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Abstract

We present in this paper a numerical method for hypersingular boundary integral equa-

tions. This method was developed for planar crack problems: additional edge singularities

are known to develop in that case. This paper includes a rigorous error analysis proving the

convergence of our numerical scheme. Three types of examples are covered: the Laplace

equation in free space, the linear elasticity equation in free space, and in half space.
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1. Introduction

1.1. The three types of boundary eigenvalue problems studied in this paper

In this paper we study three types of numerical eigenvalue problems using hypersingular

boundary integral equations on cracks, either in three dimensional space, or in the lower half

space with traction free boundary conditions on the top plane x3 = 0. The first type of problem

involves the scalar Laplace operator in free space, cut by a planar fault Γ. Due to the possibility

of changing coordinates by rotation and translation we will assume that Γ is contained in the

plane x3 = 0. Denoting e1, e2, e3, the natural basis for R3, we choose the normal vector for Γ

to be n = −e3.
We seek to evaluate eigenfunctions f defined in some adequate functional space, ensuring

decay at infinity, and satisfying

∆f = 0, in R3 \ Γ, (1.1a)

[∂nf ] = 0, across Γ, (1.1b)

∂nf = γ[f ]. (1.1c)

Here γ is the eigenvalue and brackets indicate jumps across Γ, namely

[∂nf ] = lim
(x1,x2)∈Γ, x3→0+

∂nf(x1, x2, x3)− ∂nf(x1, x2,−x3), (x1, x2, 0) ∈ Γ.

A two dimensional analog to this eigenvalue problem was shown to be relevant to the study of

the destabilization of strike slip faults: see [3] and [7]. We are not aware of a straightforward

physical interpretation of problem (1.1) in 3D. In the present study this problem is a convenient
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intermediate step between the strike slip case and the fully three dimensional elasticity case.

In particular this step is instrumental in comparing our numerical method to others and in

deriving an error analysis which is also expected to hold in the subsequent two cases.

The second type of eigenvalue problem considered in this paper involves linear elasticity in

free space. The unknown eigenfunctions to be found are vector fields defined in some adequate

functional space, ensuring some decay at infinity, and satisfying

µ∆ϕ+ (λ+ µ)∇divϕ = 0, in R3 \ Γ, (1.2a)

[ϕ · e3] = 0, [ϕ · e2] = 0, [Tnϕ] = 0, across Γ, (1.2b)

Tnϕ · e1 = β[ϕ] · e1, (1.2c)

where the assumptions on Γ are the same as previously, β is the eigenvalue, and Tnϕ is the

usual notation for the stress vector, that is,

3∑

j=1

(λdivϕ δij + µ(∂iϕj + ∂jϕi))nj .

Eqs. (1.2) model a fault in free elastic space undergoing destabilization during which slip (that

is, displacement discontinuities) is allowed only in the e1 direction. A thorough study of this

eigenvalue problem, including a formal proof for simplicity of the first eigenspace, was under-

taken in [19]. The numerical results shown in that paper are, however, limited by the fact that

they were produced by a finite element software package. Questions of numerical convergence,

error analysis, and computational domain truncation, were all left unanswered: we propose to

address them in this present paper.

The third type of eigenvalue problem considered in this paper involves linear elasticity in

half space. Denote R3− the open set of points (x1, x2, x3) in R3 such that x3 < 0. We assume

that the fault Γ is strictly included in R3−. Traction free conditions are imposed on the top

boundary x3 = 0. These conditions are relevant to applications in geophysics. By rotation we

can assume that the plane containing Γ has normal direction n = (n1, 0, n3). Let t1 and t2 be

two vectors such that (n, t1, t2) forms an orthonormal basis for R3. The unknown eigenfunctions

to be found are vector fields defined in some adequate functional space, ensuring some decay

at infinity, and satisfying

µ∆ψ + (λ+ µ)∇divψ = 0, in R3− \ Γ, (1.3a)

Tnψ = 0, on x3 = 0 (1.3b)

[ψ · n] = 0, [ψ · t2] = 0, [Tnψ] = 0, across Γ, (1.3c)

Tnψ · t1 = β[ψ · t1]. (1.3d)

Eqs. (1.3) model a fault in free elastic half space undergoing destabilization during which slip

(that is displacement discontinuities) is allowed only in the t1 direction. No forces are applied

on the top boundary x3 = 0.

1.2. Outline of our main results and overview of alternative computational methods

found in the literature

The main achievement of this paper is to provide a numerical method for each of the

problems (1.1), (1.2), (1.3) which relies on boundary integral formulations. The advantage of
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this kind of formulation is twofold: firstly it leads to linear systems of reduced size; secondly

conditions at infinity are naturally embedded in the choice of an adequate Green’s function.

This second advantage is particularly important for the half space problem (1.3). Of course we

had to contend with some difficulties inherent to boundary integral equations. One particular

challenge pertains to the hypersingularities of the associated integral operator: in the present

case these are singularities of order O(r−3) for diagonal points. In this sense these operators

can be interpreted as being both integral and differential. A second challenge pertains to the

fact that solutions to (1.1), or (1.2), or (1.3), must have square root type singularities on ∂Γ,

the edge of the crack. These singularities and related Sobolev regularity results were studied

by Stephan and Wendland in [21] and [15].

It is noteworthy that hypersingular boundary integral equations on closed surfaces are sub-

stantially easier to solve numerically: one can employ fast and accurate quadratures, see for

example the work by Ying et al., [22]. Loosely speaking, the main difficulty arising in our

study, which involves hypersingular boundary integral equations on open surfaces, lies in the

competition between hypersingularities due to the Green’s integral operator and the square

root singularities due to the edge ∂Γ of the crack. For instance the high order quadrature

methods employed in [22] would fail in our case since derivatives of the solution blow up near

∂Γ. Furthermore clustering points near ∂Γ proves to be ineffective because of the integral and

differential nature of the Green’s integral operator: clustering can improve numerical integra-

tion but since derivatives are unbounded near the edge ∂Γ, there is no overall gain in accuracy;

even worse, conditioning deteriorates.

In case of a special geometry for the fault Γ it is conceivable that an astute change of variables

combined to the use of special quadrature rules will produce a very efficient and fast numerical

method. Such was the case in a paper by Dascalu et al., see [3], for the two dimensional analog

to (1.1): the crack studied in that paper is just the line segment [−1, 1]×{0} in R2 and special

Chebychev points of the second kind were put to use. In contrast we focus in this paper on

finding a method applicable to general geometries for cracks Γ: we only require Γ to be planar

and some smoothness for the edge ∂Γ. An early review paper by Martin et al., [10], lists the

hurdles in the way of developing efficient numerical methods for crack problems in 3D, discusses

various solution methods, and recommends using piecewise linear approximations combined to

additional square root terms near the edge of the crack. Later, finite element boundary methods

for crack problems in 3D were designed, see [16]. More sophisticated studies of crack problems

in 3D have since been undertaken, with a particular emphasis on dynamic unstable evolution.

Badea et al., [2], use spatial finite elements while Aochi et al., [1], rely on boundary integral

methods. Note that these two studies do not include any error analysis and are limited to the

free space case.

Ultimately the boundary integral equation method introduced in this paper is proved, in

case of problem (1.1), to be at least O(h
2
3 lnh) accurate for about O(n2) interpolation points

placed on Γ, and where h = O(n−1). In effect a convergence rate of O(h lnh) is observed for

each of the eigenfunction problems (1.1), (1.2), and (1.3). Although this convergence rate might

seem quite modest, it is in fact competitive in comparison to existing methods. For instance,

a paper on a new finite element method for a mixed boundary value problem for 3D elasticity

by Hsiao and Wendland [6], features a method of order O(hδ) where δ is a constant in (0, 12 ).

Finally let us make a remark on computational speed for our proposed integral equation

method. In the case of problem (1.1) most of the computational time is spent on evaluating

the coefficients of the matrix for the discretized problem. Assume now that n, a parameter
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introduced in the next section quantifying the fineness of the discretization, is fixed. Denote S

the square [−1, 1] × [−1, 1]. We can then first compute the coefficients of the matrix MS for

the discretized problem in the case Γ = S; from there for any other geometry Γ, we can assume

by translation and dilation that Γ is included in S. We will explain how the coefficients of the

matrix MΓ for the discretized problem relative to Γ, can just be sampled from the matrix MS .

Finding the lowest eigenvalue for MΓ typically takes under one second. A similar remark can

be made for problem (1.2), assuming that λ and µ are fixed. Remarkably, setting λ = µ = 1 is

a common modeling choice in geophysical applications . The computation then depends only

on the geometry of Γ; our computational scheme is very fast in that case. This method could

be quite useful in practice to inverse problems for the reconstruction of the geometry of Γ.

Our paper will unfold as follows: Section 2 is devoted to the scalar eigenvalue problem (1.1).

