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Abstract

In this paper we study a numerical method for the simulation of free surface flows of

viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for

capturing the free surface evolution and on locally refined and dynamically adapted octree

cartesian staggered grids for the discretization of fluid and level set equations. A regu-

larized model is applied to handle the non-differentiability of the constitutive relations.

We consider an extension of the stable approximation of the Newtonian flow equations

on staggered grid to approximate the viscoplastic model and level-set equations if the

free boundary evolves and the mesh is dynamically refined or coarsened. The numerical

method is first validated for a Newtonian case. In this case, the convergence of numerical

solutions is observed towards experimental data when the mesh is refined. Further we

compute several 3D viscoplastic Herschel-Bulkley fluid flows over incline planes for the

dam-break problem. The qualitative comparison of numerical solutions is done versus ex-

perimental investigations. Another numerical example is given by computing the freely

oscillating viscoplastic droplet, where the motion of fluid is driven by the surface tension

forces. Altogether the considered techniques and algorithms (the level-set method, com-

pact discretizations on dynamically adapted octree cartesian grids, regularization, and the

surface tension forces approximation) result in efficient approach to modeling viscoplastic

free-surface flows in possibly complex 3D geometries.

Mathematics subject classification: 65M06, 76D27, 76D99.
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1. Introduction

Free surfaces flows of yield stress fluids are common in nature: lava flows, snow avalanches

and debris flows, as well as in engineering applications: flows of melt metal, fresh concrete,

pastes and other concentrated suspensions [3,34]. Although the rheology of such materials can

be quite complicated, viscoplastic models, for example the Herschel-Bulkley model, are often

used to describe the strain rate – stress tensor relationship and predict the fluids dynamics with

reasonable accuracy, see, e.g., [13, 24]. Modeling such phenomena numerically is a challenging
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task due to the non-trivial coupling of complex flow dynamics and free surface evolution. Sub-

stantial progress has been made during the last two decades in developing efficient and accurate

numerical methods for computing flows with free surfaces and interfaces, see, e.g., [42, 43] and

references therein. The level set method is an implicit surface-capturing technique [45] which

was proved to be particular efficient for handling free surfaces which may undergo complex topo-

logical changes. The method is extensively used for numerical modeling of free-surface flows

with finite difference [37], finite volume [22] and finite element [7, 8] methods as discretization

techniques. Most of this research has been focused on application to Newtonian free-surface

and interface flows.

Numerical simulations of viscoplastic fluid flow has already attracted a lot of attention, see

for example the review papers [16, 19]. Yet the accurate modeling of free-surface viscoplas-

tic fluid flows poses a serious challenge. The previous studies include the application of the

Arbitrary Langrangian–Eulerian method for free-surface tracking of axisymmetric squeezing

Bingham flows [27], volume of fluid surface tracking for 2D Bingham flows [2], the free interface

lattice Boltzmann model [21], the simulation of viscoplastic fluids over incline planes in shallow

layer approximations, see, e.g., [4, 6, 26]. The present paper develops a numerical method for

simulation of complex 3D viscoplastic fluid flows based on the free surface capturing by the

level set method.

The numerical methodology studied here is based on several other important ingredients,

besides the level set method. To approximate complex geometries emerging in the process

of the free surface evolutions we use adaptive cartesian grids dynamically refined near the

free surfaces and coarsened in the fluid interior. We note that using grids adaptively refined

towards the free surface is a common practice, see, e.g., [10,22]. Although much of the adaptive

methods studied in the literature are based on locally refined triangulations (tetrahedra) and

finite element discretizations, see, e.g., [10,18], adaptive (octree) cartesian grids are often more

convenient for frequent and routine executions of refining / coarsening procedures in the course

of time integration. For the application of such grids in image processing, the visualization of

amorphous medium, free surface Newtonian flow computations and other applications where

non-trivial geometries occur see, e.g., [31,33,35,39,44]. We combine the mesh adaptation with

a splitting algorithm for time integration. The splitting scheme decouples each time step into

separate advection, plasticity, div-free correction, and level-set function update substeps. For

the sake of adaptation, the grid is dynamically refined or coarsened according to the distance

to the evolving free boundary on every time step. For the space discretization we use a finite

difference method on octree cartesian meshes with the staggered allocation of velocity–pressure

nodes. Further important ingredients of the algorithm, the preserving of the distance property of

the discrete level set functions, and the approximation of the normal vectors and the curvatures

of the free surface, are briefly discussed.

