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Abstract

In this note, we apply the h-adaptive streamline diffusion finite element method with a

small mesh-dependent artificial viscosity to solve nonlinear hyperbolic partial differential

equations, with the objective of achieving high order accuracy and mesh efficiency. We

compute the numerical solution to a steady state Burgers equation and the solution to a

converging-diverging nozzle problem. The computational results verify that, by suitably

choosing the artificial viscosity coefficient and applying the adaptive strategy based on a

posterior error estimate by Johnson et al., an order of N−3/2 accuracy can be obtained

when continuous piecewise linear elements are used, where N is the number of elements.

Mathematics subject classification: 65N30.
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1. Introduction

For the nonlinear hyperbolic equations

ut + f(u)x = 0 (1.1)

discontinuities may develop after finite time despite the regularity of the initial condition. This

accounts for most of the difficulties in the design of numerical schemes to solve the nonlinear

hyperbolic equation (1.1) accurately. It has been shown [6, 7] that the numerical solution

generated by high order methods produces in general only first order accuracy for pointwise

errors, because the information carried along characteristics is degraded to first order when

passing through the discontinuity. Much work has been done in the literature to achieve high

order accuracy in the presence of discontinuities. To name a few, pre- and post-processing has

been introduced in [6,7] to recover high order pointwise accuracy for linear hyperbolic systems;

Glimm and his co-authors [2] have designed high order front tracking algorithms; Gottlieb et

al. [3] applied the Gegenbauer postprocessing to recover the designed accuracy up to the shock

front in the framework of high order weighted essentially non-oscillatory (WENO) schemes. In
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this note, we study an h-adaptive finite element method for solving (1.1) with a mesh dependent

artificial viscosity

ut + f(u)x = εuxx, (1.2)

where ε is suitably chosen together with an h-adaptivity strategy to enhance accuracy. An

advantage of this approach is that the solution is regularized by an artificial viscosity and the

entropy condition should be satisfied within this framework. However, one main question in

this approach is whether we can solve (1.2) accurately and efficiently with a sharp viscous shock

layer existing in the solution when ε diminishes with the mesh size. Or equivalently, can we

resolve the sharp layer while keeping the overall error small. These questions will be addressed

by using an adaptive mechanism to adjust grid distribution automatically with mesh refinement

in regions where small scale features (such as shock layers and vortex sheets) exist.

Adaptive finite element methods have been extensively studied and applied for solving linear

parabolic partial differential equations [1,4], and also explored for nonlinear hyperbolic conser-

vation laws [5]. This approach is efficient for solving problems whose solutions contain multiple

features. One important class of adaptive strategies is based on the measurement of the residual

with certain norm. The underlying mesh is adjusted locally to obtain an even distribution of

the a posterior error or a reduction of the overall error.

The computation in this note is based on the a posterior error estimation of Johnson and

Szepessy [5]. In their work, they provided the a posterior error estimates for ε = CN−1, where

N is the total number of elements, in the following form

||e|| ≤ CsCi

∥

∥

∥

∥

h2

ε
R(U)

∥

∥

∥

∥

. (1.3)

Here and below, the unmarked norm is the L2-norm, e = u−U , where u is the exact solution of

(1.1) and U is the finite element numerical solution of (1.2). R(U) = Ut + f(U)x − εUxx is the

residual of the finite element solution U (evaluated appropriately). Cs is the stability constant

and Ci is the interpolation constant, which depends only on the degree of the polynomials and

the shape of the finite elements. It should also be noted that Cs depends on both the analytic

and numerical solutions of the underlying differential equation. Therefore, strictly speaking the

above estimate is not a usual a posterior error estimate which should only depend on U and

h. As commented in [5], Cs is in general a moderate number. Analytic estimation of Cs is

restricted to certain model cases only, where the system is strictly hyperbolic in one dimension

allowing the presence of weak shocks, noninteracting shocks and rarefaction waves. In general,

it is reasonable and realistic to estimate the bound of Cs computationally. We refer to [5] for

the details. It is suggested in [5] that adaption of the grids could be carried out based on this

a posterior error estimate, but it remains unclear what accuracy can be achieved by adapting

the mesh based on this estimation, theoretically or numerically. Our computation in this note

indicates that an order of N−3/2 can be achieved for the two benchmark problems in scalar and

system cases.

