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Abstract

In this work, a new numerical scheme is proposed for thermal/isothermal incompressible

viscous flows based on operator splitting. Unique solvability and stability analysis are

presented. Some numerical result are given, which show that the proposed scheme is

highly efficient for the thermal/isothermal incompressible viscous flows.
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1. Introduction

For the time-dependent thermal and isothermal incompressible viscous flow governed by the

Boussinesq and the Navier-Stokes equations, the numerical approximation requires the deter-

mination of the fluid’s velocity, pressure and temperature. A direct approximation technique

requires the solution of a very large nonlinear system of equations at each time step. The

fractional step θ-method, developed by Glowinski in [1], is an appealing numerical approxima-

tion technique [2–4]. It updates the velocity/pressure and temperature using several sub-steps,

which leads to decoupling the difficulties associated with the non-linearities and incompress-

ibility condition, thereby reducing the size of the algebraic systems at each sub-step.

In the last decades, a number of numerical methods have been proposed for the numerical

simulation of thermal/isothermal incompressible viscous flows. In [5, 6], the numerical simula-

tion is performed in the stream function-vorticity formulation. Hortmann et al. [7] considers

the same problem, but solves it with finite volumes in primitive variables for the stationary

case. Le Qurin [8] provided accurate transient solutions at high Rayleigh number by using

pseudo-spectral discretization with Chebyshev polynomials. In [9], numerical schemes for time-

dependent incompressible viscous fluid flow, thermally coupled under the Boussinesq approx-

imation, are presented. The schemes combine an operator splitting in the time discretization

and linear finite elements in the space discretization.

In this paper, a new numerical scheme is proposed, which combines an θ scheme in time

discretization and linear finite elements in the space discretization. The unique solvability and

stability analysis of the proposed scheme are presented. Numerical experiments show that the

scheme is efficient for simulating of thermal/isothermal incompressible viscous flows.

The remainder of this paper is organized as follows: in the next section, the mathematical

model and some basic notation are introduced. In Section 3, we describe the fractional step

θ-time stepping scheme which consists of three steps in each interval of time and a detailed

description of the numerical solution of the subproblems is present. In Section 4, the unique
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solvability is presented. In Section 5, the proof of stability of the fractional step θ scheme is

given. In Section 6, some numerical result are given to illustrate the theoretical results. Some

concluding remarks are given in the final section.

2. The Mathematical Model

Under the well-known Boussinesq approximation, the time-dependent flow is governed by

the non-dimensional equations



























∂u

∂t
− ν △ u+ (u · ▽)u+ ▽p = λgT,

▽ · u = 0,

∂T

∂t
− ξ∆T + (u · ▽)T = 0,

(2.1)

where x ∈ Ω ⊂ Rn (n=2, 3), Ω is a bounded region in Rn with a sufficiently regular boundary

∂Ω. The unknowns are the vector function u (velocity), the scalar function p (pressure) and the

scalar function T (temperature). The dimensionless parameters Re,Ra, Pr are the Reynolds,

Rayleigh and Prandtl number, respectively. g is the gravity vector g = (0, 1), ν = 1/Re is the

viscosity, and we also define λ = (Ra)/(PrRe2), ξ = 1/(RePr).

For the sake of completeness, Eqs. (2.1) should be supplemented with appropriate initial

and boundary condition:



























u(x, 0) = u0(x), x ∈ Ω (∇ · u0 = 0),

T (x, 0) = T0(x), x ∈ Ω,

u = 0, on∂Ω,

T = T0, on∂Ω,

(2.2)

Remark 2.1. It follows from [10] that

(1) The coupling between the first and the third equation in (2.1) involving Re corresponding

to mixed convection. For natural convection, Re = 1 is taken.

(2) For the Navier-Stokes equations, there is no coupling with the thermal energy equation,

and the right hand side of the first formula in (2.1) involves a concentration of external

forces f independent of T . Consequently, it is independent of parameters Ra, Pr and Re.

Next, we will introduce some notations and results which will be frequently used in this

paper. Let (·, ·), ‖ · ‖ denote, the inner product and norm on L2(Ω) or L2(Ω)n, respectively.

The spaces H1
0 (Ω) and H

1
0 (Ω)

n are equipped with their usual norm:

‖u‖21 =
∫

Ω

|∇u(x)|2dx.

The norm in Hs(Ω) will be denoted by ‖ · ‖s. We also use 〈·, ·〉 to denote the duality between

H−s(Ω) and Hs
0(Ω) for all s > 0.
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In addition, we also introduce the following Hilbert spaces and notations:

X = H1
0 (Ω)

2, W = H1(Ω), W0 = H1
0 (Ω), M = L2

0(Ω),

a(u,v) = ν(∇u,∇v), b(ϕ,v) = (ϕ, divv), d(T, ψ) = ξ(∇T,∇ψ),
V =

{

v ∈ X ; b(ϕ, v) = 0, ∀ϕ ∈M
}

,

c(u,w,v) =

∫

Ω

(u · ∇)w · vdx, c̄(u, T, ψ) =
∫

Ω

(u · ∇)T · ψdx.

For the usual Bochner spaces of the time dependent functions with values in some Banach space

X, we use the notations

Lp(0, T ;X) =

{

u
∣

∣

∣
u : (0, T ) → X,measure;

∫ T

0

‖u(τ)‖pXdτ < +∞
}

,

with the standard modification for p = ∞. Throughout the paper we use C to denote a generic

positive constant whose value may change from place to place.

