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Abstract

Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation

formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key

ingredients of the proposed methods are some new extrapolations and quadratic interpo-

lations, which are used to provide better initial values on the refined grid. In the case

of triple grids, the errors of the new initial values are analyzed in detail. The numerical

experiments show that EXCMG has higher accuracy and efficiency.
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1. Introduction

To solve a linear system of equations derived by the finite difference method or finite element

method for PDEs, it is expected that the solution of an N -order system can be obtained by

using O(N). Multigrid method (MG) was first realized this purpose and was then become one

of the most effective algorithms. There are two important types of MG methods:

(i) (Classical) Multigrid Method. The basic idea of MG was early proposed by Fe-

dorenko [1] in 1964, and was re-discovered by Brandt [2] in 1977. Later on, MG has been

gradually completed by Bank-Dupont, Braess-Hackbush, McCormick, Bramble-Pasciak-Xu et

al., see, e.g., [3,4]. In MG, three operators between different levels of grid, i.e., the interpolation,

restriction and iteration, are used. There are V-cycle and W-cycle algorithms.

(ii) Cascadic Multigrid Method (CMG). CMG was proposed by Borneman-Deunfhard

[5] in 1996 and Shaidurov [6, 7] (also in 1996, called Cascadic CG; 1999, discussed the domain

with re-entrant corners). Shi and Xu et al. [8–10] made further analysis and extensions in

1998 and 1999. Later on, CMG has been generalized to the nonconforming elements, finite

volume method, nonlinear and parabolic problems and so on, see, e.g., [11–19]. In CMG, only

the interpolation and iteration from coarse grids to refined grids are used. Compare with the

classical CG method, the code for CMG is simpler.
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Let Ω be a planar polygon with the boundary Γ, we consider an elliptic problem to find

u ∈ H1
0 such that

A(u, v) ≡

∫

Ω

∇u∇vdx = (f, v), ∀v ∈ H1
0 =

{

u : u ∈ H1(Ω), u = 0 on Γ

}

, (1.1)

where the bilinear form A(u, v) is bounded and H1
0 -coercive, A(u, u) ≥ ν||u||21.

Subdivide Ω into a sequence of triangular or rectangular grids Zl, l = 0, 1, 2, · · · , L with

step-length hl = h0/2
l. Denote by Vl ⊂ H1

0 the (bi)linear finite element subspace on the grid

Zl and by U l ∈ Vl the corresponding finite element solution satisfying

A(U l, v) = (f, v), v ∈ Vl, l = 0, 1, · · · , L, (1.2)

which leads to a linear system of equation

KlU
l = bl, on Zl, l = 0, 1, · · · , L. (1.3)

Define the linear interpolation ul = I1u of u, and let the error el = U l − ul on Zl. The energy

error is defined by ||el||Kl
= (Kle

l, el)1/2. It is known that the norms ||el||Kl
and ||el||1 are

equivalent.

Algorithm 1.1 Assume that the exact solution Ū0 on Z0 given, CMG consists of three

steps, l = 1, · · · , L:

Step 1. Take the linear interpolation I1Ū
l−1 to define the initial value U l,0 = I1Ū

l−1 on Zl;

Step 2. Use the operator Sl to get the iteration solution Ū l = Sml

l U l,0;

Step 3. Come back to steps 1 and 2 if l < L, until get the final solution ŪL on ZL.

In CMG, the errors are often measured by Kl-norm, ||u−U l||Kl
= O(hl). Since the gradient

D(U l − ul) = O(h2
l ) is superconvergent on the (piecewise) uniform grid, the iteration error

||u− U l||Kl
≤ ||u− ul||Kl

+ ||ul − U l||Kl
= O(hl)

is easily attained. Thus CGM is efficient in the energy norm and applicable to many problems,

for example, the elastic system.