We explain in detail the theoretical foundations of our numerical method in Section 2.1, and we

perform a rigorous error analysis in 2.2. The minutia of this implementation as well as the error

analysis both hold in the other two cases covered in this paper, up to appropriate adjustments,

and will not be repeated. In Section 2.3 we verify our numerical scheme by comparison to

a hypersingular integral whose exact value is known. In Section 2.4 we provide numerical

results for Eq. (1.1) first using a finite element package and then applying our integral equation

method. This section demonstrates that while the two sets of estimates for the eigenvalue γ are

comparable, we are more confident of our integral equation method due to clearer convergence

behavior and better conditioning. It will also become clear in Section 2 why once the matrix

for discretizing the boundary integral operator relative to Eq. (1.1), where Γ is the unit square,

is tabulated, we can henceforth make very rapid computations of eigenvectors for any other

smooth and planar geometry for Γ.

Section 3 is devoted to cracks in free space whose unstable quasi static evolution is modeled

by Eq. (1.2). In Section 3.1 we explain how the numerical method introduced in Section 2 can be

adjusted to handle Eq. (1.2). We present in Section 3.2 numerical outputs relative to equations

(1.2) resulting from, first a finite element package, and second, our integral equation method.

Section 4 is devoted to half space elasticity, which is the most interesting case for applications to

geophysics. After introducing governing equations, we comment on the derivation of the Green’s

tensor for that case, with an emphasis on singular points. We then show numerical results for

a calculation involving a fault whose tip is very close to the top surface. Note that a standard

finite element package is inadequate for such cases due to the additional numerical difficulties

related to near surface points. Finally, we show a numerical illustration of convergence of

eigenvectors for the half space problem (1.2) to the free space problem (1.3) as the fault depth

grows large. In the last section we summarize our findings and point to further problems of

interest which we intend to study in the future.

2. The Laplace Eigenvalue Problem for a Crack in Free Space

We first introduce an adequate functional space where problem (1.1) is well posed. We

define the functional space L to be the closure for the norm (
∫
R3 |∇u|2)

1
2 of the space of scalar

functions in H1(R3 \ Γ) with bounded support. L is used to reframe eigenvalue problem (1.1)
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as follows, find f in L and a real number γ, such that,

∆f = 0, in R3 \ Γ, (2.1a)

[∂nf ] = 0, across Γ, (2.1b)

∂nf = γ[f ]. (2.1c)

Solving the PDE (2.1) is equivalent to minimizing

∫
R3 |∇f |2∫
Γ
[f ]2

, f ∈ L, [f ] 6= 0,

see [19]. By translation, rotation, and dilation we can assume without loss of generality that

the crack Γ is included in the square [−1, 1]× [−1, 1], which we denote S. We will use the free

space Green’s function for the Laplacian,

G(x, y) =
1

4π

1

|x− y| .

If f solves (2.1) then the following relation holds for x in Γ

γ[f(x)] = −∂n(x)
∫

Γ

∂n(y)G(x, y)[f(y)]dy. (2.2)

For x and y on Γ we set

N(x, y) = −∂n(x)∂n(y)G(x, y), u(x) = [f(x)].

Note that if x 6= y, and x and y are in the plane of equation x3 = 0, N(x, y) = − 1
4π |x − y|−3.

Eq. (2.2) can be rewritten as

γ u(x) =

∫

Γ

N(x, y)u(y)dy, (2.3)

where the unknown eigenvector u is in H̃
1
2 (Γ)2 and the integral is understood in the hypersin-

gular sense, see [15]. In the present planar case H̃
1
2 (Γ)2 is the space of vector fields in Γ such

that if extended by zero to R2, they become elements of the space H
1
2 (R)2.

2.1. The numerical method

We start this section by recalling results on the existence of a first eigenvector solving

equation (2.3) and stating its regularity properties. We know from [15] that we can define a

linear operator N from H̃
1
2 (Γ)2 to H− 1

2 (Γ)2 by setting for u in H̃
1
2 (Γ)2

Nu(x) =

∫

Γ

N(x, y)u(y)dy.

According to [21] N is bijective and continuous. Defining I1 the natural injection from L2(Γ)2

to H− 1
2 (Γ)2 and I2 the natural injection from H̃

1
2 (Γ)2 to L2(Γ)2, M = I2N−1I1 is a positive

definite compact and symmetric linear mapping. Therefore it has a largest eigenvalue. The

corresponding eigenspace is known to be one dimensional, see [19]. In this section we will denote

γ1 the smallest eigenvalue of N , u1 an associated eigenvector such that

∫

Γ

u21 = 1 (2.4)
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In other words the pair u1, γ1 satisfies (2.3) and γ1 is minimal for that condition. We also know

from [21] that although eigenvectors are smooth in Γ, they tend to zero near the edge ∂Γ while

having square root singularities. A solution u to (2.3) can be extended to S by setting it equal

to zero in S \ Γ. The extended function, which we will still denote u for convenience, is in the

Sobolev space H
1
2
0 (S)

2, if Γ is strictly included in S, see [15].

DefineW to be the set S\∂Γ. Our numerical method consists of determining approximations

in the space of three times continuously differentiable functions in W , C3(W ), to solutions u

of (2.3). These approximations are done on a lattice of points. Of course the derivatives of u

grow large near ∂Γ. We introduce a smooth function d defined on Γ equal to the distance from

x to ∂Γ if x is close enough to ∂Γ; if x is far enough from ∂Γ d(x) is set to be equal to 1, and

in between these two regions d is positive and smooth. This is possible since the distance from

x to ∂Γ is well defined and smooth in a small tubular neighborhood of ∂Γ. We will consider

functions u is such that there is a positive constant A such that for all x in Γ

|Dαu(x)| ≤ Ad(x)
1
2−|α|, 0 ≤ |α| ≤ 3. (2.5)

According to [21] solutions to eigenvalue problem (2.3) satisfy the singularity condition (2.5).

Our numerical method takes advantage of the fact that for a fixed interior point x of Γ

(relative to the topology of the plane x3 = 0), a solution u to (2.3) is smooth in a neighborhood

of x. We may then remove singularities by Taylor expansions of order 2. Singularity removal is a

rather common technique for integral equations, however, it is usually employed for logarithmic

or Cauchy type singularities. For stronger singularities there is a fair amount of literature in

the case of 2D problems, including some work by the author of the present paper, see [7]. The

case of 3D problems is substantially more challenging, since the geometry of the crack must be

approximated, and the integrand does not become infinitely smooth after singularity removal,

as noted below.

Our method is based on the following decomposition for x in Γ:

∫

Γ

N(x, y)u(y)dy =

∫

S

N(x, y)u(y)dy

=

∫

S

N(x, y)U(y)dy + u(x)

∫

S

N(x, y)dy +

2∑

i=1

∂iu(x)

∫

S

(yi − xi)N(x, y)dy

+
1

2

2∑

i=1

2∑

j=1

∂i∂ju(x)

∫

S

(yi − xi)(yj − xj)N(x, y)dy, (2.6)

where the function U is defined by

U(y) = u(y)− u(x)−
2∑

i=1

∂iu(x)(yi − xi)−
1

2

2∑

i=1

2∑

j=1

∂i∂ju(x)(yi − xi)(yj − xj). (2.7)

Note that U is merely a quadratic function of y in S \Γ. In addition note that the six integrals

I0 :=

∫

S

N(x, y)dy, I1i :=

∫

S

(yi − xi)N(x, y)dy,

I2i,j :=

∫

S

(yi − xi)(yj − xj)N(x, y)dy, (2.8)
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have to be understood in the following sense: let x = (x1, x2) be in Γ and x = (x1, x2, x3) be

in R3. Then

I0 := − lim
x3→0

∫

S

∂n(x)∂n(y)G(x, y)dy, I1i := − lim
x3→0

∫

S

(yi − xi)∂n(x)∂n(y)G(x, y)dy,

I2i,j := − lim
x3→0

∫

S

(yi − xi)(yj − xj)∂n(x)∂n(y)G(x, y)dy. (2.9)

These six integrals and limits can be evaluated in closed form. Formulas are provided in the

Appendix.

The derivatives of u will have to be approximated numerically. Let n be a positive integer

and h = 2/n. We introduce the collocation points xij := (−1 + ih,−1 + jh) and the grids of

points

Sn :=
{
xij : 1 ≤ i, j ≤ n− 1

}
, Γn :=

{
x ∈ Sn ∩ Γ : d(x) ≥ h

}
. (2.10)

We denote

∂̃iu(x) =
u(x+ hei)− u(x− hei)

2h
, ∂̃i∂iu(x) =

u(x+ hei) + u(x− hei)− 2u(x)

h2
, (2.11)

∂̃i∂ju(x) =
u(x+ hei + hej) + u(x− hei − hej)− u(x+ hei − hej)− u(x− hei + hej)

2h2
, (2.12)

and we define Ũ the following discrete approximation to U ,

Ũ(y) = u(y)− u(x)−
2∑

i=1

∂̃iu(x)(yi − xi)−
1

2

2∑

i=1

2∑

j=1

∂̃i∂ju(x)(yi − xi)(yj − xj). (2.13)

Expression (2.6) seems to be relevant for analyzing the operator N . However another form is

more adequate for performing a numerical analysis of a method derived from (2.6). Introduce

a function Ṽ which will serve as a convenient intermediate between U and Ũ

Ṽ (y) = u(y)− u(x)−
2∑

i=1

∂iu(x)(yi − xi)−
1

2

2∑

i=1

2∑

j=1

∂̃i∂ju(x)(yi − xi)(yj − xj), (2.14)

and apply the following decomposition for x in Γ:
∫

Γ

N(x, y)u(y)dy =

∫

S

N(x, y)u(y)dy

=

∫

S

N(x, y)Ṽ (y)dy + u(x)

∫

S

N(x, y)dy +

2∑

i=1

∂iu(x)

∫

S

(yi − xi)N(x, y)dy

+
1

2

2∑

i=1

2∑

j=1

∂̃i∂ju(x)

∫

S

(yi − xi)(yj − xj)N(x, y)dy. (2.15)

Note that the integral
∫
S
N(x, y)Ṽ (y)dy can be understood as an integral in the Lebesgue space

L1(S) since

Ṽ (y) = O(|x− y|2), N(x, y) = O(|x− y|−3).