To simplify our presentation, we will assume

[A1 ] The vector function f is sufficiently smooth;

[A2 ] Assume ∂Ω ∈ Ck,α(k ≥ 0, α > 0). Then, there exists an extension of T0 (denoting by

T0) belonging to Ck,α
0 (R2) for T0 ∈ Ck,α(∂Ω), satisfying

‖T0‖k,q ≤ ε, k ≥ 0, 1 ≤ q ≤ ∞, (2.3)

where ε is a sufficiently small positive constant.

In this notation, the weak form of the problem (2.1) can be defined as follows [11].

Definition 2.1. Find (u, p, T ) ∈ L2(0, t1;X)
⋂

L2(0, t1, V ) × L2(0, t1;M) × L2(0, t1;W ), sat-

isfying T |∂Ω = T0, such that















(ut,v) + a(u,v) + c(u,u,v)b(p, v) = λ(gT,v), ∀v ∈ X,

b(ϕ,u) = 0, ∀ϕ ∈M,

(Tt, ψ) + d(T, ψ) + c(u, T, ψ) = 0, ∀ψ ∈W0,

u(x, 0) = u0(x) T (x, 0) = T0(x), x ∈ Ω.

(2.4)

Using properly an operator splitting method for the time discretization, we can decouple those

difficulties associated with the nonlinearity and the incompressibility condition.

3. Operator Splitting and Steady Subproblems

Fractional step (or splitting) methods can be the non-stationary thermal convection prob-

lems in many different ways. We will use the version advocated in Rannacher [12].

3.1. An operator splitting process

Let θb = 1−2θ,m = n+1−θ and β = 1−α. Assuming θ ∈ (0, 1/2) and α ∈ (0, 1). We divide

the time interval [tn, tn+1] of the length ∆t into three subintervals [tn, tn+θ], [tn+θ, tn+1−θ],

[tn+1−θ, tn+1] of lengths θ∆t, (1−2θ)∆t and θ∆t, respectively. Using this partition, the splitting

form may be described as follows.
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First step. Find un+θ, pn+θ, T n+θ such that


















un+θ − un

θ∆t
− αν∆un+θ +∇pn+θ = βν∆un − (un · ∇)un + λgT n,

∇ · un+θ = 0,

un+θ
∣

∣

∂Ω
= 0,

(3.1a)











T n+θ − T n

θ∆t
− αξ∆T n+θ + (un+θ · ∇)T n+θ = βξ△T n,

T n+θ
∣

∣

∂Ω
= T n+θ

0 .

(3.1b)

Second step. Find um, Tm such that










um − un+θ

θb∆t
− βν△um + (um · ∇)um − λgTm = αν△un+θ −∇pn+θ,

um
∣

∣

∂Ω
= 0,

(3.2a)











Tm − T n+θ

θb∆t
− βξ△Tm = αξ△T n+θ − (un+θ · ∇)T n+θ,

T n+1−θ
∣

∣

∂Ω
= T n+1−θ

0 .

(3.2b)

Third step. Find un+1, pn+1, T n+1 such that






















un+1 − um

θ∆t
− αν∆un+1 +∇pn+1 = βν∆um − (um · ∇)um + λgTm,

∇ · un+1 = 0,

un+1
∣

∣

∂Ω
= 0,

(3.3a)











T n+1 − Tm

θ∆t
− αξ∆T n+1 + (un+1 · ∇)T n+1 = βξ△Tm,

T n+θ
∣

∣

∂Ω
= T n+θ

0 ,

(3.3b)

where un = u(tn,x), p
n = p(tn,x), T

n = T (tn,x), fn = f(tn,x). We observe that the nonlinear-

ity and the incompressibility in the original equations have been decoupled by using θ−scheme.

The choice of α and β is given by

α =
1− 2θ

1− θ
, β =

θ

1− θ
.

With such a choice many computer subprograms are common to both the linear and nonlinear

subproblems, saving therefore quite a substantial amount of core memory. In addition, nu-

merical experiment show that θ = 1 − 1/
√
2 seems to produce the best result, even when the

Reynolds number is large [13]. Denoting the corresponding right-hand-sides by f and f , at each

time step. Then, the first and third steps of the θ−scheme consist, of solving the following

problem:

α1u− β1∆u+∇p = f , ∇ · u = 0, inΩ, u = g1 onΓ, (3.4)

α1T − β2∆T + (u · ∇)T = f, inΩ, T = g2, onΓ. (3.5)

The third step of the θ−scheme consist, of solving the following problem:

α2T − β3∆T = f, inΩ, T = g2, onΓ, (3.6)

α2u− β4∆u+ (u · ∇)u− λgT = f , ∇ · u = 0, inΩ, u = g1, onΓ, (3.7)
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where α1 = 1/(θ∆t), α2 = 1/(θb∆t), β1 = αν, β2 = αξ, β3 = βξ, β4 = βν.

3.2. The solution of the steady subproblems

To solve the problem (3.4), conjugate gradient methods are used as in the isothermal case

[14–16], and the term −r∇(∇ · u) is introduced to accelerate the speed of convergence.

For the problems (3.5)–(3.7), we use the fixed point iterative technique to avoid the non-

symmetric part of the elliptic operator as in [9, 14]. The reason is that it is cheaper than the

conjugate gradient method used by the least-square technique in the corresponding advective

subproblems appearing in Glowinski’s θ−scheme [9, 16].

The space discretization is based on finite elements. Therefore, variational formulation have

to be given for the steady subproblems and then restrict these formulation to appropriate finite

element spaces, i.e. during the process, the LBB condition must be satisfied for pressure and

velocity. For parameter r, the bigger value is better on the speed of convergence. However, the

value of r is too bigger, the accuracy of convergence will be badly affected, where r is selected

from the interval [103, 104]ν.