The remainder of the paper is organized as follows. Section 2 reviews the mathematical

model. In Section 3 we discuss the details of the numerical approach: the splitting algorithm

for time integration of the coupled system of the Herschel-Bulkley fluid model and the level set

function equations, a finite difference method for space discretization, volume correction and re-

initialization methods for the level set function. Numerical results for several 3D test problems

are presented in Section 4. Numerical tests include the Newtonian broken dam problem, the

viscoplastic Herschel-Bulkley fluid flow over incline planes and freely oscillating viscoplastic

droplet. Section 5 contains some closing remarks.
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2. Mathematical Model

We consider the Herschel-Bulkley model of a viscoplastic non-Newtonian incompressible

fluid flow in a bounded time-dependent domain Ω(t) ∈ R3. We assume that ∂Ω(t) = ΓD ∪Γ(t),

where ΓD is the static boundary1) (walls) and Γ(t) is a free surface. In the time interval (0, T ],

the fluid flow is described by the fluid equations ρ

(
∂u

∂t
+ (u · ∇)u

)
− div τ +∇p = f

∇ · u = 0

in Ω(t), (2.1)

and the Herschel-Bulkley constitutive law

τ =
(
K |Du|n−1 + τs|Du|−1

)
Du ⇔ |τ | > τs,

Du = 0 ⇔ |τ | ≤ τs,
(2.2)

where u, p, τ are velocity vector, pressure and the deviatoric part of the stress tensor, K is the

consistency parameter, τs is the yield stress parameter, n is the flow index, for n < 1 the fluid

is shear-thinning, for n > 1 is shear-thickening, and n = 1 corresponds to the classic case of

the Bingham plastic, ρ is the density of fluid, Du = 1
2 [∇u + (∇u)T ] is the rate of strain tensor

and |Du| =
( ∑

1≤i,j≤3

|Diju|2
) 1

2 , div denotes the vector divergence operator. Thus the medium

behaves like a fluid in the domain where |Du| 6= 0, the so-called flow region, and exhibits the

rigid body behavior in the region where the stresses do not exceed the threshold parameter

τs, the so-called rigid (or plug) region. One of the difficult features of the problem is that two

regions are unknown a priori. Since the stress tensor is indeterminate in the plug region, in [17]

it was pointed out that (formally) the equations (2.1) make sense only on those parts of the

domain where |Du| 6= 0 and the mathematically sound formulation of (2.1)–(2.2) can be written

in terms of variational inequalities. Another common way to avoid this difficulty in practice, is

to regularize the problem by enforcing the fluidic medium behavior in the entire computational

domain (see, e.g., [9, 19]). Adopting this approach we replace |Du| with |Du|ε =
√
|Du|2 + ε2

for a small parameter ε > 0. This allows us to pose equations in the entire domain: ρ

(
∂u

∂t
+ (u · ∇)u

)
− div µεDu +∇p = f

∇ · u = 0

in Ω(t), (2.3)

with the shear-dependent effective viscosity

µε = K |Du|n−1
ε + τs|Du|−1

ε .

At the initial time t = 0 the domain and the velocity field are known:

Ω(0) = Ω0, u|t=0 = u0. (2.4)

On the static part of the flow boundary we assume the velocity field satisfies Dirichlet boundary

condition

u = g on ΓD, (2.5)

1) The ΓD part of the boundary may vary in time, although remaining static, see, e.g. the dam break problem

from Sec. 4.1.
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g is given. On the free surface Γ(t), we impose the kinematic condition

vΓ = u|Γ · nΓ (2.6)

where nΓ is the normal vector for Γ(t) and vΓ is the normal velocity of the free surface Γ(t).

Balancing the surface tension and stress forces yields the second condition on Γ(t):

σεnΓ = ςκnΓ − pextnΓ on Γ(t), (2.7)

where σε = µεDu−p I is the regularized stress tensor of the fluid, κ is the sum of the principal

curvatures, ς is the surface tension coefficient, pext is an exterior pressure which we assume to

be zero, pext = 0.

Existing approaches to the numerical solution of (2.3)-(2.7) can be roughly divided into

two groups: methods based on surface tracking and those which use surface capturing. Free

surface tracking algorithms are based on the surface evolution Eq. (2.6). We employ the surface

capturing algorithm based on the implicit definition of Γ(t) as the zero level of a globally defined

function φ(t,x). A smooth (at least Lipschitz continuous) function φ such that

φ(t,x) =


< 0 if x ∈ Ω(t)

> 0 if x ∈ R3 \ Ω(t)

= 0 if x ∈ Γ(t)

for all t ∈ [0, T ]

is called the level set function. The initial condition (2.4) allows us to define φ(0,x). For t > 0

the level set function satisfies the following transport equation [37]:

∂φ

∂t
+ ũ · ∇φ = 0 in R3 × (0, T ] (2.8)

where ũ is any smooth velocity field such that ũ = u on Γ(t). The employed mathematical

model consists of Eqs. (2.3), (2.4), (2.5), (2.7), and (2.8). We note that the implicit definition of

Γ(t) as zero level of a globally defined function φ leads to numerical algorithms which can easily

handle complex topological changes of the free surface such as merging or pinching of two fronts

and formation of singularities. The level set function provides an easy access to useful geometric

characteristics of Γ(t). For instance, the unit outward normal to Γ(t) is nΓ = ∇φ/|∇φ|, and the

surface curvature is κ = ∇ · nΓ. From the numerical point of view, it is often beneficial if the

level set function possesses the signed distance property, i.e. it satisfies the Eikonal equation

|∇φ| = 1. (2.9)

3. Numerical Method

The numerical method is built on the approach developed in [35, 36] for the Newtonian

flows. Below we describe important steps of the numerical procedure and discretization, while

missing details can be found in [36].

