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Abstract

Based on the Boolean sum technique, we introduce and analyze in this paper a class

of multi-level iterative corrections for finite dimensional approximations. This type of

multi-level corrections is adaptive and can produce highly accurate approximations. For

illustration, we present some old and new finite element correction schemes for an elliptic

boundary value problem.
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1. Introduction

Our multi-level corrections are based on the Boolean sum technique. The idea of applying
the Boolean sum technique to construct highly accurate finite dimensional approximations may
be dated back to [22,23], in which some local two-level and three-level finite element correction
schemes were derived. In this paper, we shall propose a type of multi-level iterative corrections
for finite dimensional approximations. This type of schemes is adaptive and is proposed to
produce highly accurate approximations based on some simple postprocesses.

Let us give a little more detailed description of the main idea. Let (H, ‖ · ‖) be a Hilbert
space and A and B be two operators on H. It is known that the so-called Boolean sum of A

and B is defined by A⊕B = A + B −AB. It is easy to see that

I − (A⊕B) = (I −A)(I −B).

Hence as an operator from a subspace of H to another subspace, there may hold that

‖I − (A⊕B) ‖ < ‖I −B‖

for some proper operator A, which is the key that motivates our multi-level corrections. More
precisely, let u ∈ H and Bu be an approximation to u. Then (A⊕B)u may be a better
approximation than Bu for some simple operator A, where both Au and ABu are computable
in application. Note that the construction of A is associated with some subspace of H and
the Boolean sum technique in the multi-level correction in this paper is indeed a successive
subspace correction approach (see Section 2 for details).

We should mention that the Boolean sum technique has been applied to design efficient
numerical schemes in approximation theory, numerical integration, numerical partial differential
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and numerical integral equations, etc., see, e.g., [2, 4, 5, 8–11, 13, 15–18, 20, 25–27, 29, 35–37, 39,
40,43] and references therein. We refer to [28,42] for other interesting connections.

Throughout this paper, we shall use the letter C (with or without subscripts) to denote a
generic positive constant which may stand for different values at its different occurrences. For
convenience, the symbol <∼ will be used in this paper. The notation that x1

<∼ y1 means that
x1 ≤ Cy1 for some positive constant C that is independent of mesh parameters.

2. Multi-Level Correction

We shall discuss the multi-level corrections in a Hilbert space (H, (·, ·)) that can be compactly
embedded into an inner product space (H, < ·, · >), where associated norms are ‖ · ‖ and | · |,
respectively.

Let K be an operator on H defined by

(Kw, v) =< w, v > ∀w ∀v ∈ H.

Then K is compact on (H, ‖ · ‖). Let V ⊂ H be a finite dimensional subspace of H and
PV : H −→ V be a projection operator (namely P 2

V = PV ) satisfying

‖u− PVu‖ <∼ inf{‖u− v‖ : v ∈ V} ∀ u ∈ H. (2.1)

Set

ρV = sup
u∈H,‖u‖=1

|u− PVu|. (2.2)

Then

|u− PVu| <∼ ρV‖u‖, ∀ u ∈ H,

|u− PVu| <∼ ρV‖u− PVu‖, ∀ u ∈ H. (2.3)

Consequently,

inf{|u− v| : v ∈ V} <∼ ρV inf{‖u− v‖ : v ∈ V}, ∀ u ∈ H. (2.4)

Lemma 2.1. There hold

ρV <∼ (‖(I − PV )K‖+ ‖K(I − PV )‖)1/2
, (2.5)

lim
V→H

ρV = 0, (2.6)

where V → H means that

inf
v∈V

‖u− v‖ → 0 ∀ u ∈ H. (2.7)

Proof. We divide the proof into four steps. First, note that for any u ∈ H, there hold

|(I − PV )u|2
=(K(I − PV )u, (I − PV )u)

=(K(I − PV )u− PVK(I − PV )u, (I − PV )u) + (PVK(I − PV )u, (I − PV )u),
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which may be estimated as follows

|(I − PV )u|2 <∼ ‖(I − PV )K‖‖(I − PV )u‖2 + ‖K(I − PV )u‖‖(I − PV )u‖
<∼ (‖(I − PV )K‖+ ‖K(I − PV )‖) ‖u‖2, ∀ u ∈ H.

