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Abstract

In this paper we modify the EBDF method using the NDFs as predictors instead

of BDFs. This modification, that we call ENDF, implies the local truncation error being

smaller than in the EBDF method without losing too much stability. We will also introduce

two more changes, called ENBDF and EBNDF methods. In the first one, the NDF method

is used as the first predictor and the BDF as the second predictor. In the EBNDF, the

BDF is the first predictor and the NDF is the second one. In both modifications the local

truncation error is smaller than in the EBDF. Moreover, the EBNDF method has a larger

stability region than the EBDF.

Mathematics subject classification: 65L05.

Key words: Backward differentiation formula (BDF), EBDF, Predictor, Stability, Stiff

Systems.

1. Introduction

We will consider the following initial value problem (IVP):

y′(x) = f (x, y(x)) , y (x0) = y0 (1.1)

where T = [x0, xn] is a finite interval and y: [x0, xn] → R
m and f : [x0, xn] × R

m
→ R

m are

continuous functions.

When we are working with a stiff problem, the numerical method used must be accurate

and it needs an extensive stability region too [4]. Because of the latter reason, in the recent

years many researches have been focused on developing convenient numerical methods for stiff

problems and a lot of improvements have been made on the basis of the backward differentiation

formula (BDF) introduced by Gear [6], due to its good stability properties.

One of the modifications done to the BDFs are the NDFs (Numerical Differentiation for-

mulae). It is a computationally cheap modification that consists of anticipating a difference of

order (k + 1) multiplied by a constant κγk in the BDF formula of order k. This term has a

positive effect on the local truncation error, making the NDFs more accurate than the BDFs

and not much less stable. This modification was proposed by Shampine [10] but only for orders

k = 1, 2, 3, 4, because it is inefficient for orders greater than 4.
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In [1] and [2] Cash introduces methods using superfuture points to solve stiff IVPs. These

methods are known as extended BDF (EBDF) and modified extended BDF (MEBDF). They

consist of applying the BDF predictors twice and one implicit multistep corrector. Both methods

use superfuture points to gain stability and they are A-stable up to order 4 and A(α)-stable

up to order 9. In [3] a code based on the MEBDF is described and in [8] Matrix free MEBDF

(MF-MEBDF) methods are introduced to optimize the computations of the EBDF. A different

variation of the BDFs was introduced by Fredebeul [5], the A-BDF method. In this method

the implicit and explicit BDF are used in the same formula, with a free parameter, being

A(α)-stable up to order 7.

In this paper, we follow the EBDF scheme but substituting the BDF predictors by the

NDF formulae. In the ENDF method we will use the NDFs as predictors maintaining the

last corrector of the EBDF. The result of this application will be a smaller local truncation

error and a not too much smaller stability region than in the EBDF. Next, we introduce two

modifications more, the EBNDF and ENBDF maintaining the corrector of the EBDF scheme.

In EBNDF the first predictor is the BDF and the second one the NDF. In ENBDF, the first

predictor is the NDF and the second BDF. Both of them have a smaller local truncation error

than EBDF, and in the case of EBNDF also the stability region is bigger than the one of the

EBDF.

The article is organised as follows: in Section 2 we give details about modifications intro-

duced in EBDF, such as ENDF, ENBDF and EBNDF. In Section 3 the stability analysis is

developed and we include some computational aspects as well as numerical examples of ODEs

with different stiffness ratios in Section 4.

2. Using NDFs as Predictors in the EBDF Scheme

In this Section we will start analysing the properties of the NDF and EBDF and finally we

will derive the ENDF, ENBDF and EBNDF algorithms.

2.1. NDF scheme

Since they were introduced by Gear [6], the Backward differentiation formulae have been

widely used due to their good stability properties for solving stiff problems. The BDF of order

k can be expressed as follows:

k
∑

j=1

1

j
∇

jyn+k = hfn+k. (2.1)

Developing the backward differences of expression (2.1) we get the well-known expression for

the BDF:
k
∑

j=0

α̂jyn+j = hfn+k. (2.2)

The local truncation error (LTE) of the BDF of order k is given by the following expression

LTEk = C1h
k+1y(k+1) (xn) +O

(

hk+2
)

, (2.3)
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where

γk =

k
∑

j=1

1

j
=



































1, k = 1,

3/2, k = 2,

11/6, k = 3,

25/12, k = 4,

137/60, k = 5.