We then derive the discrete operator Ñ from the right hand side expression (2.15),

Ñu(x) =
∑

y∈Sn, y 6=x

N(x, y)Ũ(y)h2 + u(x)I0 +

2∑

i=1

∂̃iu(x)I
1
i +

1

2

2∑

i=1

2∑

j=1

∂̃i∂ju(x)I
2
i,j . (2.16)
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2.2. Error analysis

2.2.1. Estimates for the finite differences approximating the derivatives of u

By application of Taylor’s formula we find that for x in Γn

∂̃iu(x) − ∂iu(x) = O(Ahd(x)−
3
2 ), ∂̃i∂ju(x) − ∂i∂ju(x) = O(Ahd(x)−

5
2 ). (2.17)

Since our schemes for first derivatives is order 2 accurate we have the higher order estimate

∂̃iu(x) − ∂iu(x) = O(Ah2d(x)−
5
2 ). (2.18)

The following estimate, which does not depend on h, will also be needed

∂̃i∂iu(x) = O(Ad(x)−
3
2 ). (2.19)

2.2.2. Interior estimates

In this section we estimate the difference between the discrete sum and finite differences (2.16)

and the continuous integrals and derivatives given by (2.15), if x is in Γn and remains bounded

away from the edge ∂Γ. In effect we assume that

d(x) ≥ B, (2.20)

where the positive constant B depends only on the geometry of Γ and will be specified later.

Let Sij be the square xij + [−h
2 ,

h
2 ]× [−h

2 ,
h
2 ], f a function of class C1 on Sij . Due to Taylor’s

formula centered at xij ,
∣∣∣∣∣

∫

Sij

f(x)dx − h2f(xij)

∣∣∣∣∣ ≤ h3 max
Sij

|∇f |, (2.21)

where max
Sij

|∇f | is the maximum of the first derivatives of f over Sij .

We separate two cases defined according to the position of y relative to x. Γn. Let D be a

positive constant smaller than B
2 .

Case 1: |x− y| ≥ D

For some constant C independent of u and Γ the following holds

|∇(N(x, y)Ṽ (y))| ≤ CD−3|∇Ṽ (y)|+ CD−4|Ṽ (y)|.

Now due to (2.5)

|Ṽ (y)| ≤ Ad(y)
1
2 1Γ(y) + CAB− 3

2 ,

|∇Ṽ (y)| ≤ Ad(y)−
1
2 1Γ(y) + CAB− 3

2 ,

thus the difference
∫

y∈S,D≤|y−x|

N(x, y)Ṽ (y)dy −
∑

y∈Sn, D≤|y−x|

N(x, y)Ṽ (y)h2, (2.22)

which is less than

∑

yij∈Γn,D≤|yij−x|

∫

Sij

N(x, y)Ṽ (y)− h2N(x, yij)Ṽ (yij) dy
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is, according to (2.21), less than

∑

y∈Sn

h3d(y)−
1
2AB− 3

2D−4 ≤ ChAB− 3
2D−4

∫ 1

0

s−
1
2 ds = ChAB− 3

2D−4,

for some positive constant C.

We now need to estimate the difference
∑

y∈Sn, D≤|y−x|

N(x, y)Ũ(y)h2 −
∑

y∈Sn, D≤|y−x|

N(x, y)Ṽ (y)h2.

Since

|Ũ(y)− Ṽ (y)| =
∣∣∣∣∣

2∑

i=1

(∂iu(x)− ∂̃iu(x))(yi − xi)

∣∣∣∣∣ ≤ CAhd(x)−
3
2 ,

we have that
∣∣∣∣

∑

y∈Sn, D≤|y−x|

N(x, y)Ũ(y)h2 −
∑

y∈Sn, D≤|y−x|

N(x, y)Ṽ (y)h2
∣∣∣∣ ≤ CAhB− 3

2 .

We have thus proved that
∣∣∣∣
∫

y∈S,D≤|y−x|

N(x, y)Ṽ (y)dy −
∑

y∈Sn, D≤|y−x|

N(x, y)Ṽ (y)h2
∣∣∣∣ ≤ ChAB− 3

2D−4.

Case 2: y is near x: |x− y| ≤ D

We make the following observation: setting ρ = |x− y|, as ρ approaches zero, for U defined on

(2.7)

|U(y)| ≤ CAd(x)−
5
2 ρ3 ≤ CAB− 5

2 ρ3,

after simplifying U(y)− Ṽ (y) we find that

|U(y)− Ṽ (y)| ≤ ChAd(x)−
5
2 ρ2 ≤ ChAB− 5

2 ρ2,

so that

|Ṽ (y)| ≤ ChAB− 5
2 ρ2 + CAB− 5

2 ρ3.

A similar process will show that

|∇Ṽ (y)| ≤ ChAB− 5
2 ρ+ CAB− 5

2 ρ2.

Since |N(x, y)| ≤ Cρ−3 and |∇yN(x, y)| ≤ Cρ−4 we can now apply (2.21) to claim that the

difference
∫

y∈S,0<|y−x|<D

N(x, y)Ṽ (y)dy −
∑

y∈Sn,0<|y−x|<D

N(x, y)Ṽ (y)h2 (2.23)

is, of order

∑

y∈Sn, h≤|y−x|<D

CAB− 5
2 (h4ρ−2 + h3ρ−1) ≤ ChAB− 5

2

(
h

∫ D

h

ρ−1dρ+

∫ D

h

dρ

)
≤ ChAB− 7

2 .
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We now note that

Ṽ (y)− Ũ(y) = −
2∑

i=1

(
∂iu(x)− ∂̃iu(x)

)
(yi − xi),

so that using (2.18)

∣∣∣Ṽ (y)− Ũ(y)
∣∣∣ ≤ Ah2d(x)−

5
2 ρ ≤ Ah2B− 5

2 ρ.

Then the difference

∑

y∈Sn,0<|y−x|<D

N(x, y)
(
Ṽ (y)− Ũ(y)

)
h2

is of order

∑

y∈Sn, h≤|y−x|<D

CAh4B− 5
2 ρ−2 ∼ CAh2B− 5

2

∫ C

h

ρ−2ρdρ ≤ CAhB− 5
2 .

We can now combine the outcomes from the two previous cases to conclude that if d(x) ≥ B

then
∣∣∣∣∣∣

∫

y∈S, 0<|y−x|<C

N(x, y)Ṽ (y)dy −
∑

y∈Sn,0<|y−x|<C

N(x, y)Ũ(y)h2

∣∣∣∣∣∣

≤CAh
(
B− 5

2 +B− 3
2D−4

)
≤ CAhB− 11

2 , choosing D =
B

2
. (2.24)

Since we assumed that Γ is bounded away from ∂S we have that I0, I1i , I
2
i,j remain bounded

for x in Γ. Accordingly, we conclude that

∣∣∣∣Ñu(x)−
∫

Γ

N(x, y)u(y)dy

∣∣∣∣ ≤ CAhB− 11
2 , (2.25)

for x in Γn such that d(x) ≥ B.

Conclusion: Assume that u is in C3(W ) while behaving at the boundary ∂Γ as indicated by

(2.5). If
∫
ΓN(x, y)u(y)dy is computed based on the method derived from equation (2.16), and

if x is a fixed point on the grid Γn sufficiently far from ∂Γ, this method is of order O(h). This

is verified numerically on an example in Section 2.3.