This proves (2.5). Next we conclude from (2.1) and (2.7) that

lim
V→H

‖(I − PV )u‖ = 0 ∀ u ∈ H, (2.8)

and hence

lim
V→H

sup
u∈H,‖u‖=1

‖(I − PV )Ku‖ = 0, (2.9)

or equvilently

lim
V→H

‖(I − PV )K‖ = 0. (2.10)

We now apply a contradiction argument to prove

lim
V→H

‖K(I − PV )‖ = 0. (2.11)

If (2.11) is not true, then there exist an ε0 > 0, a sequence {Vj}∞j=1 which converges to H, and
a sequence {wj}∞j=1 ⊂ H with ‖wj‖ ≤ 1 (j = 1, 2, · · · ) such that

‖K(I − PVj
)wj‖ ≥ ε0, j = 1, 2, · · · (2.12)

Since H is a Hilbert space, there exist w ∈ H and a weakly convergent subsequence of {wj}∞j=1,

which we also denote by {wj}∞j=1 for convenience, such that wj converges weakly to w, namely

(w − wj , v) → 0 as j →∞ ∀v ∈ H.

From (2.8) and the identity

(PVj
(w − wj), v) = ((PVj

− I)(w − wj), (I − PVj
)v) + (w − wj , v) ∀v ∈ H,

we obtain that PVj (w − wj) converges weakly to zero. Note that

(I − PVj
)wj = wj − w + (I − PVj

)w + PVj
(w − wj),

we find that (I − PVj
)wj converges weakly to zero. Using the compactness of K, we conclude

that
lim

j→∞
‖K(I − PVj

)wj‖ = 0,

which is a contradiction to (2.12).
Finally, we get (2.6) by using (2.8) and (2.11). This completes the proof. ¤

Lemma 2.1 may be viewed as a generalization of that in [33,40] to general finite dimensional
approximations. The following interesting conclusion can be derived from (2.4) and Lemma 2.1
directly.
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Corollary 2.1. For any u ∈ H, there holds

inf{|u− v| : v ∈ V} ¿ inf{‖u− v‖ : v ∈ V} (2.13)

when V → H.

Let Uj (j = 1, 2, · · · ) be some finite dimensional subspaces of H satisfying

U1 ⊂ U2 ⊂ · · · ⊂ Uj ⊂ · · · ⊂ H
and Qj(≡ QUj

) : H −→ Uj (j = 1, 2, · · · ) be a group of operators satisfying

|Qju| <∼ |u| ∀ u ∈ H, j = 1, 2, · · · (2.14)

Define Rn : H −→ V ∪ U1 ∪ U2 ∪ · · · ∪ Un(n = 1, 2, · · · ) by

R0 = PV ,

R2n−1 = QnR2n−2, n = 1, 2, · · ·
R2n = PV ⊕R2n−1, n = 1, 2, · · ·

For instance,
R1 = Q1PV , R2 = PV + Q1PV − PVQ1PV .

Theorem 2.1. For n = 1, 2, · · · , there hold

|(I −R2n)u| <∼ ρV‖(I −R2n−1)u‖. (2.15)

Moreover, if

sup
1≤j≤n+1

‖Qjw‖ <∼ η−1|w| ∀ w ∈ H, (2.16)

then

‖(I −R2n+1)u‖ <∼ ‖(I −Qn+1)u‖+ ρVη−1‖(I −R2n−1)u‖. (2.17)