2. Numerical Results

The adaptive strategy here is that the mesh is adapted in an iterative way in order to get

equal or close to equal amount of ||h2

ε R(U)|| on each element. A threshold is set to stop the

iteration when the change of the total residue ||h2

ε R(U)|| is stagnant. The test problems here

are the model cases we mentioned above, where the bound of stability constant Cs could be
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analytically estimated. To be precise, we intend to choose the proper parameter ε together

with the above adaptive strategy which gives the best accurate numerical solution. The choice

of ε is delicate in the sense that the solution of (1.2) is closer to solution of (1.1) for smaller

ε. However, given a fixed number of grids, there might not be enough grid points to be moved

into the sharp layer for too small ε without affecting errors elsewhere. Intuitively, to balance

the choice of ε, we should consider that

||u− U || ≤ ||u− uε||+ ||uε − U || ≤ cε log(ε) + ||uε − U ||.

The choice of a smaller ε will make the first term small, however the second term could become

larger because it is more difficult to approximate such uε, which contains sharp layers, with

the given number of mesh points. In order to obtain accuracy of order O(N−m), we need ε

to be smaller than O(N−m). We will perform numerical experiment to guide the choice of the

“optimal” ε in (1.2), in relation to the number of elements N , and to determine the accuracy

achieved by the adaptive method with this optimal ε. It seems from our numerical results that

m > 1.5 can be achieved. From now on, we will focus on steady state nonlinear hyperbolic

problem

f(u)x = 0, (2.1)

and its viscous counterpart

f(u)x = εuxx. (2.2)

The generalization to time dependent problems is nontrivial considering the moving shock front

which demands extra attention and probably a different approach.

In the following numerical experiments, for each fixed grid number N , we perform an adap-

tive computation for a series of decreasing values of ε. For the largest value of ε, we start

the iteration of mesh movement with a uniformly distributed grid x0 = a, xi = x0 + i b−a
N ,

i = 1, 2 · · · , N . For the remaining values of ε, we start the iteration of mesh movement with the

final mesh of the previous larger value of ε. In the following, we list the steps of the adaptive

algorithm to move the mesh points for solving (2.2).

The algorithm flowchart

• Step 1: Based on the grid xi, i = 0, 1, · · · , N , we solve the problem (2.2) with the piece-

wise linear streamline diffusion finite element method. The resulting nonlinear equation

is solved by a Newton-GMRES plus back-track loop iteration method.

• Step 2: We compute the total residue ||h2

ε R(U)||. If the change of ||h2

ε R(U)|| is smaller

than the preset threshold τ = 10−8, the mesh movement is finished and we compute and

document the error in the table. Otherwise we move to the next step.

• Step 3: We redistribute the grid such that the mesh size

hi =
ri

∑

ri
, ri =

1

0.5||h2

ε R(U)||ki
+ 0.5λ

,

where ki is the i-th cell and λ = ||h2

ε R(U)||. This step is attempting to have a smaller

mesh size when the local residue is larger. We then interpolate the numerical solution U

on the new grid from previously computed solution as initial guess of the Newton-GMRES

solver and move to Step 1.
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Test Problem 1. We show the result for the steady state Burgers equation
(

u2

2

)

x

= 0 (2.3)

as a limit, when ε → 0, of the viscous Burgers equation
(

u2

2

)

x

= εuxx. (2.4)

The computational domain is [0, 1]. Dirichlet boundary condition is imposed as u(0) = a,

u(1) = b. This is an important test problem for many numerical methods in computational

fluid dynamics. It has a unique, monotone, symmetric solution

u = −m tanh

(

m(x− 0.5)

2ε

)

, (2.5)

where m is decided by values of the solution at boundary. After applying the test function

v+chJ(u)vx, where J(u) = u is the Jacobian of the flux f(u) = u2/2 and h is the local element

size, to Eq. (2.4), we obtain the weak form

−
∫

u2

2
vxdx+

∫ (

u2

2

)

x

chuvxdx+ ε

∫

uxvxdx− ε

∫

uxxchuvxdx = 0, (2.6)

in which the second term in the test function accounts for the least square stabilizer. Here and

below, we approximate the integrals through the trapezoidal formula
∫ xi+1

xi

f(x)dx ≈ h

2

(

f(xi) + f(xi+1)
)

.

Table 2.1: ||u− U ||L1 for Test Problem 1.

