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Abstract

In magnetic resonance elastography, one seeks to reconstruct the shear modulus from

measurements of the displacement field in the whole body. In this paper, we present

an optimization approach which solves the problem by simply minimizing a discrepancy

functional. In order to recover a complex anomaly in a homogenous medium, we first

observe that the information contained in the wavefield should be decomposed into two

parts, a “near-field” part in the region around the anomaly and a “far-field” part in the

region away from the anomaly. As will be justified both theoretically and numerically,

separating these scales provides a local and precise reconstruction.

Mathematics subject classification: 35R30,74L15,92C55.
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1. Introduction

Extensive work has been carried out in the past decade to image the elastic properties of

human soft tissues by inducing motion. This broad field, called elasticity imaging or elastog-

raphy, is based on the initial idea that shear elasticity can be correlated with the pathology of

tissues.

There are several techniques that can be classified according to the type of mechanical

excitation chosen (static compression, monochromatic, or transient vibration) and the way

these excitations are generated (externally or internally). Different imaging modalities can be

used to estimate the resulting tissue displacements.

Magnetic resonance elastography (MRE) is a new way of applying the idea of elastography.

It can directly visualize and quantitatively measure the displacement field in tissues subject to

harmonic mechanical excitation at low-frequencies.

The principle of the MRE relies on three steps: first applying dynamic shear to a tissue,

then measuring displacement, and finally solving an inverse problem to get a map of Young’s

modulus. Each one of these three steps is a technical challenge by itself. The works [2, 9, 18]

describe various frameworks of this problem. We will focus on the so called “steady state” elas-

tography, whose principles have been described in [16], and more recently in [18]. A harmonic

excitation is applied by vibrating a piezoelectric transducer onto the body. This vibration
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propagates in the tissue and thus produces a harmonic displacement field. Figure 1.1 shows the

modulus of the complex amplitude of such a displacement field obtained experimentally. The

displacement field is imaged in the whole volume by a specific sequence of Magnetic Resonance

Imaging (MRI). Such a sequence is called an elastography sequence. Once this displacement is

acquired, an inverse problem is used to reconstruct the shear modulus. Being able to image the

displacement in the whole volume is a crucial feature of the technique because it gives much

more detailed information than what can be obtained from boundary measurements. As we

will explain in this paper, such an imaging system has better resolution.

Fig. 1.1. Experimental wavefield in a phantom. The displacement field is acquired by an MRI sequence

(R. Sinkus’s group – LOA). The transducer is at the bottom. Although the waves are visible, the

amplitude decays in the vertical direction because of a viscosity in the tissue.

We want to numerically estimate the local stiffness of the medium, given the displacement

field produced by a known excitation. In this paper, we discuss the resolution performance one

could expect when solving this kind of inverse problems with interior measurements.

The inverse problem for elastography is investigated in many different ways depending on

the experimental setup. In MRE, it is common to solve the inverse problem by estimating

the derivatives of the displacement field using finite different schemes; see for instance [17] and

Section 2. Other contributors suggested to use finite element methods to match the displacement

field; see, e.g., [20] and [19]. Our approach is somehow similar to this paradigm. We propose

here a mathematical interpretation of the results. Indeed, our numerical simulation tool is

different.

The paper is organized as follows. In Section 2, we recall our mathematical model for steady

state elastography, and describe our optimization approach to solve the inverse problem. In

Section 3, we investigate the resolution limits of our approach by considering a specific set

of discontinuous coefficients to be recovered. In Section 4, we summarize the advantages and

the disadvantages of our method by considering issues of stability, accuracy and computational

performance.
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2. The Inverse Problem of Elastography

2.1. Mathematical model

As previously said, elastography consists mainly of two steps: inducing a displacement

in a soft medium, and solving an inverse problem in order to estimate the stiffness of the

tissue. Depending on the experimental framework, various mathematical models can be used

to describe the problem: some are based on the anisotropy of the tissues such as muscle or

brain [7] and others are based on the dissipation of the mechanical energy in tissues such as

liver [10]. However, we make the same assumptions that are common in the elastography

community and choose to study a linear, isotropic elastic medium, without any dissipation.

Moreover, as soft tissues are incompressible we use the incompressible elasticity model derived

in [4].

Let Ω be a smooth domain in R
2, and let its boundary be the union of two disjoint com-

ponents ∂Ω = Γ1 ∪ Γ2. Let ν denote the outward unit normal to ∂Ω. Consider the pair

(u, p) ∈ (H1)2 × L2 to be the solution to the following system:















∇ · (µe(u)) + ρω2u + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = F on Γ1,

pν + µe(u)ν = 0 on Γ2,

(2.1)

where e(u) = 1
2
(∇u + ∇ut) is the strain tensor (t stands for transpose).