2.2.3. Boundary estimates

In this section we estimate the difference between the discrete sum and finite differences (2.16)

and the continuous integrals and derivatives given by (2.15), if x is close the edge ∂Γ. Our first

task is to determine the constant B introduced in (2.20) which we said depends only on the

geometry of Γ. Fix δ in (0, 1) and set R = d(x)1−δ , if d(x) < 1. B is chosen small enough such

that for all x in Γ such that d(x) ≤ B the projection of x on ∂Γ is well defined and, in the disk

centered at x and radius R = d(x)1−δ , ∂Γ appears only as the perturbation of order R2 of a

line segment.
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Case 3: y is away from x, |y − x| ≥ R but d(x) ≤ B

In that case the argument from case 1 can be repeated to find in the end
∣∣∣∣∣∣

∫

y∈S,R≤|y−x|

N(x, y)Ṽ (y)dy −
∑

y∈Sn, R≤|y−x|

N(x, y)Ṽ (y)h2

∣∣∣∣∣∣
≤ ChAd(x)−

3
2R−4. (2.26)

Case 4: y is near x, |y − x| ≤ R and d(x) ≤ B

We switch to a local coordinate system centered at x and we set ρ = |x − y|. By Taylor’s

formula

|Ṽ (y)| ≤ Cρ2|∇∇u(x+ s1(y − x))|, |∇Ṽ (y)| ≤ Cρ|∇∇u(x+ s2(y − x))|,

where ∇∇ stands for the Hessian, and s1, s2 are in (0, 1). Referring to Fig. 2.1 we think

of the line through x and its projection on ∂Γ as the vertical axis and the line through x

perpendicular to that first line the horizontal axis. ρ, θ will designate the polar coordinates in

this local coordinate system. If y is in the upper part D+(x,R) of the disk D(x,R) centered at

x and of radius R then d(x + s(y − x)) ≥ Cd(x) thus,

|Ṽ (y)| ≤ CAρ2d(x)−
3
2 , |∇Ṽ (y)| ≤ CAρd(x)−

3
2 , ∀y ∈ D+(x,R),

thus the difference
∫

y∈S, y∈D+(x,R)

N(x, y)Ṽ (y)dy −
∑

y∈Sn,h<|y−x|,y∈D+(x,R)

N(x, y)Ṽ (y)h2 (2.27)

is of order
∑

y∈Sn,h<|y−x|,y∈D+(x,R)

CAh3ρ−2d(x)−
3
2 ,

∂Γ

R

d(x)

α

x

D+(x,R)

Region I Region III

Region IV

Region II

Fig. 2.1. A sketch of x near ∂Γ. Here R = d(x)1−δ is small enough for ∂Γ to be an O(R2) perturbation

of a line segment in D(x,R).
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which is less than

CAhd(x)−
3
2

∫ R

h

ρ−1dρ ≤ CAh| lnh|d(x)− 3
2 . (2.28)

We set D−(x,R) = D(x,R) \D+(x,R). Estimates for y in D−(x,R) are more delicate: they

require using the local first order geometry near x and the following formula, valid if 0 < C1 <

C2 < 1,

∫ C2

C1

dρ′

ρ′(1− ρ′)
3
2

= −2
1√

1− C1

+ 2
1√

1− C2

+ ln

((
1−√

1− C2

) (√
1− C1 + 1

)
(
1−√

1− C1

) (√
1− C2 + 1

)
)
. (2.29)

From examining the geometry of D−(x,R) we note that for y in that region and s in (0, 1)

d(x+ s(y − x)) ≥ Cd(y) ≥ C(d(x) − ρ cos θ).

To estimate the difference
∫

y∈S, y∈D−(x,R)

N(x, y)Ṽ (y)dy −
∑

y∈Sn,h<|y−x|,y∈D−(x,R)

N(x, y)Ṽ (y)h2, (2.30)

we split D−(x,R) as indicated in Fig. 2.1. If y is in region I or III, the difference (2.30) for y

in region I or III is bounded by

CAh

∫ π
2

α

∫ R

h

dρdθ

ρ(d(x) − ρ cos θ)
3
2

.

Setting ρ′ = ρ cos θd(x)−1 and using formula (2.29), this previous integral is less than

CAh| ln h|d(x)− 3
2 + CAhd(x)−

3
2

∫ π
2

α

(1 −Rd(x)−1 cos θ)−
1
2 dθ. (2.31)

This last integrand is unbounded since cosα = d(x)δ and Rd(x)−1 = d(x)−δ, but the resulting

integral is bounded since
∫ 1

0
v−

1
2 dv is convergent.

The geometry of region II is different. Notice that if d(x) = h region II is empty; since x is

in Γn, if region II is non empty then d(x) ≥ 2h so d(x)− h ≥ h. The difference (2.30) in region

II is less than

CAh

∫ α

0

∫ d(x)−h

cos θ

h
cos θ

dρdθ

ρ(d(x) − ρ cos θ)
3
2

.

Setting ρ′ = ρ cos θd(x)−1 in the integral above we obtain

CAhd(x)−
3
2

∫ α

0

∫ (1− h
d(x)

)

h
d(x)

dρ′dθ

ρ′(1− ρ′)
3
2

.

Now using formula (2.29) we see that the previous expression is less than

CA(h| ln h|d(x)− 3
2 + h

1
2 d(x)−1). (2.32)

In region IV, which lies outside Γ, ρ ≥ d(x) and u(y) = 0 so that

|Ṽ (y)| ≤ Ad(x)
1
2 + CAd(x)−

1
2 ρ+ CAd(x)−

3
2 ρ2,

|∇Ṽ (y)| ≤ CAd(x)−
1
2 + CAd(x)−

3
2 ρ,
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so that the difference (2.30) for y in region IV is bounded by

CAh

∫ R

d(x)

(d(x)
1
2 ρ−4 + d(x)−

1
2 ρ−3 + d(x)−

3
2 ρ−2)ρdρ,

which is less than

CAhd(x)−
3
2 | ln d(x)|. (2.33)

To estimate the difference

∑

y∈Sn,0<|y−x|<C

N(x, y)(Ṽ (y)− Ũ(y))h2,

we will use the fact that Γ is strictly included in S and that x is one of the grid points in

Γn. We take C to be smaller than 1/
√
2 times the distance from Γ to ∂S: the set of points

{y ∈ Sn, 0 < |y− x| < C} is then symmetric about each of the two lines passing through x and

parallel to the x1 or x2 axis. Accordingly

∑

y∈Sn,0<|y−x|<C

N(x, y)(Ṽ (y)− Ũ(y))h2

=− 1

2

2∑

i=1

(∂̃i(x)− ∂iu(x))h
2

∑

y∈Sn,0<|y−x|<C

N(x, y)(yi − xi)

is zero simply because

∑

y∈Sn,0<|y−x|<C

N(x, y)(yi − xi) = 0,

due to symmetries, and we conclude that
∣∣∣∣∣∣

∑

y∈Sn,y 6=x

N(x, y)(Ṽ (y)− Ũ(y))h2

∣∣∣∣∣∣
≤ CAhd(x)−

3
2 . (2.34)

Since we assumed that Γ is bounded away from ∂S we have that I0, I1i , I
2
i,j remain bounded

for x in Γ. Combining estimates (2.25), (2.26), (2.28), (2.31), (2.32), (2.33), (2.34), we conclude

that
∣∣∣∣Ñu(x)−

∫

Γ

N(x, y)u(y)dy

∣∣∣∣

≤CA(h| ln h|d(x)− 3
2 + hd(x)−

3
2−4(1−δ) + hd(x)−

3
2 | ln d(x)|+ h

1
2 d(x)−1), (2.35)

where δ is fixed in (0, 1), C is constant depending only on δ, the geometry of ∂Γ and its distance

to ∂S, x is in Γn, u is in C3(Γ), and A was defined in (2.5).

2.2.4. Numerical convergence of eigenvectors

Proposition 2.1. Let u be in C3(Γ) such that there is a positive constant A such that for all

x in Γ

|Dαu(x)| ≤ Ad(x)
1
2−|α|, 0 ≤ |α| ≤ 3.



556 D. VOLKOV

The following estimate holds

∣∣∣∣∣

∫

Γ

∫

Γ

N(x, y)u(y)u(x)dydx−
∑

x∈Γn

h2(Ñu(x))u(x)

∣∣∣∣∣ ≤ CA2h
1
2 , (2.36)

where C is a constant depending only on the geometry of ∂Γ.

Proof. By the triangle inequality

∣∣∣∣∣

∫

Γ

∫

Γ

N(x, y)u(y)u(x)dydx −
∑

x∈Γn

h2(Ñu(x))u(x)

∣∣∣∣∣ ≤ E1 + E2,

where

E1 =

∣∣∣∣∣

∫

Γ

∫

Γ

N(x, y)u(y)u(x)dydx−
∑

x∈Γn

h2
∫

Γ

N(x, y)u(y)dy u(x)

∣∣∣∣∣ ,

E2 =

∣∣∣∣
∑

x∈Γn

h2u(x)
(
Ñu(x)−

∫

Γ

N(x, y)u(y)dy
)∣∣∣∣.

We first estimate E1. Since |u(x)| ≤ Ad(x)
1
2 and |∇u(x)| ≤ Ad(x)−

1
2 , due to the properties of

the singular integral operator N we may write the following estimates for Nu,

∣∣∣∣
∫

Γ

N(x, y)u(y)dy

∣∣∣∣ ≤ CAd(x)−
1
2 ,

∣∣∣∣∇x

∫

Γ

N(x, y)u(y)dy

∣∣∣∣ ≤ CAd(x)−
3
2 .

Thus
∣∣∣∣∇x

(∫

Γ

N(x, y)u(y)dy u(x)

)∣∣∣∣ ≤ CA2d(x)−1

and using one more time inequality (2.21) we find that

E1 ≤
∑

x∈Γn

CA2h3d(x)−1 ≤ CA2h

∫ C

h

t−1dt ≤ CA2h| lnh|.