L
1 error for N number of elements

ε N = 80 N = 160 N = 240 N = 320 N = 480

8.00e-2 2.17e-1 2.17e-1 2.17e-1 2.17e-1 2.17e-1

4.00e-2 1.10e-1 1.10e-1 1.10e-1 1.10e-1 1.10e-1

2.00e-2 5.54e-2 5.54e-2 5.54e-2 5.54e-2 5.54e-2

1.00e-2 2.77e-2 2.77e-2 2.77e-2 2.77e-2 2.77e-2

5.00e-3 1.39e-2 1.38e-2 1.38e-2 1.38e-2 1.38e-2

2.50e-3 6.99e-3 6.94e-3 6.93e-3 6.93e-3 6.93e-3

1.25e-3 3.51e-3 3.48e-3 3.47e-3 3.47e-3 3.46e-3

6.25e-4 1.76e-3 1.76e-3 1.74e-3 1.73e-3 1.73e-3

3.125e-4 8.89e-4 8.84e-4 8.77e-4 8.72e-4 8.73e-4

1.5625e-4 4.45e-4 4.40e-4 4.38e-4 4.36e-4 4.36e-4

7.8125e-5 2.23e-4 2.21e-4 2.18e-4 2.20e-4 2.17e-4

3.90625e-5 1.14e-4 1.12e-4 1.09e-4 1.12e-4 1.09e-4

1.953125e-5 6.26e-5 5.88e-5 5.47e-5 6.05e-5 5.56e-5

9.765625e-6 4.13e-5 3.54e-5 2.74e-5 3.84e-5 2.94e-5

4.8828125e-6 3.52e-5 2.72e-5 1.37e-5 3.15e-5 1.77e-5

2.44140625e-6 3.51e-5 2.55e-5 6.93e-6 3.06e-5 1.37e-5

1.220703125e-6 3.51e-5 2.53e-5 3.60e-6 3.05e-5 1.30e-5

6.103515625e-7 3.50e-5 2.54e-5 2.03e-6 3.05e-5 1.29e-5

3.0517578125e-7 3.51e-5 2.54e-5 1.44e-6 3.05e-5 1.29e-5

1.52587890625e-7 3.51e-5 2.54e-5 1.30e-6 3.05e-5 1.29e-5
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Blue ’+’: FEM numerical solution
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Fig. 2.1. Solution to Test Problem 1: resolution of shock.

Both the trial function u and the test function v are chosen as continuous piecewise linear

functions on [0, 1]. The resulting nonlinear equation from the discretization of the weak form

is solved by the Newton-GMRES plus back-track loop method. The solution for bigger ε is

used as the initial guess of the Newton iteration for smaller ε. All the integrals are evaluated

element-wise, therefore
∫

uxxchuvxdx = 0

for piecewise linear elements. To compute ||h2

ε R(U)||, we need to reconstruct U by performing

a quadratic spline interpolation given the computed piecewise linear solution. In Table 2.1, we

choose five different numbers N of total elements, and compare the computed solution with the

exact solution of (2.3), using different choices of the artificial viscosity ε. The best accuracy

that can be achieved for each fixed number of mesh elements N when varying ε is denoted

by boldface. The empty spaces in the table imply that the iterative procedure to obtain the

numerical solution does not produce more accurate solution or fails to converge while reducing

ε. It can be seen clearly that for this very simple problem (piecewise constant exact solution

with one discontinuity), the smaller the artificial viscosity coefficient ε, the smaller the L1

error. This is not surprising since the optimal grid distribution strategy is to cluster as many

points near the shock as possible. The numerical solution as well as the grid distribution for

the optimal choice of ε when N = 160 can be seen in Fig. 2.1. We can clearly see the severe

concentration of points towards the shock location.

Test Problem 2. The second example is the Burgers equation with a source term

(

u2

2

)

x

= a(x)u, 0 ≤ x ≤ 1 (2.7)

with a(x) = 2x − 3, u(0) = 1, u(1) = −2. The boundary value problem has a steady state

solution:

u(x) =















x2 − 3x+ 1, x <
3−

√
7

2
,

x2 − 3x, x ≥ 3−
√
7

2
.

(2.8)

Here x = (3−
√
7)/2 is the shock location, obtained by the Rankine-Hugoniot jump condition.
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After adding artificial viscosity to (2.7), we have the viscous equation

(

u2

2

)

x

= a(x)u+ εuxx, 0 ≤ x ≤ 1. (2.9)

In Table 2.2, we choose five different numbers N of total elements, and compare the computed

solution of (2.9) with the exact solution of (2.7) using different choices of the artificial viscosity

ε. The “optimal” choice of ε, which gives the smallest error for each N , is again shown in

bold face in Table 2.2. The empty spaces in the table still imply that the error of numerical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−1

−0.5

0

0.5

1

x

u

Blue ’+’: FEM numerical solution
Red ’−’:  Exact solution

N=160

Fig. 2.2. Solution to Test Problem 2: resolution of shock.
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Fig. 2.3. Test Problem 2: ε versus N and a least square fit.
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Fig. 2.4. Test Problem 2: ||e||L1 versus N and a least square fit.
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approximation can not be reduced by simply diminishing viscosity subject to convergence of

the iterative procedure. The numerical solution as well as the grid distribution for the optimal

choice of ε when N = 160 can be seen in Fig. 2.2. We can still see a concentration of points

towards the shock location, although this concentration is less severe than in the previous test

case.