3.1. Time integration

Various numerical methods have been proposed for the time integration of the fluid equa-

tions, ranging from fully implicit schemes to fractional steps methods. Here we apply a semi-

implicit splitting method that avoids nested iteration loops and extends the well-known ap-

proach of Chorin-Temam-Yanenko, see, e.g., [11, 37].
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Each time step of the method (given u(t), p(t), φ(t) find approximations to u(t + ∆t),

p(t+ ∆t), φ(t+ ∆t)) consists of the following substeps. For the sake of presentation simplicity,

we suppress spacial discretization details in this section. The spacial discretization of all involved

operators will be discussed in the next section.

Level set part: Ω(t)→ Ω(t+ ∆t)

1. Extend velocity to the exterior of fluid body: u(t)|Ω(t) → ũ(t)|R3 , see section 3.2. In

practice, the extension is performed to a bulk computational domain, rather than R3.

2. Find φ(t+∆t) from (2.8) by a numerical integration with the semi-Lagrangian method [46]

and using the extended velocity field. This is done in few substeps: First, for every grid

point y, solve the characteristic equation backward in time

∂x(τ)

∂τ
= ũ(x(τ), τ), x(t+ ∆t) = y, for τ ∈ [t+ ∆t, t]. (3.1)

The characteristic equation is integrated numerically with the second order accuracy.

Second, assign

φ∗(y, t+ ∆t) = φ(x(t), t). (3.2)

To compute φ(x(t), t) and velocity values along numerical characteristics an interpolation

is used. At this step the signed distance property of φ and the volume balance may be

lost.

3. Perform the correction φ∗(t + ∆t) → φ̂∗(t + ∆t) in order to enforce the global volume

conservation, see section 3.3;

4. Re-initialize the level set function φ̂∗(t+∆t)→ φ(t+∆t) so that φ(t+∆t) (approximately)

satisfies (2.9). The re-initialization procedure is discussed in section 3.3.

When the “level set” part of the splitting algorithm is complete, the computed φ(t + ∆t)

implicitly defines the new fluid domain Ω(t+ ∆t).

Remeshing. Given the new fluid domain we update and adapt the grid accounting for the new

position of the free surface. The details of the remeshing procedure are given in section 3.2.

Re-interpolation. Now we re-interpolate all discrete variables to the new grid. Note that the

re-interpolated velocity field is defined globally (due to the extension procedure at the beginning

of the level-set part).

Fluid part: {u(t), p(t)} → {u(t + ∆t), p(t + ∆t)}. We find the new velocity and pressure in

several steps. First we perform a pure advection step by the semi-Lagrangian method, next we

add viscous terms, and finally we project the velocity into (discretely) divergence-free functions

subspace and recover new pressure:

1. For each velocity component uk, k = 1, 2, 3, we apply the semi-Lagrangian method similar

to the case of the level set function as described above. The only differences are the

following: now y denotes not a cell vertex, but a node where particular velocity component

is defined, and (3.2) is replaced by

u∗k(y, t+ ∆t) = ũk(x(t), t). (3.3)
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2. The viscoplastic step:

û∗(t+∆t) = u∗(t+∆t)+ρ−1∆t
[
div

(
K |Dũ(t)|n−1

ε + τs|Dũ(t)|−1
ε

)
Dũ(t) + f(t)

]
(3.4)

When this step is realized numerically, the discretization of the viscous terms in the next

to the boundary nodes needs some boundary conditions for ũ(t). On the ‘static’ boundary

we use conditions (2.5). We split the surface tension balance condition (2.7) between the

projection step (3.5) and the viscous step (3.4), so the velocity update in (3.4) uses the

strain-free condition: [Dũ(t)]nΓ|Γ(t) = 0 on the free boundary.

3. The projection step: Solve for pressure p(t+ ∆t):
∇ · ∇p(t+ ∆t) =

1

∆t
∇ · û∗(t+ ∆t) in Ω(t+ ∆t),

p(t+ ∆t) = ρ−1ςκ(t+ ∆t) on Γ(t+ ∆t) and
∂p(t+ ∆t)

∂n
= 0 on ΓD.

(3.5)

Update velocity

u(t+ ∆t) = û∗(t+ ∆t)−∆t∇p(t+ ∆t).

Goto the level set part.