4. Unique Solvability of the Scheme

Theorem 4.1. (step 3.1a). Under the condition (2.3), there exists a unique solution un+θ,

pn+θ satisfying (3.1a).

Proof. Eq. (3.1a) can be written as

A1(u
n+θ,v) = f1,

where

A1(u
n+θ,v) =

1

θ∆t
(un+θ,v) + αa(un+θ,v)b(pn+θ,v),

f1 =
1

θ∆t
(un,v) + λ(gT n,v)− βa(un,v) − c(un,un,v).

Taking v = un+θ in (4.1), and using the relation ∇ · un+θ, we obtain

A1(u
n+θ,un+θ) =

1

θ∆t
‖un+θ‖2 + αν|un+θ |21 ≥ min(

1

θ∆t
, αν)‖un+θ‖21.

Combining this and the assumption [A1], we can derive that problem (3.1a) has a unique

solution. �

Theorem 4.2. (step 3.1b). There exist a unique solution T n+θ satisfying (3.1b).

Proof. Let T n+θ = w + T0, w ∈ W0. Taking the inner product for (3.1b) with ψ ∈ W0

yields

1

θ∆t
(w,ψ) + αd(w,ψ) + c(un+θ, w, ψ)

=
1

θ∆t
(T n − T0, ψ)− βd(T n, ψ)− αd(T0, ψ)− c(un+θ, T0, ψ). (4.1)
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Let A2(w,ψ) =
1

θ∆t
(w,ψ) + αd(w,ψ) + c(un+θ, w, ψ). Taking ψ = w gives

A2(w,w) =
1

θ∆t
(w,w) + αd(w,w) + c(un+θ, w, w) =

1

θ∆t
‖w‖2 + αξ|w|21.

Using Lax-Milgram Theorem and the assumption [A2] completes the proof of the theorem. �

Theorem 4.3. (step 3.2). There exist a unique solution um, Tm satisfying (3.2).

Let ψ = Tm. Then the left hand side of second formula of Eqs. (3.2) can be written as

1

θb∆t
(Tm, ψ) + βd(Tm, ψ) =

1

θb∆t
‖Tm‖2 + βξ|Tm|21 ≥ min(

1

θb∆t
, βξ)‖Tm‖21.

Therefore, by virtue of the Lax-Milgram Theorem, existence and uniqueness of the solution Tm

has been proven.

For um, the first formula of Eq. (3.2) can be written as:

A3(u
m,v) = f3,

where

A3(u
m,v) =

1

θb∆t
(um,v) + βa(um,v) + c(um,um,v),

f3 =
1

θb∆t
(un+θ,v)− αa(un+θ,v) + b(pn+θ,v) + λ(gTm,v).

Let v=um, combining the fact um ∈ X , we obtain

A3(u
m,v) =

1

θb∆t
(um,um) + βa(um,um) =

1

θb∆t
‖um‖2 + βν|um|21.

Hence, Ker(A3)={0}, implying that a unique solution exists.

The unique solvability of (3.3a) and (3.3b), representing the third step in the algorithm,

follows exactly the same as (3.1a) and (3.1b).

5. Finite Element Approximation and Stability Analysis

In this section, we investigate the numerical approximation method corresponding to (3.1)–

(3.3). Firstly, the discrete variational formulation of the θ-method is presented. Then the

stability analysis is given.

5.1. Discrete variational approximation

Let h > 0 be a real positive parameter, Th be a partitioning of Ω̄ into triangles or quadri-

laterals, assumed to be quasi-uniform in the usual sense; i.e., it is regular and satisfies the

inverse assumption. Associated with Th, the finite element subspaces of the approximation of

the velocity and pressure and temperature are defined as follows

Xh =
{

v ∈ X ∩C0(Ω̄)d : v
∣

∣

K
∈ [Pm(K)]d ∀K ∈ Th

}

,

Mh =
{

ϕ ∈M ∩ C0(Ω̄) : ϕ
∣

∣

K
∈ Pm−1(K) ∀K ∈ Th

}

,

Wh =
{

ψ ∈ W ∩ C0(Ω̄) : ψ
∣

∣

K
∈ Pm(K) ∀K ∈ Th

}

,

W0h =Wh ∩H1
0 ,

Vh =
{

vh ∈ Xh

∣

∣ b(ϕh,vh) = 0, ∀ϕh ∈Mh

}

.
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Analogically to the continuous space we assume that Xh and Mh satisfy the discrete inf-sup

condition:

inf
q∈Mh

sup
v∈Xh

(q,∇ · v)
‖q‖‖v‖1

≥ β > 0. (5.1)

Since the norm is equivalent in the finite dimensional spaces, ∀uh ∈ Vh, we have

D1|uh| ≤ ‖uh‖ ≤ D2h
−1|uh|. (5.2)

The constant D2 depends on the degree of polynomial approximation. In the following we will

assume that D1 = D2 = 1

For each uh,vh,wh ∈ Xh, we define

c(uh,vh,wh) =
1

2

[

((uh · ∇h)vh,wh)− ((uh · ∇h)wh, vh)
]

. (5.3)

It holds that

c(uh,vh,vh) = 0 ∀u,v ∈ Xh. (5.4)

There exists a function S(h) so that

|c(uh,vh,wh)| ≤ S(h)|uh|‖vh‖|wh|, (5.5)

and S(h) = D3h
−1 in the conforming case.

From now on we will consider the following fully discrete problem.