(2.4)

Shampine introduces a modification to the BDFs in [10] called NDF, which consists of adding

the difference of order (k + 1) multiplied by the term κγk in the BDF formula of order k. The

expression of this new method is given by

k
∑

j=1

1

j
∇

jyn+k = hfn+k + κγk∇
k+1yn+k. (2.5)

In the same way that we have done for the BDF, an equivalent expression for NDFs can be

written as
k
∑

j=0

α̂jyn+j = hfn+k + κγk∇
k+1yn+k. (2.6)

The coefficient κ was introduced by Klopfenstein and Shampine, so that the angle of A(α)-

stability was maximized at the same time that the error was reduced. The NDFs are more

precise than the BDF but no more stable. The local truncation error of the NDF is this one:

LTEk = C2h
k+1y(k+1) (xn) +O

(

hk+2
)

. (2.7)

We will call C1 and C2 to the error constants of the LTE of BDF (2.3) and NDF (2.7)

methods respectively:

C1 =
−1/γk
k + 1

, (2.8)

C2 =
−1/γk
k + 1

− κ. (2.9)

Table 2.1: The Klopfenstein-Shampine NDFs and their efficiency and A(α)-stability relative to the

BDFs [10].

k

NDF coefficient Step ratio Stability angle Stability angle

κ percent BDF NDF

1 -0.1850 26% 90 90

2 -1/9 26% 90 90

3 -0.0823 26% 86 80

4 -0.0415 12% 73 66

Table 2.2: Values of the error constants C1, C2 of the methods BDF and NDF.

k C1 C2

1 -0.5 -0.315

2 -0.222222222 -0.111111111

3 -0.136363636 -0.054063636

4 -0.096 -0.0545
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The better accuracy of the NDFs implies that they can achieve the same accuracy as BDFs

with a bigger step size. More properties of BDF and NDF methods are shown in Table 2.1.

The values of C1, C2 for k = 1, 2, 3, 4 are in Table 2.2.

2.2. EBDF scheme

With the aim of increasing the stability of the BDF methods, Cash extended these methods

by introducing superfuture points (see [1] for more information). The method was called EBDF

(extended backward differentiation formula) and its formula is the following:

k
∑

j=0

αjyn+j = hβkfn+k + hβk+1f̄n+k+1, (2.10)

where the coefficients are adjusted in order to achieve (k + 1) order in the formula (2.10).

So the coefficients are obtained by solving the following linear system of equations and the

normalization αk = 1:

k
∑

j=0

αjj
q = q

k
∑

j=0

βjj
q−1, for q = 0, 1, · · · , k + 1.

Assuming that the solutions yn,yn+1, · · · ,yn+k−1 are available, the formula (2.10) is used as

follows:

1. Compute the first predictor ȳn+k as the solution of the conventional BDF step:

k
∑

j=0

α̂jyn+j = hfn+k , (yn+k := ȳn+k). (2.11)

2. Compute the second predictor ȳn+k+1 advancing a new step with the same BDF

formula:
k
∑

j=0

α̂jyn+j+1 = hfn+k+1 , (yn+k+1 := ȳn+k+1). (2.12)

3. Evaluate f̄n+k+1=f (xn+k+1, ȳn+k+1).

4. Insert f̄n+k+1 in (2.10) and solve for a new yn+k which will be the numerical solution

of the EBDF method.

The local truncation error of the EBDF method is given by (see [7]):

LTEk = hk+2

(

βk+1C1

(

1−
α̂k−1

α̂k

)

∂f

∂y
y(k+1) + C3y

(k+2)

)

(xn) +O
(

hk+3
)

, (2.13)

where C1 is the error constant of the local truncation error of the BDF method given by (2.8),

and C3 is the error constant of the local truncation error for the formula (2.10).

Lemma 2.1. If the formula (2.10) is of order (k + 1) and the BDF/NDF used in (2.11) and

(2.12) are of order k, then the predictor-corrector algorithm (1)− (4) is of order (k + 1).

The demonstration of this lemma can be found in reference [7].
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2.3. Scheme related to ENDF, ENBDF, EBNDF methods

2.3.1. ENDF

This method consists of applying the NDF method as the predictor in the EBDF method. Next,

we follow the same steps as in the EBDF scheme: we evaluate f̄n+k+1=f (xn+k+1, ȳn+k+1) and

we insert the term f̄n+k+1 in the expression (2.10).

First predictor: The first time we apply the predictor NDF, the value ȳn+k is obtained.

The difference between the exact value and the calculated is given by this expression:

y(xn+k)− ȳn+k = C2h
k+1y(k+1) (xn) +O

(

hk+2
)

, (2.14)

where C2 is the error constant of the method NDF given by (2.9).

Second predictor: The second time we use the predictor NDF we get the value ȳn+k+1,

and the difference between the exact and the calculated value is this:

y(xn+k+1)− ȳn+k+1 = C2

(

1−
α̂k−1

α̂k

−
κγk(k + 1)

α̂k

)

hk+1y(k+1) (xn) +O
(

hk+2
)

, (2.15)

Corrector: Eventually, if we apply the corrector (expression (2.10)), the local truncation

error is this one:

LTEk = hk+2

[

βk+1C2

(

1−
α̂k−1

α̂k

−
κγk(k + 1)

α̂k

)

∂f

∂y
y(k+1) + C3y

(k+2)

]

(xn) +O
(

hk+3
)

.