However, CMG is not of the optimal convergence in L2-norm. By the embedding theorem,

we can only get

||u− U l||0 ≤ C||u − U l||1 = O(hl),

Z0
Z1 Z2

Fig. 1.1. Triple grids: K0U
0 = b0 in Z0; K1U

1 = b1 in Z1; K2U
2 = b2 in Z2.
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rather than ||u− U l||0 = O(h2
l ).

We found that the linear interpolation, as an important operator in CMG, yields a serious

problem, i.e., not only the original nodal errors remain on the refined grids, but also reproduces

the larger errors at mid-points, which can not be cancelled by several iterations so will be

brought to the refined grids.

To overcome the shortcoming, we shall supplement two important techniques: 1. Proposing

new extrapolation formulas to improve the nodal accuracy; 2. Using quadratic interpolation,

the larger deviation at mid-point is cancelled. Our new algorithm [20–22] (2007) is

EXCMG= new extrapolation + quadratic interpolation + CG.

The numerical experiments and analysis show that EXCMG is the higher accuracy in both

K-norm and discrete L2-norm.

2. Superconvergence and Extrapolation of FEM

In 1978, Marchuk-Shaidurov [23] systematically studied the extrapolation of finite differ-

ence method. They obtained the asymptotic expansion of nodal error based on the maximum

principles, where higher regularities are required.

In early 1980’s, the extrapolation of FEM was discussed by H.C. Huang and Q. Lin et al. In

1983, the first complete proof for triangular linear element was provided by Lin et al. [24, 25].

Based on the regularized Green’s function, the regularity requirement of solution is decreased

by order two [26, 27].

On the other hand, superconvergence of FEM is first proved by Douglas-Dupont-Wheeler

[29, 30] (1973 and 1974, Quasi-Projection Method), and soon by Zlamal-Lesaint [31] (1977)

and Chen [32, 33] (1978, Element Analysis Method). Since then, both superconvergence and

extrapolation of FEM have been systematically studied by Chinese scholars, and generalized to

the general domain, singular solution and nonlinear problems and so on, see, e.g., the review

papers [34, 35] and books [28, 36, 37].

At that time, Chinese scholars have studied the high accuracy and the posterior error

estimates. In recent years, we found new extrapolation formulas and proposed EXCMG, which

maybe regarded as the third important application of the extrapolation.

2.1. Classical extrapolation formulas

We begin with one-dimensional linear element on the uniform grid.

Consider the triple grids Zl with step-length hl = h0/2
l, l = 0, 1, 2 and corresponding linear

finite element solutions U l:

Assuming u ∈ C4 and denoting the error el = U l − u and nodal value elj = el(xj). There is

an asymptotic expansion

elj = (U l − u)(xj) = A(xj)h
2
l + rlj , rlj = B(xj)h

4
l , l = 0, 1, 2, (2.1)

where A(x) ∈ C2 is a smooth function independent of h and B(x) is bounded.

Assume that U0 and U1 are given. The classical extrapolation [26, 28] gives

EU1
j ≡ U1

j + (U1
j − U0

j )/3 = uj +O(h4
1). (2.2)



On Extrapolation Cascadic Multigrid Method 687

Chen and Lin [26] proposed the extrapolation formula at mid-point xj+1/2 = (xj + xj+1)/2

as follwos

EU1
j+1/2 ≡ U1

j+1/2 +
1

6

(

(U1 − U0)j+1 + (U1 − U0)j

)

= uj+1/2 +O(h4
1). (2.3)

2.2. New extrapolation formulas

Taking the extrapolation values (2.2) and (2.3) as the new initial values of U2
j , then U2

j+1/2

will be exact. For this we propose a new combination close to finite element solution U2, rather

than the exact solution u.