We now proceed to estimate E2. This is straightforward thanks to estimate (2.35)

E2 ≤
∑

x∈Γn

Ch2A2(h| lnh|d(x)−1 + hd(x)−1−4(1−δ) + hd(x)−1| ln d(x)| + h
1
2 d(x)−

1
2 )

≤CA2

∫ C

h

(h| lnh|t−1 + ht−1−4(1−δ) + ht−1| ln d(x)| + h
1
2 t−

1
2 )dt

≤CA2h
1
2 , if δ is in

(
7

8
, 1

)
.

Note that this latter constant C depends on the choice of δ. Estimate (2.36) results from

combining the estimates for E1 and for E2. �

Proposition 2.2. Fix A > 1 and denote R the subset of functions u in C3(Γ) such that

∫

Γ

u2 = 1 and ∀x ∈ Γ, |Dαu(x)| ≤ Ad(x)
1
2−|α|, where 0 ≤ |α| ≤ 3.
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Choose A to be large enough for R to contain the eigenfunction u1 defined in (2.4). The

infinimum

inf
u∈R

∑

x∈Γn

h2(Ñu(x))u(x)

∑

x∈Γn

h2u2(x)

converges to the first eigenvalue γ1. Moreover we have the following estimate for the rate of

convergence
∣∣∣∣∣∣∣∣
γ1 − inf

u∈R

∑

x∈Γn

h2(Ñu(x))u(x)

∑

x∈Γn

h2u2(x)

∣∣∣∣∣∣∣∣
≤ CA4h

1
2 ,

where C is a constant depending only on the geometry of ∂Γ.

Proof. Repeating the use of techniques shown earlier in this paper it can be proved that for

all u in R ∣∣∣∣1−
∑

x∈Γn

h2u2(x)

∣∣∣∣ ≤ CA2h. (2.37)

In particular
∑

x∈Γn
h2u2(x) ≥ 1/2 if h is small enough. Applying the triangle inequality

∣∣∣∣∣∣∣∣

∫

Γ

(Nu)(x)u(x)dx −

∑

x∈Γn

h2(Ñu(x))u(x)

∑

x∈Γn

h2u2(x)

∣∣∣∣∣∣∣∣
≤ E3 + E4,

where

E3 =

∫

Γ

(Nu)(x)u(x)dx

∣∣∣∣∣∣∣∣
1− 1∑

x∈Γn

h2u2(x)

∣∣∣∣∣∣∣∣
,

E4 =
1∑

x∈Γn

h2u2(x)

∣∣∣∣∣

∫

Γ

(Nu)(x)u(x)dx −
∑

x∈Γn

h2(Ñu(x))u(x)

∣∣∣∣∣ .

Using (2.36) and (2.37) we find that E3 ≤ CA4h and E4 ≤ CA2h
1
2 . Now, since u is in H̃

1
2 (Γ)

and
∫
Γ
u2 = 1, we have that

∫
Γ
(Nu)(x)u(x)dx ≥ γ1. It follows that

∑

x∈Γn

h2(Ñu(x))u(x)

∑

x∈Γn

h2u2(x)
≥ γ1 − CA4h

1
2 ,

for all u in R. Since the vector u1 is in R we must have
∑

x∈Γn

h2(Ñu1(x))u1(x)

∑

x∈Γn

h2u21(x)
≤ γ1 + CA4h

1
2 .
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Fig. 2.2. Left: numerical error in computing the hypersingular integral (2.38) against n. (n − 1)2

collocation points were placed on the square S, but only those in Γn are used, see (2.10). Right: a log

log rendition of the same data. The slope for the best linear fit, which appears in red is -0.99.

The previous two inequalities demonstrate that estimate (2.37) must hold.

Note: In practice a stronger convergence rate than that suggested by estimate (2.37) is

achieved. We will show further in this paper that the observed rate is rather of order O(h| lnh|),
and in Appendix we show how estimates (2.36) and (2.37) can be improved to find CA4h

2
3 | lnh|

as a final bound in (2.37).

2.3. Verification of the previous error estimates on a hypersingular integral whose

exact value is known

We can evaluate in closed form the following hypersingular integral, where the unit disk

centered at the origin is denoted D(0, 1),

∫

D(0,1)

N(0, y)
√
1− |y|2dy (2.38)

by switching to polar coordinates and using the limiting process indicated in (2.9). The exact

value is π/4. We then apply our numerical method given by (2.16) with the specific settings

Γ = D(0, 1), u(y) =
√
1− |y|2. Note that u(y) is zero for y on ∂Γ and u(y) ∼ d(y, ∂Γ)

1
2 as y

approaches ∂Γ while remaining in Γ, just as the solution to (2.3). According to Section 2.2.2,

the error incurred in our numerical method should be of order O(h). We show in Fig. 2.2 that

this expected error is indeed confirmed by this computation.

2.4. Numerical solution to eigenvalue problem (2.1)

In this section we will present two sets of results on the numerical solution to eigenvalue prob-

lem (2.1). The first set is obtained by application of a finite element method to an adequately

adjusted version of Eqs. (2.1). The second set is obtained by application of our numerical

method introduced in Section 2.1 to integral equation (2.3).

To solve eigenvalue problem (2.1) by a finite elements method, we first recast it in the upper

half space. Let R3+ be the upper half space defined by the equation x3 > 0. We define the

functional space L+ to be the closure for the norm (
∫
R3+ |∇u|2) 1

2 of the space of scalar functions

in H1(R3+) with bounded support. We denote L+
0 the closed subspace of functions g in L+
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such that g is zero in {x3 = 0} \ Γ. It was shown in [19] that f is in L and satisfies (2.1) if and

only if the restriction of f to R3+ is in L+
0 and satisfies

∆f = 0, in R3+, (2.39a)

∂nf = 2γf, on Γ. (2.39b)

Next we introduce a bounded computational domain Ω defined by x3 > 0, |x| < R: we will

define an approximation f̃ to f in Ω. On the portion of ∂Ω defined by (∂Ω∩ {x : x3 = 0})\Γ, the
boundary condition is imposed by the definition of the functional space L+

0 , that is, f̃ = 0. For

the portion of ∂Ω defined by ∂Ω∩ {x : |x| = R}), since we can derive the integral representation

for f solution to (2.1)

f(x) = −
∫

Γ

∂n(y)G[f(y)]dy, (2.40)

and since the estimate at infinity ∂n(y)G = O(R−2) holds, we impose for f̃ the Robin condition

2R−1f̃ + ∂r f̃ = 0.

This is an O(R−4) accurate approximation. In Fig. 2.3 we indicate the computed value of γ

the first eigenvalue for the problem

∆f̃ = 0, in Ω, (2.41a)

∂nf̃ = 2γf̃ , on Γ, (2.41b)

f̃ = 0, on (∂Ω ∩ {x : x3 = 0}) \ Γ, (2.41c)

2R−1f̃ + ∂r f̃ = 0, on ∂Ω ∩ {x : |x| = R}, (2.41d)

f̃ was obtained by use of a finite element package. In the particular numerical example illus-

trated in Fig. 2.3, Γ is again the ellipse x21 + (x2/.6)
2 ≤ 1 in the plane x3 = 0. The number

of degrees of freedom for the finite element method is given by n2; n is borne out on the hori-

zontal axis. These numbers are very large and require pre conditioning prior to proceeding to

the numerical search for the first eigenvalue. This method seems to be converging, but, due to

the introduction of the artificial boundary condition on ∂Ω∩ {x : |x| = R}, it is far from clear

how well the eigenvalue γ for (2.1) is approximated. Fig. 2.4 shows the meshing for the domain

Ω in case of 5139 degrees of freedom. Note the clustering of edges near Γ. The finite element

package is capable through mesh refinements to further cluster points near Γ as the number

of degrees of freedom increases. Ultimately we are led to conclude based on Fig. 2.3 that the

best approximation for γ is somewhere close to 1.34 or 1.35. Further increasing the number of

degrees of freedom n2 leads to prohibitively large matrices whose conditionings are too poor for

the eigenvalue search to be productive.

In a second step we compute the eigenvalue γ for (2.1) following our approximation scheme

(2.16). Fig. 2.5 shows values for γn, the computed value of γ where (n− 1)2 collocation points

were placed on the square S, but only those in Γn are used, see (2.10). We also produce in

Fig. 2.5 a log log rendition of the numerical error |γn+1−γn|/ log10 n. The rationale for plotting
this quantity is that

if γn = γ + Cn−1 lnn+ o(n−1 lnn), then
γn+1 − γn

lnn
= o(n−1),

if γn = γ + Cn−1 lnn+O(n−2 lnn), then
γn+1 − γn

lnn
= O(n−2).



560 D. VOLKOV

The slope for the best linear fit appears to be -2. This is consistent with the claim that the

numerical method for the eigenvalue problem is O(h ln h) accurate.

100 150 200 250 300 350 400 450
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1.31

1.32

1.33

1.34
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1.36

n

γ
n

Fig. 2.3. Computed first eigenvalue γn for equations (2.41) using a finite element package. Γ is here

the ellipse of equation x2
1 + (x2/.6)

2 ≤ 1 in the plane x3 = 0. The number of degrees of freedom is n2.

n is given on the horizontal axis and γn on the vertical axis. Blue circles: the radius R for domain

truncation is 5. Red crosses: the radius R for domain truncation is 10.