We choose the time step subject to the Courant type condition:

∆t = min

C1
hmin

max |u(t)|
, C2

√
ρh3

min

ς

 ,

where hmin is the size of the smallest volume cell as defined in the next section. In all compu-

tations we set C1 = 0.66 and C2 = 1.4 which were found sufficient for stability. The interesting

observation is that despite the explicit treatment of viscoplastic terms we did not find the con-

dition ∆t ≤ c h2
min(maxµε)

−1 (prohibitively restrictive for maxµε � 1) necessary for stable

computations. A possible explanation is that large effective viscosity values µε correspond to a

constrained fluid motion (tending to the rigid body motion) which resists to the development

of oscillations.

3.2. Mesh adaptation and discretization

A possibly complex geometry of the free surface and the accurate approximation of the

surface tension forces require a sufficiently fine grid in a neighborhood of Γ(t). In this case,

the use of uniform grids becomes prohibitively expensive, especially in 3D. Locally refined

meshes often need considerably less computational resources. However, such meshes have to

be dynamically refined and coarsened if the free surface evolves. The remeshing is, in general,

CPU time and memory demanding procedure for consistent regular tetrahedrizations. This step

becomes considerably less expensive if one uses cartesian octree meshes with cubic cells. The

two-dimensional analog of an octree mesh refined towards free surface is illustrated in Fig. 3.1.

More details on quadtree/octree data structures can be found in [41]. The use of cubic cells is

also appealing due to the straightforward data interpolation between two consecutive meshes.

Our adaptation strategy is based on the graded refinement (the sizes of two neighboring

cells may differ at most by the factor of two) of the mesh towards the current and predicted

location of the free surface. By the predicted location at time t we mean the one occupied
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Fig 3.1. Left: 2D quadtree grid adapted to free boundary. Right: The loss of discrete free surface

geometric information when φh is transported from a region with a finer mesh to the one with a coarser

mesh.
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Fig 3.2. Left: Location of variables in staggered grid; p is pressure, {u±, v±, w±} are velocity compo-

nents, f is nodal scalar function, e.g. the level set function. Right: Discretization stencil for ∂p/∂x.

by Γ(t + ∆t) if the characteristic Eq. (3.1) is solved with current velocity and ∆t. The grid

refinement towards the predicted interface location is done in order to reduce the loss of the

local surface geometric information which occurs if Γ(t + ∆t) is approximated by a trilinear

function on a coarser grid; such possible loss is illustrated in Fig. 3.1. Note, that the predicted

location may slightly differ from the actually computed Γ(t + ∆t) in the level set part of the

algorithm, since the mesh adaptation step is performed before the velocity and ∆t are updated

in the fluid part of the algorithm. However, this allows us to preserve most of the local surface

geometry and avoids double remeshing. In numerical experiments from the next section all

cells intersected by Γ(t) or Γ(t + ∆t) have the same width hmin. Away from the surface the

mesh is aggressively coarsened up to the maximum cell width hmax in the fluid domain Ω(t)

and hext in the rest of computational domain. To produce a stable approximation we use the

staggered location of velocity and pressure unknowns to discretize the fluid Eqs. [25, 29] (see

Fig. 3.2): The pressure is approximated in cell centers, velocity components are approximated

in face centers. The level set function is approximated in cell vertices. We discretize differential

operators with a FD method using compact node stencils.

The approximation of the velocity divergence in the center xV of a fluid grid cell V resembles

the finite volume method: Let F(V ) be the set of faces for V , i.e. ∂V = ∪F∈F(V )F , and yF
denotes the center of F ∈ F(V ), we define

(divh uh)(xV ) = |V |−1
∑

F∈F(V )

|F |(uh · n)(yF ). (3.6)
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Thanks to the staggered location of velocity nodes (uh · n)(yF ) is well-defined. One common

choice for the discrete pressure gradient is to consider the formal transpose of the discrete

divergence operator. On the non-uniform meshes, as in Fig. 3.2 (right), this would lead to a

zero order approximation of the gradient. It is sometimes argued that for enclosed flows accurate

approximations to velocities are still obtained in this case, since the pressure merely acts as the

Lagrange multiplier corresponding to the divergence-free constraint. We found that this choice

of the discrete pressure gradient does not work well in our case. The likely explanation is that

for free surface flows the pressure is involved in the surface tension forces balance in (2.7) (see

also (3.5)) and therefore reasonably accurate approximation of pressure is necessary to account

for the capillary forces. Thus for every internal cell face we define a corresponding component

of the pressure gradient as described below. Since we use graded octree meshes, for any interior

cell face there can be only two geometric cases. If the face is shared by two equal cells, the

standard central finite difference is used to approximate the corresponding gradient component.