At the nodes xk ∈ Z0, k = j, j + 1, letting the constant c satisfy

ce0k + (1− c)e1k = e2k +O(h4
1), i.e. c = −1/4,

we get a new extrapolation formula at the node (see [20])

W 2
k ≡ U1

k +
1

4
(U1

k − U0
k ) = U2

k +O(h4
1), k = j, j + 1. (2.4)

Based on the asymptotic expansion (4) at the nodes xj , xj+1/2, xj+1,

U1
k − U0

k = −(3/4)Akh
2
0 +O(h4

1), k = j, j + 1,

(U2 − U1)j+1/2 = −(3/16)Aj+1/2h
2
0 +O(h4

1),

and the center difference Aj+1 +Aj − 2Aj+1/2 = O(h2), we have

Ak =
−2

3h2
[(U1 − U0)j + (U1 − U0)j+1] +O(h2

1).

Consequently, a new extrapolation formula at mid-point is obtanied (see [20]):

W 2
j+1/2 ≡ U1

j+1/2 +
1

8

(

(U1 − U0)j + (U1 − U0)j+1

)

= U2
j+1/2 +O(h4

2). (2.5)

To define other two values W 2
j+1/4 and W 2

j+3/4, we use the quadratic interpolation

f(t) =
1

2
(t2 − t)f−1 + (1 − t2)f0 +

1

2
(t2 + t)f1 in (−1, 1)

on Z0:

on Z1:

on Z2:

xj xj+1

U0
j U0

j+1

U1
j U1

j+1/2 U1
j+1

xj xj+1/2 xj+1

U2
j U2

j+1/4 U2
j+1/2 U2

j+3/4 U2
j+1

xj xj+1/4 xj+1/2 xj+3/4 xj+1

Fig. 2.1. Triple grids: U0
k onZ0; U

1
k on Z1; U

2
k on Z2.
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Fig. 2.2. Errors e, De of linear element (real lines), and the errors of quadratic interpolation I2U (dot

lines)

and get the values at two quarter points

f(−
1

2
) =

1

8
(3f0 + 6f1 − f2), f(

1

2
) =

1

8
(−f0 + 6f1 + 3f2).

Summarizing these results we get five initial values W 2 = F (U0, U1) of U2 on Z2:

W 2
k = U1

k + (U1
k − U0

k )/4, k = j, j + 1, (2.6a)

W 2
j+1/2 = U1

j+1/2 +
1

8

(

(U1 − U0)j + (U1 − U0)j+1

)

, (2.6b)

W 2
j+1/4 =

1

16

(

(9U1
j + 12U1

j+1/2 − U1
j+1)− (3U0

j + U0
j+1)

)

, (2.6c)

W 2
j+3/4 =

1

16

(

(9U1
j+1 + 12U1

j+1/2 − U1
j )− (3U0

j+1 + U0
j )

)

. (2.6d)

2.3. Superconvergnce for gradient

It is proved that the gradient of linear finite element U is superconvergent at mid-points x̄j

(or at the center for rectangular element)

(DU −Du)(x̄j) = O(h2)||u||3,∞. (2.7)

Let τj = (xj−1, xj), τj+1 = (xj , xj+1) be two adjacent elementsthen the averaging gradient at

xj . Then

D̄U(xj) ≡
1

2

(

DU0(xj − 0; τj) +DU0(xj + 0; τj+1)

)

= Du(xj) +O(h2)

is also superconvergent. For the rectangular or triangular elements, the averaging gradient at

inner node or side-midpoint is also superconvergent, see, e.g., [32–35].

Further, the averaging gradient D̄U at inner node has similar asymptotic expansion

D̄U(xj)−Du(xj) = C(xj)h
2 +O(h3)||u||4,∞. (2.8)

Then its extrapolation is valid.
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Fig. 2.3. The piecewise (almost) uniform grid (PC-grid).

Besides, using the quadratic interpolation I2U of U , we have uniformly superconvergence

estimate

max
x∈Ω

|D(I2U − u)(x)| ≤ Ch2||u||3,∞. (2.9)

Example 1. Consider an one-dimensional problem

−u′′ + u = 1, 0 < x < 1,

u(0) = u′(1) = 0, u = 1− cosh(1− x)/ cosh1.