(2.16)

The first term of the principal local truncation error of the EBDF is affected by the fact of

using BDF predictors in the EBDF algorithm (hence the second term of the local truncation

error of the EBDF only depends on the corrector expression of the EBDF and this one has not

been modified). Comparing the first terms of the local truncation errors of EBDF, expression

(2.13), and ENDF, expression (2.16), we see that the latter is smaller, so we have gained

efficiency (see Table 2.3).

We will verify for k = 2 that the local truncation error of the method after applying the

second NDF is the one proposed by expression (2.15). We will apply the first predictor NDF

given by (2.6) in order to calculate the value of ȳn+2:

α̂0yn + α̂1yn+1 + α̂2ȳn+2 = hf̄n+2 + κγ2∇
3ȳn+2.

According to (2.7) the difference between the exact solution and the approximated is:

y(xn+2)− ȳn+2 = C2h
3y′′′ (xn) +O

(

h4
)

, where C2 = −2/9− κ. (2.17)

Table 2.3: Constant Ak of the local truncation error of EBDF, ENDF, ENBDF, EBNDF.

k Ak of EBDF Ak of ENDF Ak of ENBDF Ak of EBNDF

1 -1 -0.74655 -0.815 -1

2 -0.518518519 -0.296296296 -0.37037037 -0.481481481

3 -0.359504132 -0.160329154 -0.224831405 -0.322095041

4 -0.28032 -0.17044875 -0.20064 -0.25874
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Next, we apply (2.6) again for the second predictor NDF to obtain the value ȳn+3:

α̂0yn+1 + α̂1ȳn+2 + α̂2ȳn+3 = hf̄n+3 + κγ2∇
3ȳn+3.

Developing ∇3ȳn+3, we can workout the value of ȳn+3 from the last equation. This gives that

ȳn+3 =
1

α̂2

(

− α̂0yn+1 − α̂1ȳn+2 + hf̄n+3 + κγ2 (ȳn+3 − 3ȳn+2 + 3yn+1 − yn)

)

.

Moreover, the expression of the local truncation error after the second predictor is given by

y(xn+3)− ȳn+3

=y(xn+3)−
1

α̂2

(

− α̂0yn+1 − α̂1ȳn+2 + hf̄n+3 + κγ2 (ȳn+3 − 3ȳn+2 + 3yn+1 − yn)

)

. (2.18)

If we use the expression (2.17) to work out ȳn+2 we have:

ȳn+2 = y(xn+2)− C2h
3y′′′ (xn) +O

(

h4
)

. (2.19)

By substituting (2.19) into (2.18), we obtain a new expression of the local truncation error after

applying the two predictors:

y(xn+3)−
1

α̂2

(

− α̂0yn+1 − α̂1

(

y(xn+2)− C2h
3y

′′′

(xn)
)

+ hf̄n+3

)

−
1

α̂2

(

κγ2

(

ȳn+3 − 3
(

y(xn+2)− C2h
3y

′′′

(xn)
)

+ 3yn+1 − yn

)

)

+O
(

h4
)

.

By regrouping terms in an appropriate way we have

y(xn+3)−
1

α̂2

(

− α̂0yn+1 − α̂1y(xn+2) + hf̄n+3 + κγ2 (ȳn+3 − 3y(xn+2) + 3yn+1 − yn)

)

−
α̂1

α̂2
C2h

3y′′′(xn)− 3κγ2
C2

α̂2
h3y′′′(xn) +O

(

h4
)

. (2.20)

The first two terms in (2.20) are the expression of the local truncation error using the NDF

method and from (2.7) we conclude that:

y(xn+3)−
1

α̂2

(

− α̂0yn+1 − α̂1y(xn+2) + hf̄n+3 + κγ2 (ȳn+3 − 3y(xn+2) + 3yn+1 − yn)

)

=C2h
3y′′′(xn) +O

(

h4
)

. (2.21)

By substituting (2.21) into (2.20), we finally obtain the local truncation error after applying

the two NDF predictors:

y(xn+3)− ȳn+3 =C2h
3y′′′(xn)−

α̂1

α̂2
C2h

3y′′′(xn)− 3κγ2
C2

α̂2
h3y′′′(xn) +O

(

h4
)

=C2

(

1−
α̂1

α̂2
−

3κγ2
α̂2

)

h3y′′′(xn) +O(h4).
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2.3.2. ENBDF, EBNDF

In the previous Section we have used twice NDF as the predictor of the EBDF algorithm. But

the option of using NDF as the predictor in the EBDF is not unique. We can also apply NDF

as the first predictor and BDF as the second one or the BDF as the first predictor and NDF as

the second one. Hence, the options available for the predictors are the following: BDF-BDF,