If the sizes of the cells sharing the face are different, as shown in Fig. 3.2 (right), the gradient

approximation is reduced to the first order: With the notation of Fig. 3.2, the x-component of

the gradient operator at the face center y is approximated by

px(y) ≈ 1

3∆x
(p2 + p3 + p4 + p5 − 4p1). (3.7)

A proper finite difference approximation of the viscoplastic terms is the important part of

the scheme. We use the following identity, which is valid for a smooth u such that ∇ · u = 0:

div µεDu =
1

2

(
div µε∇u + (∇u)T∇µε

)
Due to the non-uniform nodes distribution we use a hybrid of meshless finite point [38] and

finite difference approach. For a given velocity node y we consider a set of velocity nodes in an

O(h)-neighborhood of y. This set of nodes is defined as follows: it includes y, velocity nodes

(for the same velocity component) from two cells sharing y and all velocity nodes (for the same

velocity component) from the cells having a common face, edge or a vertex with these two

cells sharing y. By the least square method we find a second order polynomial P2(x) which

interpolates the values of velocity in the given set of nodes. Differentiating P2 in x = y we

compute the approximation for (∇u)T in y. Since P2 is defined in the O(h)-neighborhood of y,

the approximation to ∇u is also defined in the neighborhood. Hence one can also compute the

approximation to µε and µε∇u in any point from this neighborhood. Now the approximations

to div µε∇u and ∇µε in y are computed by the central differences with step size equal h.

Further, the semi-Lagrangian method needs the interpolation of nodal velocities by a globally

defined velocity function. This is done by assigning to an arbitrary point of the flow domain a

linear combination of six nodal values as described in detail in [36]. Finally, the extension of

uh from Γh(t) to the grid nodes in exterior of fluid domain is performed along the normals. To

this end, for a given node x we find the “nearest” point yx ∈ Γh(t) by the following iterative

algorithm. Set y0 = x, define yn+1 = yn−α∇φh(yn), n = 0, 1, . . . , with a relaxation parameter

α > 0. The iteration is terminated once |yn+1−yn| ≤ ε and we set yx = yn+1, uh(x) = uh(yx),

where uh(yx) is computed via the interpolation. In our calculations we chose ε = 10−8 and

α =
√

5−1
2 .

To account for the surface tension forces we need approximations to the free surface normal

vectors and curvatures. The unit outward normal can be computed from the level set function:
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nΓ = ∇φ/|∇φ| on Γ(t). We derive the second order approximation of the gradient through the

Taylor expansion in all possible combinations of octree cells sharing the node.

The mean curvature of the interface can be defined as the divergence of the normal vector,

κ(φ) = ∇ · n = ∇ · (∇φ/|∇φ|). First, ∇hφh is computed in cell vertices and is averaged to face

centers. Once ∇hφh/|∇hφh| is known in face centers, κh(φh) = ∇h ·∇hφh/|∇hφh| is computed

in cell centers by standard second order center differences. Since ∇φ is computed with second

order accuracy, κ(φ) is approximated at least with the first order.

3.3. Volume correction and redistancing

The numerical advection of the free boundary may cause a divergence (loss or gain) of the

fluid volume. This divergence is reduced by the grid refinement near free surface and using

more accurate time integration of (2.8), but not eliminated completely. Thus we perform the

adjustment of the level set function by adding a suitable constant to preserve the fluid volume.

This is done by solving for a constant δ the following equation

meas{x : φ(x) < δ} = V olreference

and correcting φnew = φ − δ. The bisection algorithm was used to find δ and a Monte-Carlo

method was applied to evaluate meas{x : φ(x) < δ}.
Both the advection and the volume correction of the level set function may cause the loss of

its signed distance property. For the continuous level set function this property can be written

in the form of the Eikonal equation:

|∇φ(x)| = 1, x ∈ R3, (3.8)

with the boundary condition on the free surface Γ(t):

φ(x) = 0, x ∈ Γ(t).

The property (3.8) is important for the computation of the geometric quantities of the free

boundary and numerical stability. To recover the signed distance property we perform a redis-

tancing procedure, also known as re-initialization.

The re-initialization is peformed in several steps. First, the location of the discrete interface

Γ(t) is explicitly recovered from the nodal values of φ using the marching cubes technique [30].

The resulting internal surface triangulation turns out to be a conformal triangulation in space.

Further, the redistancing procedure is split into two substeps: the assignment of new distance

values in the vertices of interface cells (i.e. cells that are intersected with the interface), and

finding solution to a discrete counterpart of (3.8) in all remaining nodes. The second substep

is performed by the fast marching method from [1] adapted to octree grids.

To accomplish the first substep we make use of the constructed triangular approximation

to the {φh(x) = 0} level set. Note that interface triangulation is only an approximation to the

zero level of the piecewise trilinear function φh. To account for this we proceed as follows. For

each surface triangle T and a neighboring grid node x consider the line passing through x and

orthogonal to the plane of T (see Fig. 3.3 for the 2D illustration). The trace of φh on the line

segment contained in the cell is a cubic function ψ(t) = f3t
3+f2t

2+f1t+f0 where ψ(0) = φh(x).