We see that in the left of Fig. 2.2, the error e(x) is four piece arches (real line), and the

errors at mid-points (as a new nodes) are larger, while the error I2U − u is uniformly smaller

(dot line). In the right of Fig. 2.2, the error De(x) is four piece saw-teeth (real line), which is

superconvergent at mid-points, while the error D(I2U − u) is uniformly superconvergent (dot

line).

2.4. Various generalization

The classical results mentioned above are already generalized to various cases.

(i) The weaker regularity u ∈ Hk. We introduce the discrete L2-norm and energy norm

||v|| =

(

∑

xj∈Zh

|v(xj)|
2h2

j

)1/2

, ||v||K = (Kv, v), v ∈ Vh. (2.10)

The extrapolation error(on uniform grid) is of high order in discrete L2-norm [32, 34]

||EU − u|| ≤ Chk||u||k,Ω, k = 3, 4. (2.11)

(ii) The general domain can be simulated by piecewise (almost) uniform grid (PC-grid)

[25, 27], see, Fig. 2.3. It is proved that the extrapolation error on PC-grid [25, 27, 34–37] is of

high order

||EU − u|| ≤ Ch3| lnh| ||u||3,Ω, (2.12)

where the factor | lnh| is brought by the embedding theorem on the coarse grid lines.

(iii) The singular solutions. Subdivide the radial direction by geometrical series (see,

Fig. 2.4)

rj = C(jh)λ, j = 0, 1, · · · , N, 1 ≤ λ ≤ 4.

If taking λ > 1, then (2.12) is still valid [36, 37].

(iv) For (strongly or weakly) nonlinear problems, all results mentioned above are

automatically valid [36, 37].
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0 1 2 3 4 5 

Fig. 2.4. The λ-graded grids to singularity O with λ = 2.

3. EXCMG Algorithm

Algorithm 3.1. Assume that two exact solutions Ū i on Zi, i = 0, 1, given, EXCMG

consists of the following four steps, l = 2, 3, · · · , L:

Step 1. Use Ū l−i on Zl−i, i = 1, 2 to make new extrapolation Û l−1 = F (Ū l−2, Ū l−1) on

Zl−1 (see the formulas (9));

Step 2. Use quadratic interpolation I2Û
l−1 to get the initial value U l,0 = I2Û

l−1 on Zl;

Step 3. Use the operator Sml

l to get the iteration solution Ū l = Sml

l U l,0 on Zl;

Step 4. Come back to steps 1-3 if l < L, until get the final iterative solution ŪL on the

finest grid ZL.

It is noted that, once the exacter solutions ŪL−1 and ŪL are obtained, then the classical

extrapolation and superconvergence techniques can be used to further improve the accuracy or

provide the exacter posterior error estimates. This is the other advantage of EXCMG.

4. Three Important Properties

4.1. A good property of quadratic interpolation

Assume that f(x) ∈ C4(J) is a smooth function in an interval J . The quadratic interpolation

I2f of u in an element (−h, h) has the remainder

R(x) = f − I2f =
1

6
x(x2 − h2)f ′′′(0) +O(h4), R(±h) = R(0) = 0,

where R(±h/2) = ±(h3/16)f ′′′(0) + O(h4) are of only third order accuracy, but their main

parts ±(h3/16)f ′′′(0) have formed almost the anti-symmetric highest frequency oscillations in

a whole interval J . The numerical experiments show that this highest frequency oscillation can

be cancelled by twice CG-iterations [20–22]. Thus, in theoretical analysis, they can be omitted,

while the initial values W 2
k are of high order errors [21]

E2
j+i/4 = W 2

j+i/4 − U2
j+i/4 = O(h4

2) on Z2, i = 0, 1, 2, 3, 4.