NDF-NDF, NDF-BDF, BDF-NDF. In all the cases the local truncation error can be expressed

in this way:

hk+2

(

βk+1Ak

∂f

∂y
y(k+1) + C3y

(k+2)

)

(xn) +O
(

hk+3
)

. (2.22)

Where the value of the constant Ak is different depending on the predictors:

• Case EBDF (BDF-BDF-EBDF):

Ak = C1 (−α̂k−1/α̂k + 1) ; (2.23)

• Case ENDF (NDF-NDF-EBDF):

Ak = C2

(

− α̂k−1/α̂k − κ(k + 1)γk/α̂k + 1
)

; (2.24)

• Case ENBDF (NDF-BDF-EBDF):

Ak = (−C2α̂k−1/α̂k + C1) ; (2.25)

• Case EBNDF (BDF-NDF-EBDF):

Ak = (−C1α̂k−1/α̂k − C1κ(k + 1)γk1/α̂k + C2) . (2.26)

We can sum up all the cases as follows. The general expression of Ak is this one:

Ak = −Ci (α̂k−1/α̂k + κ(k + 1)γk1/α̂k) + Cj . (2.27)

• When the first predictor is the BDF: Ci=C1;

• When the first predictor is the NDF: Ci=C2;

• When the second predictor is the BDF: Cj=C1, κ=0;

• When the second predictor is the NDF: Cj=C2 and the values of κ are in Table 2.1.

3. Stability Analysis

3.1. Stability function of ENDF

The expression of the method NDF is given by (2.6):

k
∑

j=0

α̂jyn+j = hfn+k + κγk∇
k+1yn+k.
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Expression (2.6) can be simplified by substituting Mk = κγk. Therefore, the expression of NDF

methods which we are going to work with is of the form

k
∑

j=0

α̂jyn+j = hfn+k +Mk∇
k+1yn+k. (3.1)

The region of absolute stability of the overall method ENDF is found using Schur’s theorem

(see [9]). To do this, we will apply the method ENDF to the test equation y′ = λy. That is

to say, hfj = hλyj introduced in expression (2.10) and expression (3.1) is used as the first and

second predictor. We will set yn−1=1,. . . ,yn+k−1=rk and the algorithm will be computed in

order to obtain yn+k=rk+1. As a result, the characteristic equation is achieved, being ĥ = hλ:

Aĥ3 +Bĥ2 + Cĥ+D = 0, (3.2)

where

A =− βkr
k+1, B = 2 (α̂k −Mk) + T − βk+1S, (3.3a)

C =− βk (α̂k −Mk)
2 rk+1

− 2 (α̂k −Mk)T + (α̂k −Mk)βk+1S

− βk+1 (−α̂k−1 − (k + 1)Mk)R, (3.3b)

D =(α̂k −Mk)
2 T. (3.3c)

In (3.3), some parameters are given below:

R = (−1)k+1

(

k + 1

0

)

Mk +

k
∑

j=1

rj
(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

Mk

)

, (3.4a)

S = (−1)krMk −

k−1
∑

j=1

rj+1

(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

Mk

)

, (3.4b)

T =

k
∑

j=0

αjr
j+1. (3.4c)

−2 −1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3 EBDF

ENDF

k=1

k=2

k=3

k=4

Fig. 3.1. Regions of stability of the methods ENDF and EBDF. The region of stability is the outside

of the plotted curve.
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Fig. 3.1 shows the stability regions of the ENDF method. We will include the calculations done

for the case k = 2:

2
∑

j=0

α̂jyn+j = hf̄n+2 +Mk∇
3ȳn+2

⇒ α̂0yn + α̂1yn+1 + α̂2ȳn+2 = hf̄n+2 +Mk∇
3ȳn+2. (3.5)

Developing ∇3ȳn+2 and applying the method given by (3.5) to the test equation, we can

obtain

ȳn+2 =
yn+1 (−α̂1 − 3Mk) + yn (−α̂0 + 3Mk)−Mkyn−1

α̂2 −Mk − ĥ
. (3.6)

NDF is used again as the second predictor to get ȳn+3:

ȳn+3 =
ȳn+2 (−α̂1 − 3Mk) + yn+1 (−α̂0 + 3Mk)−Mkyn

α̂2 −Mk − ĥ
. (3.7)

Substituting (3.6) into (3.7) we have ȳn+3:

ȳn+3 =

(

yn+1 (−α̂1 − 3Mk) + yn (−α̂0 + 3Mk)−Mkyn−1

)

(−α̂1 − 3Mk)
(

− α̂2 −Mk − ĥ
)2

+

(

yn+1 (−α̂0 + 3Mk)−Mkyn
)(

− α̂2 −Mk − ĥ
)

(

− α̂2 −Mk − ĥ
)2 .