Step 1. Find uh
n+θ ∈ Vh, T

n+θ
h ∈Wh, for ∀vh ∈ Vh, ψh ∈ W0h, such that











1

θ∆t
(un+θ

h ,vh) + αa(un+θ
h ,vh) =

1

θ∆t
(un

h,vh) + λ(gT n,vh)− βa(un
h ,vh)− c(un

h,u
n
h ,vh),

(5.6a)























1

θ∆t
(T n+θ

h , ψh) + αd(T n+θ
h , ψh) + c̄(un+θ

h , T n+θ
h , ψh)

=
1

θ∆t
(T n

h , ψh)− βd(T n
h , ψh),

T n+θ
h

∣

∣

∂Ω
= T n+θ

0 .

(5.6b)

Step 2. Find um
h ∈ Xh, T

m
h ∈Wh, for ∀vh ∈ Xh, ψh ∈ W0h, such that























1

θb∆t
(um

h ,vh) + βa(um
h ,vh) + c(um

h ,u
m
h ,vh)− λ(gTm

h ,vh)

=
1

θb∆t
(un+θ

h ,vh)− αa(un+θ
h ,vh) + b(pn+θ

h ,vh),

um
h

∣

∣

∂Ω
= 0,

(5.7a)























1

θb∆t
(Tm

h , ψh) + βd(Tm
h , ψh)

=
1

θb∆t
(T n+θ

h , ψh)− αd(T n+θ
h , ψh)− c̄(un+θ

h , T n+θ
h , ψh),

Tm
h

∣

∣

∂Ω
= Tm

0 .

(5.7b)
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Step 3. Find un+1
h ∈ Vh, T

n+1
h ∈Wh, for ∀vh ∈ Vh, ψh ∈W0h, such that







1

θ∆t
(un+1

h ,vh) + αa(un+1
h ,vh) =

1

θ∆t
(un+1−θ

h ,vh) + λ(gT n+1−θ
h ,vh)

−βa(un+1−θ
h ,vh)− c(un+1−θ

h ,un+1−θ
h ,vh),

(5.8a)























1

θ∆t
(T n+1

h , ψ) + αd(T n+1
h , ψ) + c̄(un+1

h , T n+1
h , ψh)

=
1

θ∆t
(T n+1−θ

h , ψh)− βd(T n+1−θ
h , ψh),

T n+1
h

∣

∣

∂Ω
= T n+1

0 .

(5.8b)

5.2. Stability of the scheme

The stability follows the framework developed in [17, 18]. To simplify our presentation, we

assume homogeneous boundary conditions.

Lemma 5.1. If un+θ
h , T n+θ

h satisfy Eqs. (5.6a) and (5.6b), then the estimates below are derived:

|un+θ
h |2 + θ∆tαν‖un+θ

h ‖2 + θ∆tβν‖un
h‖2 +

(

1

2
− θ∆tβν

h2

)

|un+θ
h − un

h|2

≤ |un
h|2 + (θb∆tS(h))

2|un
h|2‖un

h‖2 +
θ∆tλ2

ν
|T n

h |2, (5.9)

|T n+θ
h |2 + ξθ∆t‖T n+θ

h ‖2 + (1− βξθ∆t

h2
)|T n+θ

h − T n
h |2 =

(

1− βξθ∆t

h2

)

|T n
h |2. (5.10)

Proof. We take vh = un+θ
h in (5.6a) to get

1

θ∆t
|un+θ

h |2 + αν‖un+θ
h ‖2

=
1

θ∆t
(un

h ,u
n+θ
h ) + λ(gT n

h ,u
n+θ
h )− βa(un

h ,u
n+θ
h )− c(un

h ,u
n
h,u

n+θ
h ). (5.11)

Using the identity (u,v) = 1
2 [|u|2 + |v|2 − |u− v|2], the right-hand side of (5.11) becomes

1

2θ∆t
|un+θ

h |2 + 1

2θ∆t
|un

h|2 −
1

2θ∆t
|un+θ

h − un
h|2 +

βν

2
‖un+θ

h − un
h‖2

− βν

2
‖un+θ

h ‖2 − βν

2
‖un

h‖2 + λ(T n
h ,u

n+θ
h )− c(un

h,u
n
h ,u

n+θ
h ).

It follows from (5.2) that ‖un+θ
h − un

h‖2 ≤ 1
h2 |un+θ

h − un
h|2. Consequently,

|un+θ
h |2 + (1 + α)θ∆tν‖un+θ

h ‖2 + θ∆tβν‖un
h‖2 +

(

1− θ∆tβν

h2

)

|un+θ
h − un

h |2

≤|un
h|2 − 2θ∆tc(un

h,u
n
h,u

n+θ
h ) + 2θ∆tλ(gT n

h ,u
n+θ
h ). (5.12)

We estimate the right-hand side of (5.12) by Young’s inequality and (5.5). Because 0 < θ <

1−
√
2/2 we have 2θ2 < θ2b . So, we obtain

|un
h|2 + 2θ2(∆tS(h))2|un

h|2‖un
h‖2 +

1

2
|un+θ

h − un
h |2 + θ∆tν‖un+θ

h ‖2 + θ∆tλ2

ν
|T n

h |2. (5.13)

Combining (5.13) with (5.12),we obain (5.9).
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Taking Th = Tn+θ
h in (5.6b) to get

1

θ∆t
|T n+θ

h |2 + αξ‖T n+θ
h ‖2 =

1

θ∆t
(T n

h , T
n+θ
h )− βξ(∇T n

h ,∇T n+θ
h ).

