for example, problem (2.1) with

periodic boundary conditions and analytic given data. We state the complex analysis for this

spacial case in the following. One can also find similar results in [4] for random elliptic problem

and [16] for random parabolic problem.

Note that for the spacial case of initial problems with periodic solutions, the regularity results

in Section 2 still hold. The following convergence result is provided in [13]:

Lemma 3.4. For any finite time t, the error of the gPC methods behaves like

E‖u− up‖22 ≤ C(T )
∞∑

k=p+1

‖ũk‖21, (3.11)

where up =
∑p

k=0 ũkPk(y), and the norm ‖u‖1 is defined by

‖u‖21 =
∫

D

(u2 + u2
x)dx.

To prove the spectral convergence, we only need to link the decay rate of ũk as k → ∞ to

the analytic results in Section 3. Recall that u : Γ → L∞(T, V ) admits an analytic extension

u(x, t, z), z ∈ C in the region of the complex plane Σ(Γ, τ). We estimate the Fourier coefficients

in the following:

Lemma 3.5. Consider the corresponding initial problem with periodic solution of (2.3), and

assume c(z), u0 are analytic in the complex plat. Then, the Fourier coefficients of u behave as

‖ũn‖1 ≤ CΣ

2n

√
2n+ 1

2

∫ 1

−1

(
1− y2

1− |y|+ τ

)n

dy, (3.12)

where CΣ will be defined during the derivation
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Proof. We recall the Legendre polynomials

Pn(y) =
1

2nn!

dn

dy

(
(y2 − 1)n

)
, n = 0, 1, · · · ,

which satisfy ∫

Γ

Pn(y)Pm(y)dy =
2

2n+ 1
δnm.

As Lemma 3.4 was derived using normalized polynomials, we need to work with

P̃n(y) =

√
2n+ 1

2
Pn(y).

We have the error representation

E‖u− up‖22 ≤ C(T )

∞∑

n=p+1

‖ũn‖21,

with the corresponding Fourier coefficients

ũn(x, t) ≡
∫

Γ

u(x, t, y)P̃n(y)dy =

√
2n+ 1

2

(−1)n

n!2n

∫

Γ

(1− y2)n
dn

dyn
udy. (3.13)

Using the analytic continuation of the real function u to the complex domain, an application

of Cauchy’s formula gives

dn

dyn
u(x, t) =

n!(−1)n

2πi

∫

σy

u(θ, x, t)

(θ − y)n+1
dθ, (3.14)

where σy is a positively oriented closed circumference with the center at the real point y ∈ Γ,

with radius ry and such that all singularities from u are exterior to σy.

Consider the nature extension of parameter y in (2.1) from Γ to Στ (Στ is defined in Remark

3.1, and one should notice the difference between Στ and Σ(Γ, τ)),

ut = c(z)∇u,

u(x, t = 0, z) = u0(x, z).

We will show in the following the solution u is analytic in Στ . We clear this by showing that

the solution satisfies the Cauchy-Riemann conditions (see also in [16]).

Let u = uR + iuI , u0 = uR
0 + iuI

0 and c = cR + icI . Then the problem becomes

(
uR

uI

)

t

=

(
cR −cI

cI cR

)(
uR

uI

)

x

.

In fact, the problem is a scaler conservation law [11], it is easy to show that

max
z∈Στ

||u(·, t, ·)||V = max
z∈Στ

||u0||V = CΣ.
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Differentiating the equation with respect to Rez = s and Imz = w, we obtain

∂t∂su
R = ∂sc

R∇uR − ∂sc
I∇uI + cR∇∂su

R − cI∇∂su
I ,

∂t∂su
I = ∂sc

I∇uR + ∂sc
R∇uI + cR∇∂su

I + cI∇∂su
R,

∂t∂wu
R = ∂wc

R∇uR − ∂wc
I∇uI + cR∇∂wu

R − cI∇∂wu
I ,

∂t∂wu
I = ∂wc

I∇uR + ∂wc
R∇uI + cR∇∂wu

I + cI∇∂wu
R.

Then consider the functions Θ(z) = ∂su
R − ∂wu

I and Ξ(z) = ∂wu
R + ∂su

I , they satisfy

∂tΘ(z)− cR∇Θ(z) + cI∇Ξ(z) = (∂sc
R − ∂wc

I)∇uR − (∂wc
R + ∂sc

I)∇uI ,

∂tΘ(z)− cI∇Θ(z)− cR∇Ξ(z) = (∂wc
R + ∂sc

I)∇uR + (∂sc
R − ∂wc

I)∇uI .

Note that c is analytic and thus satisfies the Cauchy-Riemann conditions, then the right hand

sides of the above equations vanish. Also, the above system has zero initial conditions as u0 is

analytic, therefore, the system admits a unique solution Θ(z) = Ξ(z) = 0, and this proves the

analytic of u.

Hence, we have ∥∥∥∥
dn

dyn
u

∥∥∥∥
1

≤ n!CΣ

(ry)n
. (3.16)

To make sure that σy ∈ Σz in (3.16), we can set ry = 1 − |y|+ τ. Thus, the desired result can

be arrived by substitute (3.16) into (3.13). �

We are now ready to obtain the following convergence result which is direct consequence of

Lemma 3.4-3.5, Lemma 6.2-6.3 in [4].

Theorem 3.3. The error of gPC methods for problem (2.1)-(2.2) behaves like

(
E‖u− up‖22

) 1
2 ≤

√
CΣC(T )

√
π

(√
1− r2 +O(

1

p1/3
)

)
rp+1

√
1− r2

,

where

r ≡ 1

|ξ|+
√

ξ2 − 1
, 0 < r < 1, (3.17)

with ξ = −1− τ < −1.

4. An Illustrated Example

We consider the problem which is used in [13]:

{
ut(x, t; y) = yux(x, t; y) 0 < x < 2π t > 0,

u(x, 0; y) = cos(y) 0 < x < 2π.

The boundary conditions of the type (2.2) are given so that the exact solution is of the form

u(x, t; y) = cos(x− yt).

It can be verified that the exact solution belongs to H
(m)
y (−1, 1) for any given positive integer

m. Consequently, it is expected that exponential rate of convergence can be obtained. In Figs.

4.1 and 4.2, we plot the mean-square error against the order N for several time levels. For both

SG methods(Top) and SC methods(Bottom), the exponential rate of convergence is observed.

Also the errors are proportional to the increase of t, and this phenomenon is a severe problem

for the polynomial chaos method and stochastic collocation method.
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Fig. 4.1. Mean-square errors for SG methods against the number of projection terms.
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Fig. 4.2. Mean-square errors for SC methods against number of collocation points.

5. Conclusions

In this paper, scalar transport equations with a random wave variable is considered. We

discussed the analytic regularity results of the solutions in the random space. Using these

regularity results together with complex analysis, the spectral convergence properties of both

Stochastic Galerkin methods and Stochastic Collocation methods are obtained. These theo-

retical results confirmed the numerical observations provided in [13, 22]. In this sense, this

paper can be regarded as a theoretical complementary of the numerical papers [13, 22, 28]. We

close this paper by pointing out that although the results of this paper are established for one

dimension of the random space, the results given in Sections 3 can be easily extended to higher

dimensions in random space.
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