The derivative of ȳn+3 is calculated:

f (ȳn+3) =λ

(

(

yn+1(−α̂1 − 3Mk) + yn(−α̂0 + 3Mk)−Mkyn−1

)

(−α̂1 − 3Mk)
(

− α̂2 −Mk − ĥ
)2

+

(

yn+1

(

− α̂0 + 3Mk

)

−Mkyn
)(

− α̂2 −Mk − ĥ
)

(

− α̂2 −Mk − ĥ
)2

)

. (3.8)

Finally yn+2 is obtained using expression (2.10):

α0yn + α1yn+1 + α2yn+2 − ĥβkyn+2

− ĥβk+1

(

(

yn+1(−α̂0 + 3Mk)−Mkyn
)

(−α̂2 −Mk − ĥ)
(

− α̂2 −Mk − ĥ
)2

+

(

yn+1(−α̂1 − 3Mk) + yn(−α̂0 + 3Mk)−Mkyn−1

)

(−α̂1 − 3Mk)
(

− α̂2 −Mk − ĥ
)2

)

= 0.

Substituting yn+j = rj the following equation is obtained:

(

α0r + α1r
2 + α2r

3
− ĥβkr

3
)(

− α̂2 −Mk − ĥ
)2

+
(

r2(−α̂0 + 3Mk)−Mkr
)(

α̂2 −Mk − ĥ
)

− ĥβk+1

(

(

r2(−α̂1 − 3Mk) + r(−α̂0 + 3Mk)−Mk

)

(−α̂1 − 3Mk)
)

= 0.
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Grouping the coefficients of the polynomial in ĥn gives

ĥ
3 : A = −βkr

3
,

ĥ
2 : B = 2 (α̂2 −Mk)βkr

3 + T − βk+1S,

ĥ : C = −βk (α̂2 −Mk)
2
r
3
− 2 (α̂2 −Mk)T + (α̂2 −Mk) βk+1S − βk+1 (−α̂1 − 3Mk)R,

ĥ
0 : D = (α̂2 −Mk)

2
T,

where:

R = r2 (−α̂1 − 3Mk) + r (−α̂0 + 3Mk)−Mk,

S = rMk − r2 (−α̂0 + 3Mk) , T =

2
∑

j=0

αjr
j+1.

The stability angles of the method ENDF are given in Table 3.1.

Table 3.1: A(α)-stability of the methods EBDF, EBNDF, ENDF, ENBDF.

k p (order) A(α) EBDF A(α) EBNDF A(α) ENDF A(α) ENBDF

1 2 90 90 90 90

2 3 90 90 90 90

3 4 90 90 90 90

4 5 87.61 87.68 87.54 87.49

3.2. Stability function of ENBDF

We will apply the ENBDFmethod to the test equation y′ = λy. We will substitute hfj = ĥyj
in expression (2.10). The NDF will be used as the first predictor and the BDF as the second

one, where ĥ = hλ. Setting yn−1=1, · · · , yn+k−1=rk and computing the method we will reach

the solution yn+k=rk+1 as well as the characteristic equation:

Aĥ3 +Bĥ2 + Cĥ+D = 0. (3.9)

Grouping the coefficients of the polynomial in ĥn gives

A =− βkr
k+1, (3.10a)

B =(2α̂k −Mk) βkr
k+1 + T − βk+1S, (3.10b)

C =− βkα̂k (α̂k −Mk) r
k+1

− (2α̂k −Mk)T

+ (α̂k −Mk)βk+1S + βk+1α̂k−1R, (3.10c)

D =α̂k (α̂k −Mk)T, (3.10d)

where

R = (−1)k+1

(

k + 1

0

)

Mk +

k
∑

j=1

rj
(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

Mk

)

, (3.11a)

S =
k−2
∑

j=0

α̂jr
j+2, T =

k
∑

j=0

αjr
j+1. (3.11b)
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We include the calculations for ENBDF2: ȳn+2 is predicted using NDF, expression (3.1):

ȳn+2 =
yn+1 (−α̂1 − 3Mk) + yn (−α̂0 + 3Mk)−Mkyn−1

α̂2 −Mk − ĥ
; (3.12)

and ȳn+3 is predicted using NDF for expression (2.2):

α̂0yn+1 + α̂1ȳn+2 + α̂2ȳn+3 = hf̄n+3 ⇒ ȳn+3 =
−α̂1ȳn+2 − α̂0yn+1

α̂2 − ĥ
. (3.13)

By substituting the expression (3.12) of ȳn+2 in (3.13) we have:

ȳn+3 =
−α̂1

(

yn+1(−α̂1 − 3Mk) + yn(−α̂0 + 3Mk)−Mkyn−1

)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

−
α̂0yn+1

(

α̂2 −Mk − ĥ
)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
) .

We calculate the derivative of ȳn+3:

f (ȳn+3) =λ

(

−α̂0yn+1

(

α̂2 −Mk − ĥ
)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

−
α̂1

(

yn+1(−α̂1 − 3Mk) + yn(−α̂0 + 3Mk)−Mkyn−1

)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

)

.