The smallest positive root of the equation ψ(t) = 0 defines the point Hx where the line crosses

the zero isosurface of φh. If the initial value of φh(x) is greater than the computed distance to
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Fig 3.3. Approximating the distance to the {φh(x) = 0} level set.

Hx, we set it equal to this distance. Otherwise we update φh(x) by the distance to Hx if it

does not exceed distances to the vertices of the considered triangle.

In [36] it was demonstrated that this re-initialization method produces sufficiently accurate

and convergent approximations to the distance function and compares favorably to other re-

initialization methods. Application of an accurate re-initialization is important for modeling

phenomena driven by the surface tension forces, see the example in section 4.3.

4. Numerical Experiments

In this section we present results of several numerical tests. First we validate the code by

comparing computed statistics for the Newtonian case with those available in the literature.

Further, few results are shown for viscoplastic fluid flows over incline planes and for a freely

oscillating viscoplastic droplet.

4.1. The Newtonian broken dam problem

h

x

y

Ω(0)

0 1 2 3 4

1

2

3

4

5

t

x

h
min

=1/64

h
min

=1/128

h
min

=1/256

h
min

=1/512

experiment

Fig 4.1. Left: The setup of the ‘dam break problem’ in numerical simulations; Right: The computed

position of the free surface bottom front for the dam break problem versus (shifted) experimental values

from [32]. The convergence for decreasing hmin is clearly seen.

This is a classical test case for free surface flows. It was adopted by several researchers as a

benchmark test to validate the numerical performance of solves for Newtonian flows with two-



Numerical Simulation of Free Surface Flows of Viscoplastic Fluid 615

liquid interfaces or free-surfaces both in 2D and 3D, see, e.g., [14, 15, 47]. The computational

problem setup is shown in Fig. 4.1 (left). In the initial state, the fluid is placed on the left-hand

side as a water column with dimensions x = y = h = 1. Further, the water column collapses

driven by the gravity force f = (0, 0, 1)T . On the walls we impose slip boundary conditions:

u · n = 0 and tk · σn = 0, where σ denotes the stress tensor, tk, k = 1, 2 are tangent vectors.

We are interested in the evolution of the free surface front along the bottom wall. This statistic

can be compared to the experimental values from [32]. In numerical simulations the values of

K, ρ, ς were set to model the viscosity, density, and surface tension of water: K = 2.004Pa/s,

ρ = 1000kg/m3, ς = 0.072N/m. For the Newtonian fluid it holds τs = 0 and n = 1. The

numerical results obtained for the horizontal location of the free surface front along the bottom

wall are compared to the experimental values from [32] in Fig. 4.1 (time and front position

are shown dimensionless). The coarsest grid was defined with hmin = 1/64, hmax = 1/32,

hext = 1/16, fine grids where obtained by refining this mesh gradely. Following [14] we make

the −0.007 real seconds (≈ −0.0917 dimensionless seconds) shift of the experimental data to

account for the finite time of the dam removal in the life experiment. From the right Fig. 4.1 we

clearly see the convergence of the computed solutions to the experimental measurements when

the grid is refined. The plots of the front position of the computed solutions for hmin = 1/256

and hmin = 1/512 are visually hard to distinct.

4.2. The Herschel-Bulkley fluid flows over incline planes

Flows of viscoplastic fluids over incline surfaces have a long history in research due to their

important role in nature and engineering, see, e.g., [3,26] for the review and the comprehensive

coverage of the literature on the subject. Mathematical analysis of the problem, including

analytical representation of the form of the final arrested state, is available in the special case

of two-dimensional shallow layer approximation and low Reynolds numbers [4–6,26]. Therefore,

in a more general setting, numerical modeling is an important and indispensable research tool

for analyzing such types of flows. Earlier numerical studies include computing the dam-break

and sloping yield stress fluid flows in the shallow layer approximations (lubrication models),

see, e.g., [4, 6, 26]. In such an approach the effect of inertia and surface tension are often

neglected. The method developed in this paper allows to account for true three-dimensionality

of the flow as well as for inertia, surface tension, and more complex geometries, no shallow layer

assumptions are needed.

In this experiment we consider a plane inclined at angle α to the horizontal. A rectangular

t > 0

t = 0

g

ga
te6

-

z

x

α

� reservoir

� fluid

Fig 4.2. The sketch of the flow configuration.
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Fig 4.3. Three-dimensional view of the dam-break flow over incline plane with α = 12o at times

t ∈ {0.2, 0.6, 1.0, 2.0}s with instantaneous gate removal and K = 47.68Pas−n, n = 0.415, τs = 89Pa.

reservoir of length X and width Y filled with a volume V of Herschel-Bulkley fluid is placed on

the plane. The reservoir is equipped with a gate perpendicular to the slope. When the gate

is open, the fluid is released and starts motion driven by the gravity force. The 2D schematic

flow configuration is shown in Fig. 4.2.