Fig. 2.4. Initial meshing of the computational domain Ω for 5139 degrees of freedom. Note how the

mesh is finer near Γ.

We close this section by reporting that an attempt to use third derivatives for higher order

regularization was ineffective due to deteriorating condition number. Additionally, clustering

points near the boundary was also ineffective for two reasons: first, this is highly dependent on

the geometry of Γ, and second, this leads to deteriorating condition number.

Finally let us make a remark on computational speed for integral equation method (2.6).

Most of the computational time is spent on evaluating the coefficients of the matrix for the

discretized problem. Assume now that n is fixed. We can first compute the coefficients of the

matrix MS for the discretized problem in the case Γ = S; then for any other geometry Γ, the

coefficients of the matrix MΓ for the respective discretized problem can be just sampled from

the coefficients of MS . From there finding the lowest eigenvalue for MΓ typically takes about

one second.
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Fig. 2.5. Left: Computed value of γn the eigenvalue in (2.3) against n. (n − 1)2 collocation points

were placed on the square S, but only those in Γn are used, see (2.10). In this example Γ is the ellipse

x2
1 + (x2/.6)

2 ≤ 1, x3 = 0. Right: a log log rendition of the numerical error |γn+1 − γn|/ log10 n. The

slope for the best linear fit, which appears in red is -2.

3. The Eigenvalue Problem for a Crack in Free Space

3.1. Numerical method

In this section we will present two sets of results on the numerical solution to eigenvalue

problem (1.2). First set is obtained by application of a finite element method to an adequately

adjusted version of Eq. (1.2). The second set is obtained by application of our numerical method

introduced in Section 2.1 to an integral equation formulation.

We take advantage one more time of symmetries to derive from (1.2) a PDE in the upper

half space R3+. Full details of that derivation can be found in [19]. For vector fields u, v in R3+

of bounded support and whose gradient is square integrable, we introduce the bilinear product

B+(u, v) =

∫

R3+

λ tr(∇u)tr(∇v) + 2µ tr(ǫ(u)ǫ(v)),

We define the functional space V+ to be the closure for the normB+(u, u)
1
2 of the space of vector

fields in H1(R3+)3 with bounded support. The natural norm on V+ is given by B+(u, u)
1
2 . In

keeping with the notations used in [19], we introduce the closed subspace of V+:

V+
0,2 =

{
u ∈ V+ : u2 = 0 on {x3 = 0} and u1 = ∂3u3 = 0 on {x3 = 0} \ Γ

}
,

ϕ is in V3 and satisfies (1.2) if and only if the restriction of ϕ to R3+ is in V+
0,2 and satisfies

µ∆ϕ+ (λ+ µ)∇divϕ = 0, in R3+ (3.1a)

Tnϕ · e3 = 0, on Γ, (3.1b)

Tnϕ · e1 = 2β ϕ · e1, on Γ, (3.1c)

ϕ2 = 0, on {x3 = 0}, and ϕ1 = ∂3ϕ3 = 0, on {x3 = 0} \ Γ. (3.1d)

We use the same truncated computational domain Ω introduced in Section 2.3 where we solve



562 D. VOLKOV

the PDE

µ∆ϕ̃+ (λ+ µ)∇div ϕ̃ = 0, in Ω, (3.2a)

Tnϕ̃ · e3 = 0, on Γ, (3.2b)

Tnϕ̃ · e1 = 2β ϕ̃ · e1, on Γ, (3.2c)

ϕ̃2 = 0, on {x3 = 0}, and ϕ̃1 = ∂3ϕ̃3 = 0, on ({x3 = 0} ∩ Ω) \ Γ, (3.2d)

2R−1ϕ̃+ ∂rϕ̃ = 0, on ({|x| = R} ∩ Ω). (3.2e)

Approximating the solution to (3.1) by the solution to (3.1a)–(3.1d), the new boundary condi-

tion (3.2e) induces an O(R−4) error: we will explain why below.

The previous formulation is well suited to finite element element simulation. We now derive

an integral equation formulation for problem (1.2). We start from Kelvin Green’s tensor for

linear elasticity in free space K given by,

Kij(x, y) =
1

8πµ(λ+ 2µ)
((λ + µ)∂xi

r∂xj
r + (λ+ 3µ)δij)

1

r
.

Defining the double layer potential by setting

K̃(x, y, n) = (Tn(y)K(x, y))t, (3.3)

we may express ϕ as the integral over Γ

ϕ(x) = −
∫

Γ

K̃(x, y, n)ϕ(y)dy. (3.4)

In particular equation (3.4) shows that the boundary condition (3.2e) is satisfied by ϕ only up

to an O(R−4) remainder. Eigenvalue problem (3.1a)–(3.1d) where the unknown ϕ is in V+
0,2 is

equivalent to the following eigenvalue problem

βϕ1(x) = −Tn(x)
∫

Γ

K̃(x, y, n)ϕ1(y)e1dy · e1, (3.5)

where the unknown ϕ1 is in H̃
1
2 (Γ). To simplify notations we set u = ϕ1|Γ. Eq. (3.5) can be

rewritten as

β u(x) =

∫

Γ

M11(x, y)u(y)dy, (3.6)

where u is in H̃
1
2 (Γ) and the integral is understood in the hypersingular sense. The explicit

formula for M11(x, y) is given by

M11(x, y) = − µ

4π

3λ (x1 − y1)
2 + 2µ

(
(x1 − y1)

2 + (x2 − y2)
2
)

(λ+ 2µ)
(
(x1 − y1)

2
+ (x2 − y2)

2
)5/2 . (3.7)

In this case we apply a numerical scheme similar to that indicated by (2.16), safe for the six

integrals I0, I1i , I
2
i,j which have to be replaced by, respectively,

J0 :=

∫

S

M11(x, y)dy, J1
i :=

∫

S

(yi − xi)M11(x, y)dy,

J2
i,j :=

∫

S

(yi − xi)(yj − xj)M11(x, y)dy, (3.8)
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which have to be understood in the following generalized sense: for x = (x1, x2) in Γ set

x = (x1, x2, x3), then

J0 := − lim
x3→0

∫

S

Tn(x)K̃(x, y, n)dy, J1
i := − lim

x3→0

∫

S

(yi − xi)Tn(x)K̃(x, y, n)dy,

J2
i,j := − lim

x3→0

∫

S

(yi − xi)(yj − xj)Tn(x)K̃(x, y, n))dy. (3.9)

These integrals and limits can be evaluated in closed form. Formulas are provided in Appendix.

3.2. Numerical results

Our first set of results for computing the solution to (3.1) was produced by a finite element

package. In this example Γ is still the ellipse x21 + (x2/.6)
2 ≤ 1, x3 = 0 and the values for

the Lamé coefficients are λ = 1, µ = 2. We plotted in Fig. 3.1 the computed first eigenvalue

βn for Eq. (3.2) using this finite element package against n, where the number of degrees

of freedom is n2. The numerical simulation was run for two values of the radius R of the

computational domain. The method starts from a uniform mesh which is then locally refined

based on local errors. Due to the refinement process the mesh exhibits significant clustering near

Γ, as anticipated , and illustrated in Fig. 2.4. For low values of n, the numerical performance

of the finite element package is now substantially less satisfactory than in the case relative to

the Laplacian which was presented in Section 2.3. This is due to the fact that the present case

involves solving for a vector field, and to more intricate boundary conditions, leading to poorly

conditioned linear systems. For R = 10 low values of n do not lead to a solution; larger values

required stringent pre conditioning of the discrete matrix for Eq. (3.2) before application of

GMRES iterations. For values of n larger than 400, initial conditioning is just too poor: the

numerical method fails.

50 100 150 200 250 300 350 400 450

2.95

3

3.05

3.1

3.15

3.2

n

β
n

Fig. 3.1. Computed first eigenvalue βn for Eq. (3.2) using a finite element package. The number of

degrees of freedom is n2. n is given on the horizontal axis and βn on the vertical axis. Blue circles: the

radius R for domain truncation is 5. Red crosses: the radius R for domain truncation is 10.

We now solve Eq. (3.1) by means of the integral formulation (3.6). To ease comparisons

between methods, the geometry for Γ and the value for the Lamé coefficients are the same as

in the previous case. We show:
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• In Fig. 3.3, left: βn, the computed values of β, the eigenvalue in (3.6), corresponding to

(n − 1)2 collocation points placed on the square S (but only those in Γn are used, see

(2.10) )

• In Fig. 3.3, right: a log log rendition of the numerical error |βn+1 − βn|/ log10 n . The

slope for the best linear fit, which appears in red is, -2, as anticipated by our error analysis

• Fig. 3.4: left: a surface plot of ϕ1, the first component of the eigenvector ϕ, on Γ, right:

a contour line plot of the same quantity.

• Fig. 3.4, bottom: a cross section of the previous graph along the x1 axis. The edge square

root singularity is verified by fitting an expression in the form (
∑4

i=1 aix
i
1)
√
1− x21 to

match u(x1, 0).