Finally we calculate yn+2 using expression (2.10):

α0yn + α1yn+1 + α2yn+2 − hβkfn+2 − ĥβk+1

(

−
α̂0yn+1

(

α̂2 −Mk − ĥ
)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

−
α̂1

(

yn+1(−α̂1 − 3Mk) + yn(−α̂0 + 3Mk)−Mkyn−1

)

(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

)

= 0. (3.14)

By replacing yn−1 = 1, yn = r, yn+1 = r2, yn+2 = r3 in (3.14) we obtain the following:
(

α0r + α1r
2 + α2r

3
− ĥβkr

3
)(

α̂2 −Mk − ĥ
)(

α̂2 − ĥ
)

− ĥβk+1

(

−α̂1

(

r2(−α̂1 − 3Mk) + r(−α̂0 + 3Mk)−Mk

)

− α̂0r
2
(

α̂2 −Mk − ĥ
)

)

= 0.

The coefficients of the polynomial are given by

ĥ3 : A = −βkr
3,

ĥ2 : B = (2α̂2 −Mk)βkr
3 + T − βk+1S,

ĥ : C = −βkα̂2 (α̂2 −Mk) r
3
− (2α̂2 −Mk)T + (α̂2 −Mk)βk+1S + βk+1α̂1R,

ĥ0 : D = α̂2 (α̂2 −Mk)T,

where

R = r2 (−α̂1 − 3Mk) + r (−α̂0 + 3Mk)−Mk,

S = r2α̂0, T =
2
∑

j=0

αjr
j+1.

The stability angles of the method are also given in Table 3.1.
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3.3. Stability function of EBNDF

Proceeding in the same way as before, the characteristic polynomial is

Aĥ3 +Bĥ2 + Cĥ+D = 0. (3.15)

Grouping the coefficients of the polynomial in ĥn gives

A = −βkr
k, B = (2α̂k −Mk)βkr

k + T − βk+1S, (3.16a)

C = −βkα̂k (α̂k −Mk) r
k
− (2α̂k −Mk)T

+ α̂kβk+1S + βk+1

(

− α̂k−1 − (k + 1)Mk

)

R, (3.16b)

D = α̂k (α̂k −Mk)T, (3.16c)

where

R =

k−1
∑

j=0

α̂jr
j , T =

k
∑

j=0

αjr
j , (3.17a)

S = (−1)kMk −

k−1
∑

j=1

rj
(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

Mk

)

. (3.17b)

3.4. Conclusions about the stability regions

As we can see in Table 3.1, the A(α)-stability angles of EBDF and EBNDF are larger than

the angles corresponding to ENDF and ENBDF, respectively. So the stability properties are

better whenever we apply the BDF as the first predictor.

The A(α)-stability angles of the EBNDF are bigger than the angles of the EBDF, and the

A(α)-stability angles of the ENDF are bigger than the angles of ENBDF. We can conclude that

after using the BDF as the first predictor, it is better to use the NDF as the second predictor.

Taking these considerations into account, the EBNDF method has a larger stability region

than the EBDF. In Section 2 we have seen that the local truncation error of the EBNDF is

smaller than the one of the EBDF. So EBNDF is better than EBDF in both aspects, stability

and accuracy.

4. Numerical Results

4.1. Computational aspects

The methods BDF and NDF used as predictors can be written using backward differences

(expressions (2.1) and (2.5)). We will write the corrector of the EBDF method (expression

(2.10)) using backward differences too. In this way we can use the same scheme during the

programming. Expression (2.10) can be written as follows using backward differences:

k
∑

j=0

αjyn+j = hβkfn+k + hβk+1f̄n+k+1

⇒

k
∑

j=1

mk,j∇
jyn+k = hβkfn+k + hβk+1f̄n+k+1, (4.1)
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where

M = (mk,j) =























1 0 0 0

18
23

5
23 0 0

132
197

48
197

17
197 0

1500
2501

606
2501

284
2501

111
2501























. (4.2)

The coefficients corresponding to k are in the k-th row of the matrix M .

An alternative way to write the left hand side of the expressions (2.1) and (2.5), expressions

corresponding to BDFs and NDFs, is introduced in [10] and the following is the expression used

for the predictors:

k
∑

j=1

1

j
∇

jyn+k = γk

(

yn+k − y
(0)
n+k

)

+
k
∑

j=1

γj∇
jyn+k−1, (4.3)

where

γj =

j
∑

l=1

1

l
, (4.4a)

y
(0)
n+k =

k
∑

j=0

∇
jyn+k−1 = ∇

0yn+k−1 +∇yn+k−1 + · · ·+∇
kyn+k−1, (4.4b)

yn+k − y
(0)
n+k = ∇

k+1yn+k. (4.4c)