Below we shall discuss CG-iteration and change the notation as

Um
n , Un on Zn,
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Fig. 4.2. New extrapolation errors e032 (left, scale 10−5) and ek32, k = 1 ∼ 4 (right, scale 10−7), e3132 is

the dot straight-line.

where m is the iteration times on the grid Zn.

Example 2. As in Example 1, taking step-lengths h = 1/m, m = 8, 16, 32, and computing

the exact linear elements Um on the grids Zm, we investigate k-th iteration solution Uk
32 and

its error

ek32 = Uk
32 − U32 on Z32, k = 0, 1, · · · , 31.

We compare two algorithms as follows:

A. Linear interpolation to get U0
32 = I1(U

1
16) by U1

16.

We see in Fig. 4.1 that the initial error e0 is high frequency oscillation (broken line, ||e0|| =

10−4), but its center line is far from x-axis. Thus the oscillation can be smoothed by several

iterations, but their contraction is very slow.

B. New extrapolation + quadratic interpolation U0
32 = F (U8, U16).

We see in Fig. 4.2 that a dramatic change appears:

1). The initial error e0 ≈ 10−5 is already reduced, but the errors at quarter points are larger,

and form a high frequency oscillation with center-line close to x-axis;

2). The oscillation is almost cancelled by twice iterations and attains the accuracy 10−7.
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Table 4.1: The contraction factor ρi of CG-iterations on ith grid Zi, j = i0.

ith grids Z0 Z1 Z2 ... Zj−2 Zj−1 Zj Zj+1 Zj+2 ... ZL

iterat. sol. U0 U1 U2 ... Uj−2 Uj−1 Uj Uj+1 Uj+2 ... UL

contrac. ρi ≈ 0 ≈ 0 e−8(j−2)

... e−64 e−8 e−1 e−1/8 e−1/64 ... ≈ 1

4.2. CG-estimates in L2-norm and its valve-value

Assume that v∗ is the exact solution of linear system Kv = b, for any initial value v0 given,

we get a series of CG-iteration, v0, v1, v2, · · · , vm, and their errors em = vm − v∗. It is well

known that there are two classical estimates in K-norm

||em||K ≤ ||e0||K , ||em||K ≤ 2(
1− ν

1 + ν
)m||e0||K , ν = 1/

√

cond(K) << 1.

Assume that ν = ch. For example, c ≈ 1/2 for five-point difference scheme for −∆u =

f, u|Γ = 0 in a square, and c ≥ 1/2 for bilinear finite elements and other boundary value

conditions. To simplify the analysis we take c = 1/2.

As (1− t)/(1 + t) ≤ e−2t, 0 < t < 1, we have a simple estimate

||em||K ≤ 2e−mh||e0||K , m = 0, 1, 2, · · · . (4.1)

Denoting em = Sme0, we have got two similar results in the discrete L2-norm as follows [21,22].

Theorem 4.1 (Monotonicity) The CG-iteration operator S is monotonously decreasing

||Sme0|| ≤ ||e0||, m = 1, 2, · · · . (4.2)

Theorem 4.2 (Convergence) The CG-iterations have the convergence estimates

||Sme0|| ≤ 2e−mh||e0||, m = 1, 2, · · · . (4.3)

In EXCMG, we take CG-iteration times mi in i-th grid Zi as

mi = mLβ
L−i, i = 2, 3, · · · , L, β = 4, (4.4)

where mL = 2s is CG-iteration times on the finest grid ZL.

Taking the initial step-length h0 = 2−k, and hi = h0/2
i = 2−k−i on Zi, by Theorem 4.2 we

have

||Smi

i || ≤ 2e−pi , pi = mihi = 22L−3i+s−k, pi+1 = pi/8,

We define a valve-value by

i0 = (2L+ s− k)/3, always assuming i0 ≥ 3,

(obviously if L is large enough, i0 ≈ 2L/3). Then

||Smi

i || ≤ 2e−pi = 2ρi, ρi = exp(−23(i0−i)) = exp(−8i0−i).