Fig. 3.2. Computed first eigenvector ϕ̃ for problem (3.2). Only ϕ̃1 restricted to the the plane x3 = 0 is

shown. The solution does not change signs, as known theoretically from [19]. The computed value for

β is 2.911175 for 126486 degrees of freedom if the radius R of the computational domain is set to 10.

0 20 40 60 80 100 120

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

n

β
n

1.6 1.7 1.8 1.9 2 2.1
−4

−3.5

−3

−2.5

−2

−1.5

log10 n

lo
g 1

0
(|
β

n
+

1
−
β

n
|/

lo
g 1

0
n
)

 

 

Fig. 3.3. Left: Computed value for βn the eigenvalue in (3.6) against n. (n − 1)2 collocation points

were placed on the square S, but only those in Γn are used, see (2.10). In this example Γ is the ellipse

x2
1 + (x2/.6)

2 ≤ 1, x3 = 0. The Lamé coefficients are λ = 1, µ = 2. Right: a log log rendition of the

numerical error |βn+1 − βn|/ log10 n. The slope for the best linear fit, which appears in red is -2.
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Fig. 3.4. Top Left: surface plot for u solution to (3.6). In this example Γ is the ellipse x2
1+(x2/.6)

2 ≤ 1,

x3 = 0. The Lamé coefficients are λ = 1, µ = 2. Top right: a contour plot for the same u. (n − 1)2

collocation points were placed on the square S, for n = 111, but only those in Γn are used, see (2.10).

Bottom: a plot of the computed values of u(x1, 0): they appear as blue circles . The edge square root

singularity is verified by fitting an expression in the form (
∑4

i=1 aix
i
1)
√

1− x2
1 to match u(x1, 0). That

best fit is plotted in red plus markers.

4. The Eigenvalue Problem for a Crack in Half Space

In this section we extend the study of the system (1.2) to the case of an elastic half space

with traction free condition on the boundary. We start by constructing a functional space

where problem (1.3) is well posed. For vector fields u, v in H1(R3− \ Γ)3 of bounded support

we introduce the bilinear product

B−(u, v) =

∫

R3+

λ tr(∇u)tr(∇v) + 2µ tr(ǫ(u)ǫ(v)),

We define the functional space V− to be the closure under the norm B−(u, u)
1
2 of the space

of vector fields in H1(R3− \ Γ)3 of bounded support. We then pick W , the following closed

subspace of V−,

W =
{
u ∈ V− : [u · n] = 0, [u · t2] = 0, across Γ

}
.
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We can now recast problem (1.3) in a more formal way:

ψ ∈ W , (4.1a)

µ∆ψ + (λ+ µ)∇divψ = 0, in R3− \ Γ, (4.1b)

Te3(ψ) = 0, on the surface x3 = 0, (4.1c)

[Tn(ψ)] = 0, across Γ (4.1d)

Tnψ · t1 = β [ψ · t1], across Γ. (4.1e)

Existence of eigenvectors can be shown by functional analysis techniques similar to those used

in [19]. Next, we derive a boundary integral equation for problem (4.1). We need to use the

second kind Green’s tensor H relevant to problems in half space with traction free conditions

on the surface. This tensor has been known for some time in the geophysics community, see

the papers by Steketee [17] and Okada [13]. For a more mathematical approach to defining and

computing H , as well as showing results on the uniqueness of H , see [18]. Eigenvalue problem

(4.1) can be rewritten as

β[ψ(x) · t1] =
(
−Tn(x)

∫

Γ

H(x, y, n)[ψ(y)t]dy

)
· t1. (4.2)

In order to solve integral equation (4.2) we need to know in closed form expressions for the

components of the 3 by 3 by 3 tensor

(
−Tej(x)H(x, y, n)ek

)
· ei.

These closed form expressions are available in the public domain and appeared as a result of

Okada’s work [13]; they were also independently derived in a more mathematical way in [18]. We

will underscore below the importance of this independent derivation. To handle singularities,

our numerical method relies on the following splitting

(
−Tej(x)H(x, y, n)ek

)
· ei =

(
−Tej(x)K̃(x, y, n)ek

)
· ei +R(x, y, n, i, j, k), (4.3)

where K̃, the free space elasticity tensor of the second kind, is given by (3.3). Note that

R(x, y, n, i, j, k) is regular at x = y and that the free space Green’s tensor

(−Tej(x)K̃(x, y, n)ek) · ei is rotationally invariant. It follows that in local coordinates on Γ

the same method as in free space, that is, the same method as in Section 3.1, can be applied to

the singular part of integral equation (4.2). For x 6= y, the regular part R(x, y, n, i, j, k) can be

found by subtraction in (4.3), and the other two terms can be evaluated using available codes.

We provide in Appendix formulas for R(x, x, n, i, j, k): they result from the careful analysis

performed in [18].

We now apply our integral equation method to problem (4.1), which is reduced to the

integral equation (4.2). In the numerical example chosen to illustrate our method, Γ is obtained

by the following linear transformations: start from the ellipse in the plane x3 = 0 of equation

x21 + (x2/.6)
2 ≤ 1. Apply the rotation



cos θ 0 − sin θ

0 1 0

sin θ 0 − cos θ


 ,

and then apply the vertical translation of vector (0, 0, d). The numerical values picked for θ

and d are .7 and -.7 so that the coordinates of the highest point on Γ are (cos θ, 0, d+ sin θ), or
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about, (0.7648, 0,−0.0558), see Fig. 4.1. The Lamé coefficients are kept to be λ = 1, µ = 2 as

in the previous section. We show:

• in Fig. 4.2, left: βn, the computed value of β, the eigenvalue relative to integral equation

(4.2) and corresponding to (n − 1)2 collocation points placed on the square S (but only

those in Γn are used, see (2.10))

• in Fig. 4.2, right: a log log rendition of the numerical error |βn+1−βn|/ log10 n. The slope
for the best linear fit, which appears in red is -1.9.

• in Fig. 4.3, bottom: a cross section of the previous graph along the long axis of the

ellipse Γ. The edge square root singularity is verified by fitting an expression in the form

(
∑4

i=1 aix̃
i
1)
√

1− x̃21 to match u(x̃1, 0), where x̃1 is the first coordinate in the rotated

frame. Note that in this half space case u(x̃1, 0), is not symmetric about zero.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x1
x2

x
3

Fig. 4.1. A sketch of the fault Γ involved in the numerical calculation whose outputs are shown

in Figs. 4.2 and 4.3. The highest point on Γ is (cos θ, 0, d + sin θ), d = −.7, θ = .7, or about,

(0.7648, 0,−0.0558).
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Fig. 4.2. Left: Computed value of βn the eigenvalue in (4.2) against n. (n−1)2 collocation points were

placed on the square S (but only those in Γn are used, see (2.10)). In this example Γ is the ellipse

sketched in Fig. 4.1. Right: a log log rendition of the numerical error |βn+1 − βn|/ log10 n. The slope

for the best linear fit, which appears in red, is -1.9.
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Fig. 4.3. Top Left: surface plot of [ψ · t1], solution to (4.1), computed by solving integral equation (4.2).

In this example Γ is the ellipse sketched in Fig. 4.1. Top right: a contour plot for [ψ · t1]. Bottom: a

plot of the computed values of [ψ · t1](x̃1, 0): they appear as blue circles. Here x̃1 is the first coordinate

in the rotated frame. The edge square root singularity is verified by fitting an expression in the form

(
∑4

i=1
aix̃

i
1)
√

1− x̃2
1 to match u(x̃1, 0). Best fit is plotted in red plus markers.
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Fig. 4.4. Plots of [ψd · t1] solution to solution to (4.1), computed by solving integral equation (4.2),

against the local coordinate x̃1 for the long axis of Γ. We picked four different values for the depth d,

-.7, -5, -10, -50, while the incline angle θ remained fixed at .7. For d = −.7 the plot is done in blue

circles. For d = −5,−10,−50, the corresponding three plots are indistinguishable at this scale. They

are sketched using red crosses.
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In our final set of numerical runs we seek to assess the effect of the depth d of the fault Γ.

Denote ψd the normalized solution to (4.2) corresponding to the center of Γ being at (0, 0, d),

all the other parameters, the geometry of Γ, the angle θ, the coefficients λ and µ being kept the

same as in the previous example. Since the difference between the free space Green’s tensor

(−Tej(x)K̃(x, y, n)ek) · ei and the half space Green’s tensor (−Tej(x)H(x, y, n)ek) · ei is of order
O(d−3), we expect ψd to converge to ϕ, solution to (3.1) at that same O(d−3) rate. Note that

for a simpler two dimensional analog to this convergence problem, a complete mathematical

and computational account of depth convergence properties was given in [7]. Fig. 4.4 shows

graphs of [ψd · t] along the long axis of Γ for four values of d. Very rapid convergence in d is

observed.