The identity (4.3) shows that Eqs. (2.1) and (2.5) are equivalent to

(1− κ) γk

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γj∇
jyn+k−1 = hfn+k, (4.5)

where in the case of the BDFs κ = 0 and the values of κ are in Table 2.1 for the NDFs. We

have evaluated the implicit formula (4.5) using the Newton method, and the correction to the

current iterate y
(i+1)
n+k = y

(i)
n+k +∆(i) is obtained by solving:

(

I −
h

(1− κ) γk
J

)

∆(i)

=
h

(1− κ) γk
f
(

xn+k, y
(i)
n+k

)

−
1

(1− κ) γk

k
∑

j=1

γj∇
jyn+k−1 −

(

y
(i)
n+k − y

(0)
n+k

)

, (4.6)

where J is the Jacobian of f(x, y). We have used the previous idea to develop and alternative

formula of the left hand side of (4.1) and we have obtained the next expression for the corrector

of the EBDF:

k
∑

j=1

mk,j∇
jyn+k = γ̃k,k

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γ̃k,j∇
jyn+k−1 (4.7)
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where:

(γ̃k,j) =

(

j
∑

l=1

mk,l

)

=























1 0 0 0

18
23 1 0 0

132
197

180
197 1 0

1500
2501

2106
2501

2390
2501 1























. (4.8)

Taking into account expressions (4.7) and (4.8), expression (4.1) can be written as

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γ̃k,j
γ̃k,k

∇
jyn+k−1 = h

βk

γ̃k,k
fn+k + h

βk+1

γ̃k,k
f̄n+k+1. (4.9)

We will compute yn+k as the solution of the implicit formula (4.9) using Newton’s method.

The correction of the current iterate y
(i+1)
n+k = y

(i)
n+k +∆(i), is obtained by solving the following

equation

(

I − h
βk

γ̃k,k
J

)

∆(i) = h
βk

γ̃k,k
f
(

xn+k, y
(i)
n+k

)

+ h
βk+1

γ̃k,k
f̄n+k+1

−

k
∑

j=1

γ̃k,j
γ̃k,k

∇
jyn+k−1 −

(

y
(i)
n+k − y

(0)
n+k

)

, (4.10)

where J is the Jacobian of f(x, y).

4.2. Numerical results

In this section we show some numerical results as well as we make a comparison between

the results obtained using the methods EBDF, ENDF, ENBDF, EBNDF.

Example 4.1. Consider the following stiff system as considered by Cash in [1]:

{

y′1 = −y1 − 15y2 + 15e−x,

y′2 = 15y1 − y2 − 15e−x,

with initial value y(0) = (1, 1)T . Its exact solution is this one: y1(x) = y2(x) = e−x.

The eigenvalues of the Jacobian matrix are −1± 15i, so they lie close to the imaginary axis.

First of all, we have compared the 3-step ENDF (k = 3) scheme and the 4-step NDF (k = 4)

scheme, both of order 4, in order to confirm the superior stability performance of the ENDF

in relation to the NDF. We have taken 100 steps in both cases and it can be seen in Table 4.1

that the 3-step ENDF remains stable while the 4-step NDF scheme becomes unstable.

In Table 4.2 we tabulate the error results when the system is integrated using four different

algorithms. We can see as expected that better accuracy is obtained by EBNDF, ENBDF

and ENDF than by the EBDF. We have taken 500 steps and k = 4 to integrate Example 4.1.

% EBNDF, % ENBDF and % ENDF are the error percentages of EBNDF, ENBDF, ENDF

respectively in relation to the error of EBDF.
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Table 4.1: Results for integration of Example 4.1 using 4-step NDF and 3-step ENDF.

x yi Exact solution Error in 4-step NDF Error in 3-step ENDF

5
y1

y2

0.673794699908547e−2

0.673794699908547e−2

0.370441483455641e−1

0.166672447133115

0.188662337274360e−6

0.214971188146514e−6

10
y1

y2

0.453999297624848e−4

0.453999297624848e−4

0.115006674043339e+2

0.701019886357578

0.720924919432174e−9

0.732274686539498e−9

20
y1

y2

0.206115362243856e−8

0.206115362243856e−8

0.507771717169461e+5

0.132236107126323e+5

0.325519853141565e−13

0.335357982679398e−13

Table 4.2: Results for integration of Example 4.1.