We see that the valve-value i0 ≥ 3 is a critical point. When i < i0, ||S
mi

i e0|| contracts fast;

When i > i0, CG-iterations are of the smoothing effects. Thus EXCMG exhibits the convergence

feature as follows.
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Under the condition of (4.4) the most important contractions appear in the levels of i ≤ i0−1.

When i < i0 − 2, the iteration time mi can greatly decrease, also see [10]. When i > i0, the

CG-iterations are of only smoothing effects. Thus the term S
mi0

i0
Ui0 iterated by CG will bring

about the main error of EXCMG.

In Section 5.1, the Poisson equation in a square and the grids Zn of n× n square elements,

n = 32, 64, 128, · · · , 2048, are discussed. Taking the coarse steplength h0 = 2−5 on Z32, L = 6

and mL = 22, we have the valve-value i0 = (2L + s − k)/3 = 3, i.e. the error on the third

level (i.e. Z128) is greatly contracted, the main errors come from U256, while CG-iterations on

Zn, n = 512, 1024, 2048, are of the smoothing effects and their highest accuracy will be slowly

decreased.

4.3. Convergence of EXCMG in discrete L2-norm

Assume that u ∈ Hα(Ω), 2 ≤ α ≤ 4, we have the initial remainders in (4)

||ri|| ≤ CMhα
i , i = 0, 1, 2, M = ||u||α,Ω,

using the new extrapolation and quadratic interpolation, the error r2 = W2 − U2 on Z2 is of

the optimal order

||r2|| ≤ CMhα
2 ,

which will be further contracted by CG-iterations m2 times. When L < 20, we have proved the

following convergence result independent of k, s.

Theorem 4.3 ( [22]) Assume that UL ∈ VL are (bi-)linear finite element solutions on ZL.

Then the final iteration solution U∗

L of EXCM has the error estimate

||UL − U∗

L|| ≤ CMhβ
L, β = (4α+ 1)/6 < α, (4.5)

where the constant C is independent of h, α, and β = 2.80, 2.17, 1.50 for α = 4, 3, 2 respec-

tively.

Remark 1. This index β is not optimal, later on which can be improved to β = (2α+1)/3, i.e.

β = 3, 2.33, 1.67, for α = 4, 3, 2, respectively. In fact the optimal index β is also dependent

in L, k, s. When L is not large, decreasing k and increasing s, the index β will suitably grows.

The numerical experiments show that EXCMG is of better order β ≈ α, however, this optimal

convergence can not be proved yet.

5. Numerical Experiments in a Square

5.1. The smooth solution u ∈ C4

Consider an elliptic problem

−∆u = f in Ω = [0, 1]× [0, 1], (5.1a)

u = 0 on Γ1 = {x = 0, 0 < y < 1} ∪ {y = 0, 0 < x < 1}, (5.1b)

Dnu = 0 on Γ2 = {x = 1, 0 < y < 1} ∪ {y = 1, 0 < x < 1}, (5.1c)

and the exact solution u = sin(πx)(ey − 1− ey).
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Subdivide Ω into m×m uniform square grids Zm with hm = 1/m. Denote Um— the exact

bilinear finite element solution on Zm, Uk
m— the k-th CG-iteration solution, uI— the bilinear

interpolation of u on Zm, em = Um − uI— the exact error, ekm = Uk
m − uI— the kth-iteration

error.

Define the discrete L2-norm and energy norm

||v|| =

(

∑

x∈Zm

|v(x)|2h2
m

)1/2

, ||Dv|| =
√

(Kmv, v), on Zm.

Note that the discrete energy norm ||Dem|| = O(h2
m) is superconvergent. We shall investi-

gate whether their error ratio ||ekm||/||ek
′

2m|| is close to 4 in order to judge the accuracy of the

iteration errors.