5. Conclusion

We have presented in this paper a novel numerical method for hypersingular integral equa-

tions on planar surfaces in space. We have applied this method to the numerical solution to an

eigenvalue problem in linear elasticity which models the quasi static evolution of destabilized

faults in free space or in half space. We observed that our numerical method is O(h ln h) accu-

rate, which is slightly better than the O(h
2
3 lnh) derived in our rigorous error analysis. In free

space our method is better conditioned than those obtained from finite element packages and

features an additional advantage: it is very fast once the Lamé coefficients λ and µ have been

set and the matrix corresponding to the unit square geometry has been computed. This point

is especially relevant to shape inverse problems for faults.

In half space our method still performs very well even for those faults which are very close

to the top boundary. Note that finite element methods are particularly ill suited to that case.

It is worth mentioning another interesting application of the numerical method introduced

in this paper. This application pertains to boundary value problems with prescribed forces on

a crack. For the laplacian case this corresponds to solving the integral equation of the first kind

∫

Γ

N(x, y)u(y) = f(x).

This could be done by first finding the m lowest eigenvalues and eigenvectors v1, · · · , vm for

problem (2.3) and then projecting the forcing term f on the span of v1, · · · , vm.

The prospect of extending the new computational method introduced in this study to the

case of non planar faults is particularly interesting. We do not know at present whether the

special quadrature rules introduced in this paper could still be helpful in that case; an approx-

imation of the fault surface by contiguous triangles could possibly be more fruitful. Another

line of research worth pursuing pertains to the generalization of this present study to fully dy-

namic problems. Formulas for Green’s tensors in frequency or time regime relative to elasticity

problems in half space have been known for some time in the isotropic case. They are referred

to in the literature as Lamb’s solutions, see [8]. Unfortunately these solutions are not entirely

explicit; they involve integrals that have to be evaluated either numerically or asymptotically,

and accordingly much work has been done in order to find efficient ways to formulate or evaluate

Lamb’s solutions, see [4] and [20].
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6. Appendix

6.1. The integrals defined in (2.8)–(2.9) and in (3.8)–(3.9)

To avoid prohibitively lengthy formulas we introduce the following notations

u1 = −1− x1, v1 = 1− x1

u2 = −1− x2, v2 = 1− x2

p =
√
u21 + u22, q =

√
v21 + v22 , r =

√
u21 + v22 , s =

√
v21 + u22.

The six integrals I0, I1i , I
2
i,j are then given by

I0 =
1

4 π

(
u2
u1p

+
v1
v2q

+
u1
pu2

− v1
u2s

+
v2
qv1

− u1
v2r

− u2
sv1

− v2
u1r

)
,

I11 =
1

4 π
ln

(
(u2 + p) (v2 + q)

(u2 + s) (v2 + r)

)
, I12 =

1

4 π
ln

(
(u1 + p) (v1 + q)

(u1 + r) (v1 + s)

)
,

I21,1 =
1

4 π

(
− u2 ln (u1 + p) + v2 ln (u1 + r) + u2 ln (v1 + s)− v2 ln (v1 + q)

)
,

I22,2 =
1

4 π

(
− u1 ln (u2 + p) + v1 ln (u2 + s) + u1 ln (v2 + r)− v1 ln (v2 + q)

)
,

I21,2 =
1

4 π
(p+ q − r − s) .

To give closed form solutions for the integrals defined in (3.8)–(3.9), we introduce the additional
notations: a will stand for the function arcsinh and C will be the constant (−µ/4π(λ+ 2µ))−1.

CJ0 =

(
u1(

1

pu2

−
1

rv2
) + v1(

1

qv2
−

1

sv2
)

)
(
λ

2
+ µ) +

(
u2(

1

pu1

−
1

sv1
) + v2(

1

qv1
−

1

ru1

)

)
(λ+ µ)

CJ1
1 = log

(
(v2 + q)(u2 + p)

(v2 + r)(u2 + s)

)
(µ+ λ) +

λ

2

(
v2(

1

q
−

1

r
) + u2(

1

p
−

1

s
)

)

CJ1
2 = log

(
(v1 + q)(u1 + p)

(v1 + s)(u1 + r)

)
(µ+

λ

2
) +

λ

2

(
v1(

1

s
−

1

q
) + u1(

1

r
−

1

p
)

)

CJ2
1,1 =

(
log(

u1 + r

v1 + q
)v2 + log(

u1 − p

v1 − s
)u2

)
(µ+

3λ

2
) +

(
u1(

u2

p
−
v2
r
) + v1(

v2
q

−
u2

s
)

)
λ

2

CJ2
2,2 =

(
log(

u2 + s

v2 + q
)v1 + log(

u2 − p

v2 − r
)u1

)
µ+

(
u2(

v1
s

−
u1

p
) + v2(

u1

r
−
v1
q
)

)
λ

2

CJ2
1,2 =

(
(
1

p
−

1

r
)u2

1 + (
1

q
−

1

s
)v21

)
(µ+

λ

2
) +

(
(
1

p
−

1

s
)u2

2 + (
1

q
−

1

r
)v22

)
(µ+ λ).

6.2. The regular tensor R(x, x, n, i, j, k)

R(x, x, n, i, j, k) depends on x only through x3. To simplify notations denote Rijk for

R(x, x, n, i, j, k). We first notice the symmetry relation

Rijk = Rjik .
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The formulas for the entries of R are therefore reduced to

R111 = − 1

32

(
7λ2 + 9µλ+ 5µ2

)
n1µ

x33π (λ2 + 3µλ+ 2µ2)
, R112 = − 1

32

(
λ2 − µλ− µ2

)
n2µ

x33π (λ2 + 3µλ+ 2µ2)
,

R113 = −1

8

µn3 (−µ+ λ)

x33π (λ+ 2µ)
, R121 = − 1

32

(
3λ2 + 5µλ+ 3µ2

)
n2µ

x33π (λ2 + 3µλ+ 2µ2)
,

R122 = − 1

32

(
3λ2 + 5µλ+ 3µ2

)
n1µ

x33π (λ2 + 3µλ+ 2µ2)
,

R123 = 0, R131 = − 1

32

µn3 (10µ+ 9λ)

x33π (λ+ 2µ)
,

R132 = 0, R133 = − 1

32

n1µ (10µ+ 9λ)

x33π (λ+ 2µ)
,

R221 = − 1

32

(
λ2 − µλ− µ2

)
n1µ

x33π (λ2 + 3µλ+ 2µ2)
, R222 = − 1

32

(
7λ2 + 9µλ+ 5µ2

)
n2µ

x33π (λ2 + 3µλ+ 2µ2)
,

R223 = −1

8

µn3 (−µ+ λ)

x33π (λ+ 2µ)
, R231 = 0, R232 = − 1

32

µn3 (10µ+ 9λ)

x33π (λ+ 2µ)
,

R233 = − 1

32

n2µ (10µ+ 9λ)

x33π (λ+ 2µ)
, R331 = −1

8

(−µ+ λ)n1µ

x33π (λ+ 2µ)
, R332 = −1

8

(−µ+ λ)n2µ

x33π (λ+ 2µ)
,

R333 = −5

4

µn3 (λ+ µ)

x33π (λ+ 2µ)
.

6.3. Improved bounds for estimates (2.36) and (2.37)

The lowest order term in our error analysis is the h1/2d(x)−1 term in estimate (2.35). Recall

that that term was derived by summing a bound on the gradient of N(x, y)Ṽ (y) in Region II,

which was sketched in Fig. 2.1 . An improved estimate can be performed by splitting Region

II in two parts, II.a. and II.b., if d(x) ≥ hη for some η in (0, 1) to be optimized later. In

Region II.a. ρ will range from h to hη and the other estimates are carried out in a similar

fashion to find an error in the form CAhd(x)−3/2. In Region II.b. ρ will range from hη/cos θ

to (d(x) − h)/cos θ and we use the following alternative estimates for Ṽ and its gradient

|Ṽ (y)| ≤ CAρ sup
s∈(0,1)

|∇u(x+ s(y − x))|+ CAρ2d(x)−
3
2 ,

|∇Ṽ (y)| ≤ CA sup
s∈(0,1)

|∇u(x+ s(y − x))| + CAρd(x)−
3
2 .

The error is bounded by

CAh

∫ α

0

∫ d(x)−h

cos θ

hη

cos θ

dρdθ

ρ2(d(x) − ρ cos θ)
1
2

+ CAh| ln h|d(x)− 3
2 ,

which is bounded by CAh1−ηd(x)−3/2. Thanks to this process we obtain a new form for estimate

(2.35) which now appears as

CAh1−ηd(x)−
3
2 1{d(x)≥hη} + CAh

1
2 d(x)−11{h≤d(x)≤hη},

in place of merely CAh1/2d(x). Multiplying by h2d(x)1/2 and summing for x in Γn we find this

new improved term the bound

CAh1−η

∫ C

hη

t−1dt+ CAh
1
2

∫ hη

h

t−
1
2 dt,
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which is in turn bounded by

CAh1−η| lnh|+ CAh
1
2+

η
2 .

We now optimize for η in (0, 1). Since

max
η∈(0,1)

min{1− η,
1

2
+
η

2
} =

2

3
,

where the maximum is achieved for η = 1/3, the improved bound CA2h2/3| lnh| can be chosen

for estimate (2.36). Subsequently the improved bound CA4h2/3| lnh| can be chosen for estimate

(2.37).
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