Error in Error in % Error in % Error in %

x yi Exact solution EBDF EBNDF EBNDF ENBDF ENBDF ENDF ENDF

5
y1

y2

0.673794699908547e−2

0.673794699908547e−2

0.39e−5

0.17e−5

0.34e−5

0.13e−5

87.1

76.0

0.32e−5

0.16e−5

82.8

91.4

0.26e−5

0.11e−5

67.2

65.1

10
y1

y2

0.453999297624848e−4

0.453999297624848e−4

0.27e−7

0.33e−7

0.24e−7

0.26e−7

89.2

80.4

0.22e−7

0.27e−7

79.3

82.8

0.18e−7

0.20e−7

65.9

61.8

20
y1

y2

0.206115362243856e−8

0.206115362243856e−8

0.97e−12

0.42e−11

0.59e−12

0.35e−11

61.5

82.7

0.69e−12

0.32e−11

71.9

76.3

0.37e−12

0.25e−11

38.6

58.2

Example 4.2. Consider the system of differential equations:














y′1 = −20y1 − 0.25y2 + 19.75y3,

y′2 = 20y1 − 20.25y2 + 0.25y3,

y′3 = 20y1 − 19.75y2 − 0.25y3,

with initial value y(0) = (1, 0,−1)T . The exact solution is

y1(x) =
1

2

(

e−0.5x + e−20x (cos 20x+ sin 20x)
)

,

y2(x) =
1

2

(

e−0.5x
− e−20x (cos 20x− sin 20x)

)

,

y3(x) = −
1

2

(

e−0.5x + e−20x (cos 20x− sin 20x)
)

.

The system has been integrated by EBDF, EBNDF, ENBDF and ENDF and the results are

tabulated in Table 4.3. We have taken 50 steps and k = 3 to integrate Example 4.2 and we can

see that results obtained by the last three methods are superior to that obtained by the EBDF.

Example 4.3. We consider another stiff system as considered by Hosseini and Hojjati in [8]:














y′1 = −0.1y1 − 49.9y2,

y′2 = −50y2,

y′3 = 70y2 − 120y3,

with initial value y(0) = (2, 1, 2)T . The stiffness ratio of this problem is 1200 and the exact

solution is

y1(x) = e−50x + e−0.1x, y2(x) = e−50x, y3(x) = e−50x + e−120x.

In Table 4.4 we list the results of the computed solutions. We have taken 50 steps and k = 4

to integrate Example 4.3. Again, errors obtained by EBNDF, ENBDF and ENDF are smaller

than the ones obtained by the EBDF as implied by expressions (2.23)-(2.26).
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Table 4.3: Results for integration of Example 4.2.

x yi Exact solution Error Error % Error % Error %

in EBDF in EBNDF EBNDF in ENBDF ENBDF in ENDF ENDF

5

y1

y2

y3

0.303265331217737

0.303265330376617

−0.303265329336016

0.38e−3

0.14e−2

0.91e−3

0.25e−3

0.12e−2

0.76e−3

65.9

86.7

83.6

0.12e−3

0.11e−4

0.62e−3

30.9

77.1

68.8

0.47e−4

0.85e−3

0.42e−3

12.3

59.7

46.8

10

y1

y2

y3

0.410424993119494e−1

0.410424993119494e−1

−0.410424993119494e−1

0.36e−4

0.36e−4

0.36e−4

0.34e−4

0.34e−4

0.34e−4

92.1

92.1

92.1

0.33e−4

0.33e−4

0.33e−4

91.4

91.4

91.4

0.30e−4

0.30e−4

0.30e−4

82

82

82

20

y1

y2

y3

0.336897349954273e−2

0.336897349954273e−2

−0.336897349954273e−2

0.31e−5

0.31e−5

0.31e−5

0.29e−5

0.29e−5

0.29e−5

92.2

92.2

92.2

0.28e−5

0.28e−5

0.28e−5

91.2

91.2

91.2

0.25e−5

0.25e−5

0.25e−5

81.9

81.9

81.9

Table 4.4: Results for integration of Example 4.3.

x yi Exact solution Error Error % Error % Error %

in EBDF in EBNDF EBNDF in ENBDF ENBDF in ENDF ENDF

5

y1

y2

y3

0.996787780748254

0.673794699908547e−2

0.674409121143880e−2

0.26e−2

0.26e−2

0.23e−2

0.24e−2

0.24e−2

0.19e−2

92.9

92.9

84.5

0.24e−2

0.24e−2

0.20e−2

92.1

92.1

88.0

0.22e−2

0.22e−2

0.15e−2

83.1

83.1

67.5

10

y1

y2

y3

0.951229424514602

0.138879438649640e−10

0.138879438649640e−10

0.87e−8

0.23e−9

0.61e−9

0.80e−8

0.18e−9

0.48e−9

91.2

79.8

77.8

0.79e−8

0.15e−9

0.54e−9

89.9

64.4

87.6

0.70e−8

0.10e−9

0.38e−9

79.7

44.5

61.1

20

y1

y2

y3

0.904837418035960

0.192874984796392e−21

0.192874984796392e−21

0.81e−8

0.56e−18

0.15e−17

0.74e−8

0.38e−18

0.95e−18

91.5

68.1

63.3

0.73e−8

0.20e−18

0.12e−17

90.6

35.2

76.8

0.65e−8

0.17e−18

0.48e−18

80.7

30.3

32.1
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