We have calculated the exact finite elements and the errors: U32 on Z32: ||e32|| = 1.006795×

10−4; U64 on Z64: ||e64|| = 2.516926 × 10−5, their error ratio ||e32||/||e64|| = 4.0001. By

EXCMG, we get the new initial value U0
128, whose error ||e

0
128|| = 6.305631× 10−6 is very small

and the error ratio ||e64||/||e
0
128|| = 3.9916.

Taking different iteration times k from Z128 to Z2048, the results computed are listed in

Table 5.1.

We see that: 1). All three errors ||ek2048|| attain the accuracy 10−8; 2). but these errors have

1, 1 and 3 digits exact, respectively; 3). So the classical extrapolation leads to smaller errors

10−9 ∼ 10−11, respectively.

The final grid Z2048 contains 4× 106 unknowns, which was solved in PC with memory 2G,

and CPU times are about 10 minutes.

In Table 5.2 we see that: 1). For EXCMG, the errors ||Dek||(superconvergent) and ||ek||

are very small, about 10−8, and the ratio of errors is very close to 4, so the extrapolation is

effective. 2). For CMG, the errors ||Dek|| are smaller(in comparison with ||um−u||1 = O(hm),

but which grow on the fine grids. Besides, ||ek2048||=1.67e-6 does not attain the optimal error

2.4× 10−8. It means that CMG is not convergent in the discrete L2-norm.

5.2. The non-smooth solution u ∈ H3

Consider a non-smooth solution u = xy ln(x2 + y2) ∈ H3−ǫ(Ω) satisfying

△ u = 8xy/(x2 + y2) in Ω = (0, 1)× (0, 1), (5.2a)

u = 0 on Γ1, (5.2b)

u = g(x, y) on Γ2, (5.2c)

Table 5.1: EXCMG. Different times k, the error ||ekn|| and error ratio.

j Zm k=10,10,10,10,10 k=64,32,16,8,4 k=1024,256,64,16,4

2 128 6.293601e-6(3.9992) 6.293455e-6(3.9993) 6.292382e-6(4.0000)

3 256 1.574828e-6(3.9964) 1.574527e-6(3.9970) 1.573159e-6(3.9998)

4 512 3.952029e-7(3.9849) 3.947916e-7(3.9882) 3.933426e-7(3.9995)

5 1024 1.004977e-7(3.9325) 9.987299e-8(3.9529) 9.838661e-8(3.9979)

6 2048 2.751062e-8(3.6531) 2.620189e-8(3.8117) 2.464734e-8(3.9918)

Ext. Eek2048 7.6373e-9(good) 2.6034e-9(better) 7.2075e-11(best)
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Table 5.2: Comparison of CMG and EXCMG, iteration times k = 1024, 256, 64, 16, 4.

Zm CMG-||Dek|| EXCMG-||Dek|| CMG-||ek|| EXCMG-||ek||

128 1.3995e-5 1.3995e-5 6.2924e-6(4.7493) 6.2924e-6 (4.0000)

256 3.5118e-6(3.9851) 3.4989e-6(3.9998) 1.4524e-6(4.3323) 1.5732e-6 (3.9998)

512 2.7471e-6(1.2784) 8.7484e-7(3.9994) 9.4508e-7(1.5368) 3.9334e-7 (3.9992)

1024 4.1586e-6(0.6606) 2.1882e-7(3.9980) 1.5250e-6(0.6187) 9.8387e-8 (3.9979)

2048 4.7135e-6(0.8823) 5.4823e-8(3.9914) 1.6714e-6(0.9124) 2.4647e-8 (3.9918)

Ext. 1.7205e-6(poor) 7.2075e-11(good)

Table 5.3: The errors ‖Dek‖ and error ratio.