Making use of (u,v) = [|u|2 + |v|2 − |u− v|2]/2 , then the formula (5.10) is derived. �

Lemma 5.2. If un+1−θ
h , T n+1−θ

h satisfy Eq. (5.7), the estimates below are derived:

|um

h |2 + θb∆tβν‖um

h ‖2 + θb∆tαν‖un+θ

h
‖2 + (1− 3δ)|um

h − u
n+θ

h
|2

≤|un+θ

h
|2 +D3

(

(

ν
∆t

h

)2

‖un

h‖
2 + (∆ts)2|un

h|
2‖un

h‖
2 +

∆tλ2

αν
|Tn

h |2 +
∆tλ2

βν
|Tm

h − T
n

h |2
)

, (5.14)

|Tm

h |2 + θb∆tβξ‖Tm

h ‖2 +

(

1

2
−

θb∆tβξ

h2

)

|Tn+θ

h
− T

m

h |2 + θb∆tαξ‖Tn+θ

h
‖2

=|Tn+θ

h
|2 + θb∆tβξ‖Tn

h ‖2 + c|Tn+θ

h
− T

n

h |2, (5.15)

where D3 = (θb/δ)
2(1 + (θb/δ)

2), 2(θb/θ)
2 < c.

Proof. We take vh = um
h in (5.7a) to get

1

θb∆t
|um

h |2 + βν‖um
h ‖2 − λ(gTm

h ,u
m
h ) =

1

θb∆t
(un+θ

h ,um
h )− αa(un+θ

h ,um
h ) + (pn+θ

h ,∇ · um
h ),

where

(pn+θ
h ,∇ · um) = (pn+θ

h ,∇ · um
h − un+θ

h )

=
1

θ∆t
(un+θ

h − un
h,u

m
h − un+θ

h ) + αa(un+θ
h ,um

h − un+θ
h )

+ βa(un
h ,u

m
h − un+θ

h ) + c(un
h,u

n
h,u

m
h − un+θ

h )− λ(gT n
h ,u

m
h − un+θ

h ).

By virtue of the above formula, we obtain

|um
h |2 + θb∆tβν‖um

h ‖2 − θb∆tλ(gT
m
h ,um

h )

=(un+θ
h ,um

h )− θb∆tαa(u
n+θ
h ,um

h ) + θb∆t(p
n+θ
h ,∇h · um

h )

=(un+θ
h ,um

h )− θb∆tαa(u
n+θ
h ,um

h ) +
θb
θ
(un+θ

h − un
h,u

m
h − un+θ

h )

+ θb∆tαa(u
n+θ
h ,um

h − un+θ
h ) + θb∆tβa(u

n
h ,u

m
h − un+θ

h ) + θb∆tc(u
n
h,u

n
h,u

m
h − un+θ

h )

− θb∆tλ(gT
n
h ,u

m
h − un+θ

h ).

Combining this with the expression (u, v) = (|u|2 + |v|2 − |u− v|2)/2, we have

1

2
|um

h |2 + θb∆tβν‖um
h ‖2 + 1

2
|um

h − un+θ
h |2 − θb∆tλ(g(T

m
h − T n

h ),u
m
h )

≤1

2
|un+θ

h |2 − θb∆tαa(u
n+θ
h ,um

h ) +
θb
θ
(un+θ

h − un
h,u

m
h − un+θ

h )− θb∆tαν‖un+θ
h ‖2

+ θb∆tαa(u
n+θ
h ,um

h ) + θb∆tβa(u
n
h ,u

m
h − un+θ

h ) + θb∆tc(u
n
h ,u

n
h,u

m
h − un+θ

h )

+ θb∆tλ(gT
n
h ,u

n+θ
h ). (5.16)



Operator Splitting for the Non-stationary Thermal Convection Problems 483

Using Young’s inequality with 0 < δ < 1/3, estimates (5.2) and (5.5), we arrive at

|um
h |2 + θb∆tβν‖um

h ‖2 + θb∆tαν‖un+θ
h ‖2 + (1 − 3δ)|um

h − un+θ
h |2 − θb∆tλ

2

βν
|Tm

h − T n
h |2

≤|un+θ
h |2 + 1

2δ
(
θb
θ
)2|un+θ

h − un
h|2 +

1

2δ
(
θb∆tβν

h2
)2‖un

h‖2

+
1

2δ
(θb∆ts)

2|un
h|2‖un

h‖2 +
θb∆tλ

2

αν
|Tn|2. (5.17)

The equation for the pressure with v = un+θ
h − un

h ∈ V0h reads

0 =(pn+θ
h ,∇ · (un+θ

h − un
h)

=
1

θ∆t
|un+θ

h − un
h|2 + αa(un+θ

h ,un+θ
h − un

h) + βa(un
h ,u

n+θ
h − un

h)

+ c(un
h,u

n
h,u

n+θ
h − un

h)− λ(gT n
h ,u

n+θ
h − un

h), (5.18)

which leads to

|un+θ
h − un

h|2 + θ∆tαν‖un+θ
h − un

h‖2

≤
(

θb∆tν

h

)2

‖un
h‖2 + (θb∆ts)

2|un
h|2‖un

h‖2 +
θ∆tλ2

αν
|T n

h |2. (5.19)

Making use of the estimate (5.19) and the inequality (5.17), we obtain the estimate (5.14).

For the temperature Tm
h , taking ψh = Tm

h in (5.7b) gives

1

θb∆t
|Tm

h |2 + βξ‖Tm
h ‖2 =

1

θb∆t
(T n+θ

h , Tm
h )− αξ(∇T n+θ

h ,∇Tm
h )− c̄(un+θ

h , T n+θ
h , Tm

h ). (5.20)

From (5.6b), we obtain

c̄(un+θ
h , T n+θ

h , Tm
h − T n+θ

h )

=
1

θ∆t
(T n

h − T n+θ
h , Tm

h − T n+θ
h )− βξ(∇T n

h ,∇(Tm
h − T n+θ

h ))− αξ(∇T n+θ
h ,∇(Tm

h − T n+θ
h )).