We plot the optimal ε versus N in Fig. 2.3, which shows a pattern of ε = C/N r by a least

square fit (the solid line in Fig. 2.3) with C = 6.68 and r = 2.60. In Fig. 2.4, the L1 error

versus N is shown, when the optimal ε is used. A least square fit (the solid line in Fig. 2.4)

shows that the error has the pattern ||e||L1 = C/N r with C = 14.81 and r = 2.31.

Table 2.2: ||u− U ||L1 for Test Problem 2.

Number of elements

ε N = 80 N = 160 N = 240 N = 320 N = 480

8.00e-2 1.28e-1 1.28e-1 1.28e-1 1.28e-1 1.28e-1

4.00e-2 7.90e-2 7.88e-2 7.88e-2 7.88e-2 7.88e-2

2.00e-2 4.69e-2 4.67e-2 4.66e-2 4.66e-2 4.65e-2

1.00e-2 2.63e-2 2.63e-2 2.63e-2 2.63e-2 2.63e-2

5.00e-3 1.47e-2 1.44e-2 1.44e-2 1.44e-2 1.43e-2

2.50e-3 8.10e-3 7.65e-3 7.61e-3 7.62e-3 7.61e-3

1.25e-3 4.04e-3 3.99e-3 3.93e-3 3.94e-3 3.93e-3

6.25e-4 2.29e-3 2.07e-3 2.00e-3 2.00e-3 2.00e-3

3.125e-4 1.45e-3 1.10e-3 1.01e-3 1.01e-3 1.01e-3

1.5625e-4 6.75e-4 6.15e-4 5.10e-4 5.06e-4 5.13e-4

7.8125e-5 5.49e-4 3.71e-4 2.63e-4 2.55e-4 2.62e-4

3.90625e-5 7.00e-4 2.57e-4 1.39e-4 1.31e-4 1.39e-4

1.953125e-5 1.53e-4 8.07e-5 7.14e-5 8.21e-5

9.765625e-6 1.08e-4 5.71e-5 4.49e-5 3.17e-5

4.8828125e-6 1.12e-4 5.58e-5 3.36e-5 1.85e-5

2.44140625e-6 6.06e-5 3.28e-5 1.19e-5

1.220703125e-6 3.52e-5 8.62e-6

6.103515625e-7 7.48e-6

3.0517578125e-7 7.55e-6

Test Problem 3. We consider the quasi-one-dimensional converging-diverging nozzle flow.

The governing equations are the usual Euler system with a source term:

ut + f(u)x = −a′(x)

a(x)
g(u) (2.10)

with

u =





ρ

ρu

E



 , f(u) =





ρu

ρu2 + P

(E + P )u



 , g(u) =





ρu

ρu2

(E + P )u



 ,

where ρ, u, P and E are the density, velocity, pressure and total energy respectively, and

a(x) describes the cross area of the nozzle. The shape of the nozzle is calculated by requiring

linear distribution of the Mach number from M = 0.8 at the inlet to M = 1.8 at the exit

assuming the flow is isentropic and fully expanded. The equation of the state is P = (γ −
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1)(E − 1
2
ρu2) with γ = 1.4. We compute the solution on the domain [0, 1] with the Dirichlet

boundary condition: at x = 0, (ρ, u, p) = (0.7399925, 0.8912498, 0.6560218); at x = 1, (ρ, u, p) =

(0.8803624, 0.5405094, 0.8436197). Those are the values of the exact solution to the equation

(2.10). The viscous version of (2.10) takes the form

ut + f(u)x = −a′(x)

a(x)
g(u) + εuxx. (2.11)

By applying the test function, at steady state, the weak form follows as

−
∫

f(u)vxdx+

∫

f(u)xchJ(u)vxdx+

∫

a′(x)

a(x)
g(u)(v + chJ(u)vx)dx

+ ε

∫

uxvxdx− ε

∫

uxxchJ(u)vxdx = 0,

with added streamline diffusion, where J(u) is the Jacobian matrix. Once again, since the

integral ε
∫

uxxchJ(u)vxdx is evaluated on each cell, it is 0 for piecewise linear elements. The

weak form will then be

−
∫

f(u)vxdx+

∫

f(u)xchJ(u)vxdx+

∫

a′(x)

a(x)
g(u)(v + chJ(u)vx)dx+ ε

∫

uxvxdx = 0.