Proof. It is seen from the definition of Rn that

I −R2n = (I − PV )(I −R2n−1), n = 1, 2, · · · , (2.18)

from which and (2.13) we get (2.15). Note that (2.16) implies

‖Qn+1(I −R2n)u‖
<∼η−1|Qn+1(I −R2n)u| <∼ η−1|(I −R2n)u|,

which together with (2.15) and the identity

I −Qn+1R2n = (I −Qn+1) + Qn+1(I −R2n) (2.19)

leads to (2.17). This completes the proof. ¤
It is seen from Theorem 2.1 that Rnu (n = 1, 2, · · · ) would be used as highly accurate approx-

imations to u, as compared to PVu, and (2.17) implies that the iteration ‖(I −R2n+1)u‖ (n =
1, 2, · · · ) is quasi-contractive if ρVη−1 < 1/C for some constant C. In applications, obviously,
we may use ‖(I −Qn+1)R2nu‖ as a posteriori error estimate for ‖(I −R2n)u‖, from which the
multi-level adaptive correction schemes for highly accurate approximations Rnu(n = 1, 2, · · · )
are then followed.
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3. Applications to Finite Element Approximation

Let Ω be a bounded domain in Rd(d ≥ 1). We shall use the standard notation for Sobolev
spaces W s,p(Ω) and their associated norms and seminorms, see, e.g., [1,7]. For p = 2, we denote
Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0}, where v |∂Ω= 0 is in the sense of
trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω and ‖ · ‖Ω = ‖ · ‖0,2,Ω.

Assume that Th(Ω) = {τ} is a mesh of Ω with mesh-size function h(x) whose value is the
diameter hτ of the element τ containing x. Denote h = max

x∈Ω
h(x) the (largest) mesh size of

Th(Ω).
Let Th(Ω) consist of shape-regular simplices and define Sh(Ω)(≡ Sh,r(Ω)) to be a space of

continuous functions on Ω such that for v ∈ Sh(Ω), v restricted to each τ is a polynomial of
total degree ≤ r, namely

Sh(Ω) = {v ∈ C(Ω̄) : v |τ∈ P r
τ ∀ τ ∈ Th(Ω)}, (3.1)

where P r
τ is the space of polynomials of degree not greater than a positive integer r. Set

Sh
0 (Ω) = Sh(Ω) ∩ H1

0 (Ω). These are Lagrange finite element spaces and we refer to [40] (see
also [31,32]) for their basic properties that will be used in our analysis.

Let (·, ·) be the standard inner-product of L2(Ω). If Qh(≡ Q
(r)
h ) : L2(Ω) 7→ Sh(Ω) is the

L2−projection operator defined by

(w −Qhw, v) = 0 ∀ v ∈ Sh(Ω), (3.2)

then we have the following standard error estimations

‖w −Qhw‖0,Ω + h‖w −Qhw‖1,Ω <∼ h1+r|w|1+r,Ω if w ∈ H1+r(Ω). (3.3)

3.1. A linear elliptic boundary value problem

In this subsection, we shall present some basic properties of a second order elliptic boundary
value problem and its finite element approximations, which will be used in this paper.

We consider the homogeneous boundary value problem
{

Lu = f, in Ω,

u = 0, on ∂Ω.
(3.4)

In (3.4), L is a general linear second order elliptic operator:

Lu = −
d∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

d∑

i=1

bi
∂u

∂xi
+ cu,

where aij , bi ∈ W 1,∞(Ω), c ∈ L∞(Ω), and (aij) is uniformly positive definite on Ω.
The weak form of (3.4) is as follows: Find u ≡ L−1f ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), (3.5)

where a(u, v) = a0(u, v) + N(u, v) with

a0(u, v) =
∫

Ω

d∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
and N(u, v) =

d∑

i=1

bi
∂u

∂xi
v + cuv.
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Note that
‖w‖21,Ω

<∼ a0(w, w) ∀w ∈ H1
0 (Ω)

and

a0(u, v) <∼ ‖u‖1,Ω
<∼ ‖u‖1,Ω‖v‖1,Ω,

N(u, v) <∼ ‖u‖0,Ω‖v‖1,Ω ∀u, v ∈ H1
0 (Ω).

Our basic assumption is that (3.5) is well-posed, namely (3.5) is uniquely solvable for any
f ∈ H−1(Ω). (A simple sufficient condition for this assumption to be satisfied is that c ≥ 0.)
An application of the open-mapping theorem yields

‖w‖1,Ω
<∼ ‖Lw‖−1,Ω ∀ w ∈ H1

0 (Ω). (3.6)

It is seen that if L satisfies the above assumption and the above estimates, so does its formal
adjoint

L∗u = −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
−

d∑

i=1

∂(biu)
∂xi

+ cu.