Combing (5.20) with the above formula and also using (u,v) = [|u|2 + |v|2 − |u − v|2]/2, we
obtain

|Tm
h |2 + |T n+θ

h − Tm
h |2 + 2θb∆tβξ‖Tm

h ‖2

=|T n+θ
h |2 − 2θb∆tαξ‖T n+θ

h ‖2 + 2θb∆tβξ
(

∇T n
h ,∇(Tm

h − T n+θ
h )

)

+
2θb
θ

(T n+θ
h − T n

h , T
m
h − T n+θ

h ).

Using the Young inequality, we get (5.15). �

Lemma 5.3. If un+1−θ
h , T n+1−θ

h satisfy Eq. (5.7), then the estimates below hold:

|un+1
h |2 + θ∆tαν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 + (1− 3δ)|um

h − un+θ
h |2 + 33

8
|un+θ

h − un
h |2 + (2θb∆ts)

2|un
h|2‖un

h‖2

+ (2θb∆tλ)
2|Tm

h − T n
h |2 +

θ∆tλ2

ν
|Tm

h |2, (5.21)

|T n+1
h |2 + ξθ∆t‖T n+1

h ‖2 +
(

1− βξθ∆t

h2

)

|T n+1
h − Tm

h |2 =

(

1− βξθ∆t

h2

)

|Tm
h |2. (5.22)
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Proof. We take vh = un+1
h in (4.8) to get

1

θ∆t
|un+1

h |2 + αν‖un+1
h ‖2

=
1

θ∆t
(um

h ,u
n+1
h )− βa(um

h ,u
n+1
h )− c(um

h ,u
m
h ,u

n+1
h ) + λ(gTm

h ,vn+1
h ). (5.23)

As in Lemma 5.1, we obtain

|un+1
h |2 + (1 + α)θ∆tν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1− θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 − 2θ∆tc(um

h ,u
m
h ,u

n+1
h ) + 2θ∆tλ(gTm

h ,u
n+1
h ). (5.24)

To estimate c(um
h ,u

m
h ,u

n+1
h ), we use (5.7a) with vh = un+1

h − um
h to obtain

− c(um
h ,u

m
h ,u

n+1
h ) = −c(um

h ,u
m
h ,u

n+1
h − um

h )

=
1

θb∆t
(um

h − un+θ
h ,un+1

h − um
h ) + βa(um

h ,u
n+1
h − um

h ) + αa(un+θ
h ,un+1

h − um
h )

− λ(gTm
h ,un+1

h − um
h )b(pn+θ

h ,un+1
h − um

h ). (5.25)

For pressure, we take vh = un+1
h − umh

b(pn+θ
h , un+1

h − umh )

=− 1

θ∆t
(un+θ

h − un
h,u

n+1
h − um

h )− αa(un+θ
h ,un+1

h − um
h )− βa(un

h ,u
n+1
h − um

h )

− c(un
h ,u

n
h,u

n+1
h − um

h ) + λ(gT n
h ,u

n+1
h − um

h ). (5.26)

Combining (5.25) with (5.26), we obtain

− 2θ∆tc(um
h ,u

m
h ,u

n+1
h )

=
2θ

θb
(um

h − un+θ
h ,un+1

h − um
h )− 2(un+θ

h − un
h,u

n+1
h − um

h )

+ 2θ∆tβa(um
h − un

h ,u
n+1
h − um

h )− 2θ∆tc(un
h ,u

n
h,u

n+1
h − um

h )

− 2θ∆tλ(g(Tm
h − T n

h ),u
n+1
h − um

h ) (5.27)

We therefore obtain the following inequality from (5.24) and (5.27):

|un+1
h |2 + (1 + α)θ∆tν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1− θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 − 2θ∆tc(um

h ,u
m
h ,u

n+1
h ) + 2θ∆tλ(gTm

h ,u
n+1
h )

≤|um
h |2 + 2θ

θb
(um

h − un+θ
h ,un+1

h − um
h )− 2(un+θ

h − un
h,u

n+1
h − um

h )

+ 2θ∆tβa(um
h − un

h,u
n+1
h − um

h )− 2θ∆tc(un
h,u

n
h,u

n+1
h − um

h )

− 2θ∆tλ(g(Tm
h − T n

h ),u
n+1
h − um

h ) + 2θ∆tλ(gTm
h ,u

n+1
h ). (5.28)

Using Young’s inequalities, (5.28) can be written as

|un+1
h |2 + θ∆tαν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 +

[

2

(

θ

θb

)2

+
1

8

]

|um
h − un+θ

h |2 + 33

8
|un+θ

h − un
h |2 + (2θb∆ts)

2|un
h|2‖un

h‖2

+ (2θb∆tλ)
2|Tm

h − T n
h |2 +

θ∆tλ2

ν
|Tm

h |2. (5.29)
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For θ ∈ (0, (−7 + 4
√
7)/9) ⊂ (0, 1−

√
2/2), there exist a δ, such that 2(θ/θb)

2 + 1/8 ≤ 1 − 3δ.

So we obtain (5.21).

For T n+1
h , similar to the proof of Lemma 5.1, we can derive (5.22). �

Theorem 5.1. For θ ∈ (0, (−7 + 4
√
7)/9) and corresponding δ, if (θb∆tβξ)/h

2 < 1/2 and

(1− (βξθ∆t)/h2)(1 + c) < 1 hold, then we have

T n+1
h , Tm

h , T
n+θ
h ∈ L∞

(

0, T, L2(Ω)
)

⋂

L2(0, T,Wh).