Again, in Table 2.3, we choose five different numbers N of total elements, and compare the

computed solution of (2.11) with the exact solution of (2.10) using different choices of the

artificial viscosity ε. The “optimal” choice of ε, which gives the smallest error for each N , is

shown in bold face in the table. The empty spaces in the table still imply that the iterative

procedure to obtain the numerical solution does not produce better accuracy or fails to converge

while reducing viscosity. The numerical solution as well as the grid distribution for the optimal

choice of ε when N = 160 can be seen in Fig. 2.5. The concentration of points towards the

shock location is less severe.

We plot the optimal ε versus N in Fig. 2.6, which shows a pattern of ε = CN−r by a least

square fit (the solid line in Fig. 2.6) with C = 0.38 and r = 1.50. In Fig. 2.7, the L1 error

Table 2.3: ||u− U ||L1 for Test Problem 3.

Number of elements

ε N = 80 N = 160 N = 240 N = 320 N = 480

8.00e-2 2.98e-1 2.98e-1 2.98e-1 2.98e-1 2.98e-1

4.00e-2 2.32e-1 2.32e-1 2.32e-1 2.32e-1 2.32e-1

2.00e-2 1.76e-1 1.76e-1 1.76e-1 1.76e-1 1.76e-1

1.00e-2 1.18e-1 1.18e-1 1.18e-1 1.18e-1 1.18e-1

5.00e-3 5.76e-2 5.75e-2 5.75e-2 5.75e-2 5.75e-2

2.50e-3 2.69e-2 2.69e-2 2.69e-2 2.69e-2 2.69e-2

1.25e-3 1.31e-2 1.31e-2 1.31e-2 1.31e-2 1.31e-2

6.25e-4 6.63e-3 6.51e-3 6.52e-3 6.51e-3 6.51e-3

3.125e-4 7.05e-3 3.28e-3 3.24e-3 3.24e-3 3.24e-3

1.5625e-4 1.72e-3 1.62e-3 1.61e-3 1.61e-3

7.8125e-5 2.18e-3 9.47e-4 8.19e-4 8.08e-4

3.90625e-5 1.21e-3 9.26e-4 4.10e-4

1.953125e-5 4.62e-4
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Fig. 2.5. Solution to Test Problem 3: resolution of shock.
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Fig. 2.6. Test Problem 3: ǫ versus N and a least square fit.
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Fig. 2.7. Test Problem 3: ||e||L1 versus N and a least square fit.

versus N is shown, when the optimal ε is used. A least square fit (the solid line in Fig. 2.7)

shows that the error has the pattern ||e||L1 = CN−r with C = 4.30 and r = 1.51.

The last two examples seem to show that we should choose the artificial viscosity coefficient

ε as small as possible for each fixed mesh size N , subject to the convergence of the iterative

procedure to obtain the numerical solution, and the final L1 error of the numerical solution can

achieve at least N−3/2 order of accuracy through adapting mesh based on the estimate (1.3).

It is also worth to point out that the amount of viscosity ε that we use to obtain O(N−3/2)

or better order of accuracy, which is around ε = O(N−3/2), is already out of the valid range
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(ε ≥ CN−1) that the a posterior error estimation (1.3) holds, as analyzed in [5].

We remark that we have used piecewise linear finite elements in this paper to simplify the

computation. Higher order finite elements can also be used in the same framework, however,

accuracy is not expected to improve beyond second order since we are measuring the global

error including the shocks. It is possible to obtain better accuracy away from the shock front

by using high order elements, but this is not the purpose of our study. It should be made

clear that the guideline we provide here is purely numerical due to the essential difficulty of

the nonlinear problem. The results in this paper serve as only numerical proof that high order

accuracy can be obtained with suitably chosen parameters and proper adaptive strategy. We

indeed observe the pattern of the optimal ε = cN−m with m > 1.5, and global L1 error smaller

than cN−m with m > 1.5. This indicates the potential of adaptive finite element methods for

shocked problems in obtaining higher than first order global convergence.
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