A sufficient and necessary condition for the well-posedness of (3.5) is that

‖w‖1,Ω <∼ sup
φ∈H1

0 (Ω)

a(w, φ)
‖φ‖1,Ω

∀ w ∈ H1
0 (Ω) (3.7)

and

‖w‖1,Ω
<∼ sup

φ∈H1
0 (Ω)

a(φ,w)
‖φ‖1,Ω

∀ w ∈ H1
0 (Ω). (3.8)

We have (c.f. [12]) the following estimate for the regularity of the solution of (3.4) or (3.5)

‖u‖1+α,Ω
<∼ ‖f‖−1+α,Ω (3.9)

for some α ∈ (0, 1] depending on Ω and the coefficients of L.
It is well-known (c.f. [39, 40]) that if h ¿ 1, then

‖wh‖1,Ω <∼ sup
φ∈Sh

0 (Ω)

a(wh, φ)
‖φ‖1,Ω

∀ wh ∈ Sh
0 (Ω)

and

‖wh‖1,Ω
<∼ sup

φ∈Sh
0 (Ω)

a(φ,wh)
‖φ‖1,Ω

∀ wh ∈ Sh
0 (Ω).

Throughout this paper, we will assume that h ¿ 1 holds so that the above two estimates
hold. From the above two estimates, we can then define Galerkin-projections Ph : H1

0 (Ω) 7→
Sh

0 (Ω) and P ∗h : H1
0 (Ω) 7→ Sh

0 (Ω) by

a(u− Phu, v) = 0 and a(v, u− P ∗hu) = 0 ∀ v ∈ Sh
0 (Ω) (3.10)

and apparently

‖Phu‖1,Ω
<∼ ‖u‖1,Ω and ‖P ∗hu‖1,Ω

<∼ ‖u‖1,Ω ∀ u ∈ H1
0 (Ω). (3.11)
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From (3.11), various a global priori error estimates can be obtained from the approximate
properties of the finite element subspaces Sh(Ω) (c.f. [6,7,40]). Particularly, if u ∈ H1

0 (Ω), then

‖u− Phu‖1,Ω = o(1) and ‖u− P ∗hu‖1,Ω = o(1) as h → 0. (3.12)

Now we introduce the following quantity:

ρ(h) = max(ρ
L
(h), ρ

L∗ (h)),

where

ρ
L
(h) = sup

f∈L2(Ω)
‖f‖0,Ω=1

inf
v∈Sh

0 (Ω)
‖L−1f − v‖1,Ω,

ρ
L∗ (h) = sup

f∈L2(Ω)
‖f‖0,Ω=1

inf
v∈Sh

0 (Ω)
‖(L∗)−1f − v‖1,Ω.

It is derived from the Aubin-Nitsche duality argument that ρV defined by (2.2) satisfies

ρV <∼ ρ(h) for V = Sh,1
0 (Ω)

(c.f. [40]). The following results can be found in [40] (c.f. also [3, 33,41]).

Proposition 3.1. There hold

ρ(h) <∼ hα, (3.13)

‖(I − Ph)L−1f‖1,Ω <∼ ρ(h)‖f‖0,Ω ∀ f ∈ L2(Ω), (3.14)

‖u− Phu‖0,Ω <∼ ρ(h)‖u− Phu‖1,Ω ∀ u ∈ H1
0 (Ω). (3.15)

3.2. Correction schemes

In this subsection, for illustration, we will provide some multi-level adaptive correction
schemes to produce highly accurate finite element approximations by using the general ap-
proaches presented in Section 2.