Proof. Combing (5.10),(5.15) and (5.22), the estimate below is derived

|T n+1
h |2 + ξθ∆t‖T n+1

h ‖2 +
(

1− βξθ∆t

h2

)

|T n+1
h − Tm

h |2

=(1− βξθ∆t

h2
)|Tm

h |2 ≤
(

1− βξθ∆t

h2

)

(1 + c)|T n
h |2. (5.30)

If (1− (βξθ∆t)/h2)(1 + c) < 1, then we obtain

|T n+1
h |2 + ξθ∆t‖T n+1

h ‖2 +
(

1− βξθ∆t

h2

)

|T n+1
h − Tm

h |2 ≤ |T n
h |2. (5.31)

Summing up (5.31) for n = 0, 1, 2, · · · , r, with r ∈ Z+, we have

|T r+1
h |2 + ξθ∆t

r
∑

n=0

‖T n+1
h ‖2 +

(

1− βξθ∆t

h2

) r
∑

n=0

|T n+1
h − Tm

h |2 ≤ |T0h|2 ≤ |T0|2.

Therefore

T n+1
h ∈ L∞(0, T, L2(Ω))

⋂

L2(0, T,Wh).

According to (5.10), we see that

T n+θ
h ∈ L∞(0, T, L2(Ω))

⋂

L2(0, T,Wh).

From (5.15), we have

Tm
h ∈ L∞(0, T, L2(Ω))

⋂

L2(0, T,Wh).

This completes the proof of the theorem. �

Lemma 5.4. For any 0 < δ < 1 and r ∈ Z+, if the condition

C

{(

ν∆t

h

)2

+ (∆ts)2ΛT

}

≤ (1− δ)αθ∆tν. (5.32)

holds, then we have

|ur+1
h

|2 + δθ∆tαν

r
∑

n=0

‖un+1
h

‖2 + θ∆tβν

r
∑

n=0

‖um

h ‖2 +

(

1

4
−

2θ∆tβν

h2

) r
∑

n=0

|un+1
h

− u
m

h |2 ≤ Λr. (5.33)

Proof. Using (5.9), (5.14), (5.19) and (5.21), we have

|un+1
h |2 + θ∆tαν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 + C

{(

ν∆t

h

)2

‖un
h‖2 + (∆ts)2|un

h|2‖un
h‖2

}

+ C
∆tλ2

ν
{|T n

h |2 + |Tm
h − T n

h |2}. (5.34)



486 H. E. JIA, K. T. LI AND H. Y. SUN

In view of the properties T n
h , T

m
h , we suppose

λ2{|T n
h |2 + |Tm

h − T n
h |2} ≤ C|T n

h |2.

Then (5.34) can be written as

|un+1
h |2 + θ∆tαν‖un+1

h ‖2 + θ∆tβν‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

)

|un+1
h − um

h |2

≤|um
h |2 + C

{(

ν∆t

h

)2

‖un
h‖2 + (∆ts)2|un

h|2‖un
h‖2

}

+ C
∆t

ν
|T n

h |2. (5.35)

Summing up (5.35) for n = 0, 1, 2, · · · , r, with r ∈ Z+, gives

|ur+1
h |2 + θ∆tαν

r
∑

n=0

‖un+1
h ‖2 + θ∆tβν

r
∑

n=0

‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

) r
∑

n=0

|un+1
h − um

h |2

≤|u0h|2 + C

r
∑

n=0

{(

ν∆t

h

)2

‖un
h‖2 + (∆ts)2|un

h |2‖un
h‖2

}

+
C∆t

ν

r
∑

n=0

|T n
h |2. (5.36)

Let

ΛT = |u0|2 + C

{(

ν∆t

h

)2

‖u0‖2 + (∆ts)2|u0|2‖u0‖2
}

+
C

ν
|T0|L2(0,T,L2),

Λr = |u0h|2 + C

{(

ν∆t

h

)2

‖u0h‖2 + (∆ts)2|u0h|2‖u0h‖2
}

+
C∆t

ν

r
∑

n=0

|T n
h |2.

Since the left-hand side of (5.36) is bound for r = 0, let us assume that

|ur+1
h |2 + δθ∆tαν

r
∑

n=0

‖un+1
h ‖2 + θ∆tβν

r
∑

n=0

‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

) r
∑

n=0

|un+1
h − um

h |2 ≤ Λr.

Next, we will show that the inequality holds by induction. Firstly, we suppose the below formula

holds for r = k ∈ Z+ therefore

|un+1
h |2 ≤ Λk ≤ ΛT , n = 0, 1, · · · , k.

Then the right-hand of (5.36) for k + 1 can be estimated by

|uk+2
h |2 + θ∆tαν

k+1
∑

n=0

‖un+1
h ‖2 + θ∆tβν

k+1
∑

n=0

‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

) k+1
∑

n=0

|un+1
h − um

h |2

≤|u0h|2 + C

k+1
∑

n=0

{(

ν∆t

h

)2

‖un
h‖2 + (∆ts)2|un

h |2‖unh‖2
}

+
C∆t

ν

k+1
∑

n=0

|T n
h |2

≤Λk+1 + C

{(

ν∆t

h

)2

+ (∆ts)2ΛT

} k+1
∑

n=1

‖un
h‖2.

This completes the proof. �

If the condition (5.32) is satisfied, then we can obtain (5.33). Consequently, we can give the

theorem below.
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Theorem 5.2. If θ ∈ (0, (−7 + 4
√
7)/9) and 0 < δ < 1/3 such that 2(θ/θb)

2 + 1/8 ≤ 1 −
3δ,(θ∆tβν)/h2 < 1/8 and if the condition (5.32) holds, then

un
h,u

n+θ
h ∈ L∞(0, T, L2(Ω)2) ∩ L2(0, T, Vh),

um
h ∈ L∞(0, T, L2(Ω)2) ∩ L2(0, T,Xh).