We run numerical experiments with the following set of dimensional parameters which corre-

spond to the experimental setting in [12]: X = 0.51m, Y = 0.3m, V = 0.06m3, α ∈ {12o, 18o},
and two sets of Herschel-Bulkley model parameters, K = 47.68Pas−n, n = 0.415, τs = 89Pa

and K = 75.84Pas−n, n = 0.579, τs = 109Pa. The Herschel-Bulkley model with such pa-

rameters was found in [12] to approximate the rheology of Carbopol Ultrez 10 gel of 0.30%

Fig 4.4. Effective viscosity µε on midplane profile at times t = 0.6s and t = 1s for the same problem

setup as in Fig. 4.3.
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Fig 4.5. Contact line at times t = 0.2 k (s), k = 1, . . . , 10 for (a) α = 12o, K = 47.68Pas−n, n = 0.415,

τs = 89Pa; (b) α = 12o, K = 75.84Pas−n, n = 0.579, τs = 109Pa; (c) α = 18o, K = 47.68Pas−n,

n = 0.415, τs = 89Pa; (d) α = 18o, K = 75.84Pas−n, n = 0.579, τs = 109Pa.

and 0.40% concentration, respectively. The gel has density ρ = 937kg/m3 and surface tension

coefficient ς = 0.06N/m. The typical fluid evolution is illustrated in Fig. 4.3, where the colors

indicate the depth of the flow.

Regarding the flow structure, the existing shallow-layer theory distinguishes the yielding

region close to the bottom boundary and the pseudo-plug region, the region where the fluid is

weakly yielded and considered solid up to higher order terms with respect to the layer thickness.

Pseudo-plugs are predicted to dominate the dynamics over substantial regions of shallow flows.

Qualitatively the same structure was observed for the computed 3D solutions and illustrated

in Fig. 4.4.

We note that in the previous numerical studies of the dam-break problem, the whole bulk

of fluid was assumed to be released instantaneously (as in Fig. 4.3), i.e. the time needed for the

gate to open was neglected. In the present approach we are able to model the gradual removal

of the gate as well. In [12] the gate was rased within t = 0.8s, which is not negligibly small

time. Numerical results shown below were computed for the gate opened within 0.8s. We found

this detail important for good comparison with experimental results. Fig. 4.5 and 4.6 show the

evolution of the contact line of the free-surface over the inclined plane and of the flow-depth

profile at the midplane. We note that the fluid attains fast initial motion and sharply decelerates

around t = 0.8. Further the fluid front evolves gradually and slowly. We note that such two-fold

behavior of numerical solution corresponds perfectly well to the experimental observations. In

particular, describing the overall flow dynamics in experiments with Carbopol gel the authors
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Fig 4.6. Midplane flow-depth profiles at times t = 0.2 k (s), k = 1, . . . , 10 for (a) α = 12o, K =

47.68Pas−n, n = 0.415, τs = 89Pa; (b) α = 12o, K = 75.84Pas−n, n = 0.579, τs = 109Pa; (c)

α = 18o, K = 47.68Pas−n, n = 0.415, τs = 89Pa; (d) α = 18o, K = 75.84Pas−n, n = 0.579,

τs = 109Pa.

of [12] stated “... we observed two regimes: at the very beginning (t < 1s), the flow was in

an inertial regime; the front velocity was nearly constant. Then, quite abruptly, a pseudo-

equilibrium regime occurred, for which the front velocity decayed as a power-law function of

time.” Since we stop our simulation at t = 2s, we are not able to recover the asymptotic decay

of the front velocity (the time scale of the real-life experiment was about 8 hours). Nevertheless,

the computed contact line plots and midplane profiles (shown in Fig. 4.5 and 4.6) compare well

to the same statistics given in [12] for times t ∈ {0.2, 0.4, 0.6, 0.8, 1.0}s. In general, it should

be noted that any viscoplastic model is an idealization of the possibly complex rheology of

such fluid as Carbopol gel and certain deviation of numerical and experimental data is not

unexpected.