In our discussion, we set H = H1
0 (Ω), ‖ · ‖ = ‖ · ‖1,Ω, and | · | = ‖ · ‖0,Ω. For simplicity, we

assume that Ω is convex. It is seen that α in (3.9) equals to 1. Let uh ∈ Sh,1
0 (Ω) be the finite

element solution of (3.4) or (3.5), namely uh = Phu or satisfying

a(uh, v) = (f, v) ∀ v ∈ Sh,1
0 (Ω). (3.16)

To apply the general subspace correction approach, we choose V = Sh,1
0 (Ω) and hence ρV

defined by (2.2) satisfies ρV <∼ h. We may employ another finite element triangulation T H(Ω)
with mesh size H so that

T H(Ω) ⊂ T h(Ω)

and H À h. In following examples, we will choose H = O(h2/3) and Uj to be some SH,r
0 (Ω)(r =

2, 3, · · · ) and Qj to be the associated L2−projection operators (j = 1, 2, · · · ). As a result, the
quantity η in (2.16) satisfies η−1 <∼ H−1.

Below we make some remarks on some estimates that depend on the solution regularity.
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• If u ∈ H1
0 (Ω) ∩H3(Ω), then we may choose U1 = SH,2

0 (Ω) and Q1 = Q
(2)
H to obtain

‖u−Q
(2)
H uh‖1,Ω

<∼ h4/3, (3.17)

‖u− uh −Q
(2)
H uh + PhQ

(2)
H uh‖0,Ω

<∼ h7/3. (3.18)

It should be pointed out that (3.17) was first shown in [38].

• If u ∈ H1
0 (Ω) ∩H4(Ω), then we may choose Uj = SH,j+1

0 (Ω) and Qj = Q
(j+1)
H (j = 1, 2)

to obtain

‖u−Q
(2)
H uh −Q

(3)
H uh + Q

(3)
H PhQ

(2)
H uh‖1,Ω

<∼ h5/3 (3.19)

‖u−Rh,2u‖0,Ω <∼ h8/3, (3.20)

where

Rh,2 =uh − PhQ
(2)
H uh − PhQ

(3)
H uh + PhQ

(3)
H PhQ

(2)
H uh

+ Q
(2)
H uh + Q

(3)
H uh −Q

(3)
H PhQ

(2)
H uh.

Note that if the triangulation T h(Ω) is uniform, then we may choose H = 2h. For illustra-
tion, we consider the case of two dimensions. Let Th(Ω) be derived from T 2h(Ω) as follows: for
each element e ∈ T 2h(Ω), connect the edge midpoints of e and obtain 4 subelements. Denote
Πh to be the standard quadratic interpolation operator associated with T 2h(Ω), namely,

Πhu |e∈ P2 ∀ e ∈ T 2h(Ω)

and

Πhu = u on ∂2Th(Ω),

where P2 = span{xi
1x

j
2 : 0 ≤ i + j ≤ 2} and ∂2Th(Ω) is the set of nodal points of Th(Ω).

Although (2.14) and (2.16) are not true for U1 = S2h
0 (Ω) and Q1 = Π2h, highly accurate

finite element approximations can also be constructed by using the Boolean sum technique.
(see, e.g., [21, 22,24,30])

‖u−Π2huh‖1,Ω
<∼ h2, (3.21)

‖u− uh −Π2huh + PhΠ2huh‖0,Ω
<∼ h3, (3.22)

provided that u ∈ H1
0 (Ω) ∩H3(Ω). We refer to [23] for a local three-level correction scheme.

4. Concluding Remarks

In this paper we have proposed and analyzed a multi-level adaptive correction approach
to finite dimensional approximations. We have successfully applied the approach to solve an
elliptic boundary value problem based on finite element discretizations. Although we are able
to utilize the two-level correction to get highly accurate approximations for elliptic eigenvalue
problems (see, e.g., [14, 19, 25, 27, 34, 41]), it is still open if some multi-level (more than two
levels) correction scheme can be designed to produce approximations with higher accuracy
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for elliptic eigenvalue problems. Note that the Boolean sum can be defined on any Banach
algebra, we may expect similar results hold when a Hilbert space (H, ‖ · ‖) is replaced by some
continuous function spaces. Anyway, we believe that the approach presented in this paper is a
general and powerful technique that can be used for a variety of equations with different types
of discretization methods.
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tion of China under grant 10425105 and the National Basic Research Program under grant
2005CB321704.
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