Proof. According to Lemma 5.4, for ∀N ∈ Z+

|uN+1
h |2 + δθ∆tαν

N
∑

n=0

‖un+1
h ‖2 + θ∆tβν

N
∑

n=0

‖um
h ‖2 +

(

1

4
− 2θ∆tβν

h2

) N
∑

n=0

|un+1
h − um

h |2 ≤ ΛT ,

which implies that

uN+1
h ∈ L∞(0, T, L2(Ω)2) ∩ L2(0, T, Vh),u

m
h ∈ L2(0, T,Xh).

It follows from (5.9) in Lemma 5.1 that

|uN+θ
h |2 ≤|uN

h |2 + (θb∆tS(h))
2

N
∑

n=0

|uN
h |2‖uN

h ‖2 + θ∆tλ2

ν

N
∑

n=0

|TN
h |2

≤|uN
h |2 +

(

θb∆tS(h)
)2
ΛT

N
∑

n=0

‖uN
h ‖2 + θ∆tλ2

ν

N
∑

n=0

|TN
h |2

≤|uN
h |2 + (1 − δ)αθ∆tν

N
∑

n=0

‖uN
h ‖2 + θ∆tλ2

ν

N
∑

n=0

|TN
h |2

≤ΛT + αθ∆tν
N
∑

N=0

‖uN
h ‖2 + θ∆tλ2

ν

N
∑

n=0

|TN
h |2

≤
(

1 +
1

δ
+ θλ2

)

ΛT .

Consequently,

un+θ
h ∈ L∞(0, T, L2(Ω)2).

It follows from (5.14) in Lemma 5.2 that

|um
h |2 ≤|uN+θ

h |2 +D3((ν
∆t

h
)2 + (∆ts)2ΛT )

N
∑

n=0

‖un
h‖2

+D3

(

∆tλ2

αν

N
∑

n=0

|T n
h |2 +

∆tλ2

βν

N
∑

n=0

|Tm
h − T n

h |2
)

≤|uN+θ
h |2 + αθ∆tν

N
∑

n=0

‖un
h‖2 +D3

∆tλ2

ν

(

1

α

N
∑

n=0

|T n
h |2 +

1

β

N
∑

n=0

|Tm
h − T n

h |2
)

≤
(

1 +
2

δ
+ λ2

(

θ +
1

α
+

2

β

))

ΛT ,

where m = N + 1− θ. Therefore

um
h ∈ L∞(0, T, L2(Ω)2).
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Using (5.18) in Lemma 5.2 gives

N
∑

n=0

|un+θ
h − un

h|2 + θ∆tαν

N
∑

n=0

‖un+θ
h − un

h‖2

≤
(

θb∆tν

h

)2 N
∑

n=0

‖un
h‖2 + (θb∆ts)

2
N
∑

n=0

|un
h|2‖un

h‖2 +
θ∆tλ2

αν

N
∑

n=0

|T n
h |2

≤θ∆tαν
N
∑

n=0

‖un
h‖2 +

θ∆tλ2

αν

N
∑

n=0

|T n
h |2 ≤

(

1

δ
+
θλ2

α

)

ΛT ,

which leads to

θ∆tαν

N
∑

n=0

‖un+θ
h ‖2 ≤ θ∆tαν

N
∑

n=0

‖un+θ
h − un

h‖2 + θ∆tαν

N
∑

n=0

‖un
h‖2 ≤

(

2

δ
+
θλ2

α

)

ΛT .

Consequently,

uN+θ
h ∈ L2(0, T, Vh).

The proof of the theorem is complete. �

6. Numerical Results

In this section, we give results of the simulation performed with our proposed algorithm for

the thermally driven cavity flow. The result is obtained in some fixed time instead of steady

state flow (from the non-steady problem). Computations are made on a fixed mesh size with

fixed time steps. The space steps are denoted by hx, hy and the time step by ∆t.

Example. We consider 2D domain Ω = (0, 1) × (0, 1). The motion boundary condition is

defined by u = (1, 0) at the moving boundary (the top one y = 1) and u = (0, 0) elsewhere.

Initial condition for u and T are identically 0. Boundary condition for the temperature is given

by
∂T

∂n
= 0, on ∂Ω

∣

∣

x=0,a
; T = 0, on Ω

∣

∣

y=0
; T = 1, on Ω

∣

∣

y=b
,

which means that the fluid motion is caused by buoyancy from the vertical temperature gradient

and by the velocity-driven cavity boundary condition on the top horizontal boundary wall.

Isotherms and streamline for Re = 2000 are shown in Figs. 6.1, Re = 4000 in Fig.6.2,

Re = 6000 in Fig. 6.3. Both the results agree very well with those in [5, 9] and shows good

stability for different Rayleigh and Reynolsds numbers . In all the computations, we used the

P2 − P1 (Taylor-Hood) finite element approximations and used splitting parameter θ = 0.2,

Prandtl number 0.72, T = 200, ∆t = 0.02, Gr = 100000, the size of mesh M ×N = 32× 32.

7. Conclusions

In this paper, we have proposed a numerical scheme based on operator splitting, and pro-

vided a theoretical analysis about the unique solvability and stability. The numerical result

shows good stability to support the theoretical analysis. The result obtained with such coarse

meshes makes the scheme suitable for more complicated memory demanding flows, as long as

they preserve the incompressible structure.
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Fig. 6.1. Isotherms (left) and streamline (right) for Re = 2000.
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Fig. 6.2. Isotherms (left) and streamline (right) for Re = 4000.
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Fig. 6.3. Isotherms (left) and streamline (right) for Re = 6000.
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