Zm k(m) linear interp.CMG quadratic interp.CMG EXCMG

128 1024 3.0215e-5 (3.6786) 3.0215e-5 (3.6786) 3.0215e-5

256 256 8.0130e-6 (3.7708) 8.1189e-6(3.7216) 8.1155e-6(3.7231)

512 64 1.1514e-5(0.6959) 4.3685e-6 (1.8585) 2.1606e-6(3.7561)

1024 16 1.6533e-5 (0.6964) 4.0982e-6 (1.0660) 5.7320e-7(3.7694)

||D̄ek1024|| super. 1.6206e-5 (good) 3.0179e-6 (better) 1.3070e-6(best)

where O is only singularity point of u. Assume that U32, U64 given, three algorithms: the linear

or quadratic interpolations are used in CMG, and EXCMG. The results computed are listed in

Table 5.3.

Denote by D̄Um(xj) the averaging gradient of 4 elements around the inner node xj . While

D̄em(xj) = D̄Um(xj)−Du(xj) is the practical error we need.

5.3. The singular solution u ∈ H2

Consider a singular solution u = xy/
√

x2 + y2 ∈ H2−ǫ(Ω) satisfying

−∆u =
3xy

(
√

x2 + y2)3
in Ω, u = 0 on Γ1, u = g(x, y) on Γ2, (5.3)

We see that: 1). Three errors ||Dek|| are close each other and the error ratios are close to 2;

2). Three errors ||D̄em|| are very good and the error ratios are about 3.25. It seems that their

classical extrapolation has still improved the accuracy. This is surprising.

The results of EXCMG show that both classical and new extrapolations are still effective,

which is quite unexpected.

Table 5.4: The errors ‖ek‖ and error ratio.

Zm k(m) linear interp.CMG quadratic interp.CMG EXCMG

128 1024 3.2951e-6 (3.9685) 3.2951e-6 (3.9685) 3.2951e-6

256 256 8.0794e-7 (4.0785) 8.2879e-7(3.9758) 8.2705e-7(3.9842)

512 64 1.8544e-6(0.4357) 7.4596e-7 (1.1110) 2.0720e-7(3.9915)

1024 16 2.5402e-6 (0.7300) 7.4528e-7 (1.0009) 5.1890e-8(3.9931)

||Eek1024|| Ext. 2.7683e-6(poor) 7.4410e-7 (good) 1.2232e-10(best)



696 C.M. CHEN, Z-C. SHI AND H.L. HU

Table 5.5: The errors ‖Dek‖ and error ratio.

Zm k(m) linear interp.CMG quadratic interp.CMG EXCMG

128 1024 5.7544e-4 (1.9997) 5.7544e-4 (1.9997) 5.7543e-4

256 256 2.8773e-4 (1.9999) 2.8773e-4 (1.9999) 2.8773e-4(1.9999)

512 64 1.4409e-4 (1.9969) 1.4404e-4 (1.9975) 1.4387e-4(2.0000)

1024 16 7.4272e-5 (1.9401) 7.3554e-5 (1.9583) 7.1978e-5(1.9988)

||D̄e512|| super. 4.3858e-4(good) 4.3846e-4(good) 4.3843e-4(good)

||D̄e1024|| super. 1.3616e-4(3.2210) 1.3530e-4(3.2201) 1.3477e-4(3.2532)

||E(D̄e)|| Ext. 4.5942e-5(good) 4.088e-5(good) 3.8455e-5(good)

Table 5.6: The errors ‖ek‖ and error ratio.

Zm k(m) linear interp.CMG quadratic interp.CMG EXCMG

128 1024 5.7980e-6 (3.6713) 5.7980e-6 (3.6713) 5.7980e-6

256 256 1.5627e-6 (3.7101) 1.5625e-6 (3.7106) 1.5570e-6 (3.7238)

512 64 1.0389e-6 (1.5043) 8.8791e-7 (1.7598) 4.1516e-7 (3.7504)

1024 16 1.4672e-6 (0.7081) 8.4716e-7 (1.0481) 1.1226e-7 (3.6983)

||Ee1024|| Ext. 1.6436e-6(poor) 8.4070e-7(poor) 6.9561e-9(better)
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