One can interpret this system as follows: u is the displacement field in the medium, µ is the

shear modulus or the stiffness of the medium, ρ is the density of the medium, ω is the pulsation

of the excitation applied on the boundary, p is the pressure field in the medium, the boundary

conditions correspond to the part of the boundary Γ2 which is free, and to the part Γ1 of the

boundary where the mechanical excitation is imposed. As shown in [4], this system is actually

the limiting system of the compressible Lamé system, where the compression modulus λ goes

to +∞.

It is known that, except for a discrete number of values of ω, u = 0 if F = 0. See for

instance [13].

2.2. Definition of the inverse problem

The problem can be described in the following form: suppose we have at our disposal a

medium of shape Ω, with shear modulus µ∗, which is not known. We impose the boundary

conditions described above, and thus in the medium, a displacement field uexp and a pressure

field pexp appear. They are solution to (2.1). We measure the displacement field uexp (hence

it is known). The inverse problem consists in estimating µ∗ from the information provided by

uexp. The following estimation:

µ = −
ρω2q

∆q
, q = ∇× uexp

has been suggested in [17, 18]. It gives the value of the shear modulus at every point as a

function of the values of the derivatives of the displacement field. It is an approximation that

is valid as long as the shear modulus varies smoothly. Consequently, it is impractical to use

it to reconstruct interfaces and anomalies. Moreover, in concrete situations uexp is measured
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experimentally and is therefore noisy. The computation of its derivatives is unstable and this

technique, although quite efficient, requires smoothing and fine tuning of a certain number of

parameters.

In this paper, we suggest solving this inverse problem numerically by an optimization ap-

proach. We have a numerical simulation tool that allows us to solve the so-called direct problem.

If we assume a shear modulus distribution µ to be the correct one, we can compute the numer-

ical solution umod(µ) of problem (2.1). An intuitive criterion for an estimated map µ is wether

umod(µ) is similar to uexp, since we want µ to be such that those two displacement fields look

as alike as possible. From a mathematical point of view, we want to numerically minimize, with

respect to the shear modulus map µ, the discrepancy functional:

J(µ) =
1

2
||uexp − umod(µ)||22.

The computed minimizer will be our estimator µ̃. Actually, if we want umod and uexp to be

alike, we should impose the conditions that match perfectly on the boundary ∂Ω. From now

on, umod will denote the solution to the following problem:







∇ · (µ(x)e(u)) + ρω2u + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = uexp on ∂Ω.

(2.2)

The discrepancy functional will be as follows:

J(µ) =
1

2
||uexp − umod(µ)||22,

where umod(µ) is the solution of (2.2) and uexp is a field being observed (the result of an

experiment or of a numerical simulation in our case), and which does not depend on µ.

2.3. Optimization of the discrepancy functional

In order to minimize the discrepancy functional, we adopt a simple gradient descent method.

To do this, we need to compute the derivatives of the discrepancy functional with respect to µ.

Then, starting from an initial guess for the shear modulus map, µ0, we evolve the map µ with

the following dynamics:
∂µ

∂t
= −

∂J

∂µ
,

which we discretize, and then use to obtain the following update procedure:






initial guess µ0,

µn+1 = µn − δ
∂J

∂µ
(µn).

(2.3)

Here, δ is an update parameter, which we will determine. The computed minimizer will be our

estimator µ̃, that is

lim
n→∞

µn = µ̃.

Notice that we have here a numerical understanding of the estimator. We did not treat the

question wether µn converges to the actual shear modulus map µ∗, and at which speed; see in

this connection [12]. Rather we are interested in the interpretation of the numerical estimator

µ̃ that we will build.
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Numerical evidence provided later in this paper (Figures 2.1 and 2.2) shows that the con-

vergence is efficient.

The purpose of this paper is to illustrate the intrinsic limitations of such an optimization

technique, namely the scale coupling (cf. Section 3) and the stability issues (cf. Section 4).