4.3. Oscillating droplet problem

We consider a viscoplastic droplet for which evolution is driven only by surface tension

forces. The fluid is assumed to be in rest at time t = 0 and f = 0. The initial shape of the

droplet is a perturbation of a sphere. In spherical coordinates (r, θ, ϕ) the initial shape is given

by

r = r0(1 + ε̃S2(
π

2
− θ)),

where S2 is the second spherical harmonic. In all experiments we set r0 = 1, ς = 1 (surface

tension), ε̃ = 0.3, and K = 1/150, ρ = 1. At t = 0 the mean curvature of the surface is not
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Fig 4.7. The top left picture shows the droplet top tip trajectories on the z axes for the sequence of

meshes hmin ∈ {1/64, 1/128, 1/256} for the Newtonian case; The top right picture compares the droplet

top tip trajectories for τs ∈ {0, 0.02, 0.03, 0.04} and hmin = 1/256; The bottom picture compares the

kinetic energy decay for different stress yield parameter values and hmin = 1/256.

constant, and an unbalanced surface tension force causes droplet oscillation. In this experiment

the fluid motion is solely driven by the surface tension forces. Therefore, the quality of the

numerical solution is sensitive to the accuracy of the level set function and surface curvature

approximations. The oscillating droplet problem often serves as a benchmark test for free

surface and two-phase flow solvers for the Newtonian fluids, see, e.g., [7, 20, 36, 40]. However,

we are not aware of any computational results for viscoplastic fluids. We present first results

below. In the Newtonian regime, two statistics are of common interest: The droplet oscillation

period T and the damping factor δ. In this case and for ε̃ � 1, a linear stability analysis

from [28] predicts the period and the damping factor according to

Tref = 2π

√
ρr3

0

8ς
, δref =

2r2
0

5K
. (4.1)

In general, this analysis is not necessarily valid for non-Newtonian fluids. For the viscoplastic

case one may be interested in the cessation time Tf , e.g. the time when the system reaches the

arrested state.

We solved the problem on a sequence of meshes with hmin ∈ { 1
64 ,

1
128 ,

1
256} and the constant

coarse mesh sizes hmax = 1
16 (the coarsest mesh size in the fluid domain interior) and hext = 1

16
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(the coarsest mesh size in the fluid domain exterior). The top left picture in Fig. 4.7 shows

the droplet top tip trajectories on the z axes computed for the sequence of meshes for the

Newtonian case, τs = 0. The curve z = r∞ + c exp(− t
δ ) is fitted to the computed maximum

values of the droplet top tip, where r∞ is the radius of a spherical droplet with the same volume

as the initial droplet, c = 0.1827 and δ = 16.2. Compared to the reference damping factor δref

the fitting shows that the scheme introduces a certain amount of numerical dissipation (see

further discussion in [36]).

Next we compute the problem for the Herschel-Bulkley fluid with index n = 1 (Bingham

fluid) and τs ∈ {0.02, 0.03, 0.04}. The top right picture in Fig. 4.7 shows the droplet top

tip trajectories for the different values of the stress yield parameter τs. The bottom picture

compares the kinetic energy decay of the oscillating droplet for the different values τs. From

the last two pictures it is well seen that for positive values of the stress yield parameter droplet

oscillations prone to cease in a finite time. As well known from the theory of enclosed viscoplastic

flows [23] the cessation time Tf decreases for larger values of τs. The same tendency is observed

for the oscillating droplet problem in Fig. 4.7. For regularized models, as one used in this paper,

the fluid velocity, however, never decreases to zero in a finite time. If ε > 0, the cessation time

Tf can be found approximately (of course, another level of uncertainty in the determination

of Tf comes from the approximation error introduced by a numerical method, also for “ideal”

viscoplastic models). We found approximate values of the cessation time Tf = 12.8(τs = 0.02),

Tf = 10.0(τs = 0.03), and Tf = 9.1(τs = 0.04), using the following ad hoc criterium: Tf is a

minimum time such that E(t) < 5 · 10−4 for all t > Tf , where E(t) is the kinetic energy of the

droplet. Another interesting observation from Fig. 4.7 is that the period is visually independent

(or depends very weakly on) of the yield stress. Note that according to the linear analysis of

the Newtonian case the period is independent of the viscosity, cf. (4.1). We are not aware if a

similar property can be shown analytically in the non-Newtonian case.

5. Conclusions

We considered a numerical method for computing free surface flows of viscoplastic (Herschel-

Bulkley) fluids. The method based on the level set function free surface capturing, on dynam-

ically refined/coarsened octree cartesian grids, and semi-explicit splitting algorithm, has been

shown to be an efficient approach to simulate such types of flows numerically. We tested the ac-

curacy of the method in the Newtonian flow regime, when the flow statistics can be compared

with those available from experiment. Further we illustrate the performance of the method

by computing several 3D viscoplastic fluid flows of interest: the flow over inclined planes for

the dam-break problem and the freely oscillating droplet. The computed viscoplastic solutions

demonstrate expected qualitative behavior and (for the dam-break problem) compare reason-

ably well with experimental data. We are not aware of other numerical simulations of fully 3D

viscoplastic free surface flows with capillary forces. The reference [48] can be used to down-

load the animated numerical solutions of the problems considered in the paper as well as few

other animations of free surface (Newtonian and non-Newtonian) fluid flows, which illustrate

the flexibility of the approach studied in the paper.
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