In order to compute the derivatives of the functional J , we use an adjoint based method. To

begin, we first need to derive a variational formulation for problem (2.1). Let ũ ∈ H
1

2 (∂Ω) be

the trace of uexp on the boundary of Ω. There exists ṽ ∈ (H1(Ω))2 such that ∇ · ṽ = 0 in Ω

and ṽ = ũ on ∂Ω; see [8]. Indeed, one keeps in mind that as uexp is divergence-free, the mean

of the normal component of its trace over the boundary ∂Ω is 0. Let v be a solution of (2.2),

h = v − uexp is in (H1
0 (Ω))2 and satisfies the following system:







∇ · (µ(x)e(h)) + ρω2h + ∇p = f̃ in Ω,

∇ · h = 0 in Ω,

h = 0 on ∂Ω,

(2.4)

where f̃ = ∇ · (µ(x)e(uexp)) + ρω2uexp. Because urmexp is in H1, one can prove that f̃ is in

H−1 and thus problem (2.4) has a solution in H1. Notice that f̃ is linear in µ as uexp does not

depend on µ. Thus the variational formulation of (2.4) is (see [8]): find h ∈ Hdiv such that

−

∫

Ω

µ e(h) : e(v) + ρω2h.vdx =

∫

Ω

f̃ .v dx, ∀v ∈ Hdiv.

Here, Hdiv = {f ∈ (H1
0 )2,∇ · f = 0} and e(h) = 1

2
(∇h + ∇ht). If a and b are matrices, by

a : b we denote aijbij . For a given medium µ, let us denote the solution of (2.4) by ûmod so

that ûmod = umod − ṽ. Now let us write a modified discrepancy functional:

J̃(µ,h,v) =
1

2
||uexp − h− ṽ||22 −

∫

Ω

µ e(h) : e(v) + ρω2h.vdx −

∫

Ω

f̃ .v dx.

The relationship between J and J̃ is given by

∀v ∈ Hdiv J(µ) = J̃(µ, ûmod(µ),v), ûmod satisfies (2.4).

If one differentiates with respect to µ this identity, then one finds:

∂J

∂µ
=

∂J̃

∂µ
(µ, ûmod,v) +

∂J̃

∂h
(µ, ûmod,v) ·

∂umod

∂µ
, ûmod satisfies (2.4).

This equality holds for all v ∈ Hdiv, and thus in particular for v0 such that ∂J̃
∂h

(µ, ûmod,v0) ≡ 0.

Notice that this is a linear form in H∗
div being 0. Hence the derivative is defined by:



























∂J

∂µ
=

∂J̃

∂µ
(µ, ûmod,v0),

∀v ∈ Hdiv, −

∫

Ω

µ e(ûmod) : e(v) + ρω2ûmod.vdx =

∫

Ω

f̃ .v dx,

∂J̃

∂h
(µ, ûmod,v0) ≡ 0,

(2.5)

or equivalently,


























∂J

∂µ
= −e(umod) : e(v0),

∀v ∈ Hdiv, −

∫

Ω

µ e(ûmod) : e(v) + ρω2ûmod.vdx =

∫

Ω

f̃ .v dx,

∀w ∈ Hdiv,

∫

Ω

(uexp − ûmod − ṽ) · w −

∫

Ω

µ e(w) : e(v0) + ρω2w.v0dx = 0.

(2.6)
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The last equation means that v0 is the solution of the so-called adjoint problem. Although,

this variational formulation corresponds to the equation we solve numerically, we can give a

strong form of this equation. If Ω is smooth and simply connected, then ∇ · (µ(x)e(v0)) +

ρω2v0 + (uexp − umod) which is in H−1 and in the polar of Hdiv, can be represented as the

gradient of a scalar field p∗ in L2. Thus the strong form of the adjoint problem is







∇ · (µ(x)e(v0)) + ρω2v0 + ∇p∗ = −(uexp − umod) in Ω,

∇ · v0 = 0 in Ω,

v0 = 0 on ∂Ω.

(2.7)

2.4. Numerical Implementation

Provided we have a numerical tool to solve direct and adjoint problems, we can compute

the derivatives of J(µ) with respect to µ. To compute the approximated minimizer µ̃ of this

functional, we implement the following gradient descent method:

• Initialization: Set initial guess µ0 to be homogenous. Compute the initial forward

problem u0 = umod(µ0), the initial cost function ||uexp − u0||
2
2, the initial adjoint

problem v0, and set the initial descent parameter δ0.

• Main loop: For a certain number of iterations N : The direct and adjoint problems

being solved at the step n − 1, denoted by un = umod(µn) and vn, compute the

gradient e(un) : e(vn). Compute the new forward and adjoint fields un+1, vn+1,

associated to µn+1 = µn + δne(un) : e(vn). Compute the new cost functional Jn+1 =

||uexp − un+1||
2
2.

If Jn+1 < Jn then set δn+1 = δn ∗ (1.1) and µn+1 = µn+1;

If Jn+1 > Jn then set δn+1 = δn ∗ (0.5) and µn+1 = µn.

• End: End the loop after a fixed number of iterations, or when the cost becomes smaller

than a given parameter ǫ.

Notice that we used an “adaptive” step amplitude δ to enforce the decrease of the functional

by decreasing the step. When the descent seems to be efficient, one increases the step size.

Although some aspects of the solution are used conventionally, we still observed a significant

speed up of the descent. We think of speeding up the method with Newton or Quasi Newton

methods, but this remains to be implemented.

2.5. Numerical Illustration

To solve at each iteration the direct and adjoint problems, we used the ”SOL” FEM solver

developed by the third author [1]. This code solves the incompressible elasticity equation (2.1),

using a penalization to ensure the free-divergence condition. We implemented 2D examples

on rectangular meshes of rectangular elements. We typically used 140×140 meshes and each

computation (forward or adjoint) took approximately 20 seconds on a dual core processor. The

”experimental” field obtained numerically is shown in Figure 2.1, together with the reconstruc-

tion results. The decrease of the discrepancy functional is described in Figure 2.2.
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Fig. 2.1. The numerically simulated displacement field on the left, the actual shear modulus map in

the middle, and the reconstructed map on the right.

number of iterations
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ep
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0

1

0.5

Discrepancy minimization

Fig. 2.2. Minimization of the discrepancy functional. We use an adaptive step size in order to enforce

the decrease of the functional.

Fig. 2.3. Actual and recovered distributions in the case of a complex map. We fail to recover accurately

the details from the far-field measurements.

2.6. Recovery of Details

Suppose we want to recover a more complex map, like a small anomaly of different shear

modulus µ̃, of complex shape in a homogenous background of shear modulus µ. Such a situation,
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similar to the one encountered in Figure 2.3, corresponds to the scheme in Figure 3.1. To do

this task, the algorithm seems to be less efficient, as shown in Figure 2.3. The reason for this

is that the information contained in the far-field and in the near-field is completely different

because of the diffraction property of the wave propagation. By ”near-field” we mean uexp(x)

for x lying in a neighborhood of the anomaly (denoted W in Figure 3.1). By ”far-field” we mean

uexp(x) for x lying outside of such a neighborhood. It is a fundamental property of the wave

equation that the propagation filters all the rapid spatial oscillations in the far-field [14, 15].

This can be seen by decomposing in spherical harmonics the solution w(r, θ) of the Helmholtz

equation (∆ + ω2)w = 0 in 2D, scattered from a complex object, and subject to the radiation

condition:

w(r, θ) =
∑

wnHn(ωr)einθ,

where Hn are Hankel functions. The rapid angular oscillations associated with high values of

n, are associated to rapidly decaying Hn. The relevant parameter that quantifies this decay is

ωr, which means that the characteristic decay length is determined by the wavelength Λ = 2π
ω

.

Thus the algorithm performs a trade-off between the far-field reconstruction, that is the

reconstruction from the information lying in the far-field and the near-field reconstruction,

which uses the information lying in the near-field. In fact, one could decompose the discrepancy

functional over the all domain into two parts:

J(µ) =
∑

near-field

1

2
|uexp − umod|

2 +
∑

far-field

1

2
|uexp − umod|

2.

But these two parts have different minimizers, for, as said already, the intrinsic reason that the

information carried in the near- and far-field parts of uexp are different.

As shown in [4], the only information that travels away from the anomaly is the viscous

moment tensor and the reconstructed anomaly should be an equivalent ellipse (See Figure 2.3

for an illustration of this). But in the near-field, the perturbation is the solution of a problem

which is well-posed in the sense that the near-field is one-to-one with the corresponding shape

and contrast of the anomaly.

For this reason, we want to separate the two scales in order to coherently treat each part of

the information.

3. Scale Separation in Solving the Inverse Problem

We introduce two scales in the problem as illustrated in Figure 3.1. The small spatial scale

is associated with a rapid variable ξ = (x − z)/ǫ. It characterizes the perturbation due to the

anomaly in a small region around z. The slow variable is associated to perturbations far from

the anomaly.

As shown in [4], there is no asymptotic development of the perturbed displacement field

which is valid for all the domain Ω, that is why we have developed a two-scale model. As

the perturbation parameter ǫ goes to 0, we have introduced an ansatz development for the
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x

D= z + ǫ B

Ω

ξ = x−z
ǫ

W

Fig. 3.1. We introduce two scales to capture the different natures of the perturbations near and far

from the anomaly.

perturbed elastic field. Assuming that u is the displacement part of the solution (u, p) to











































(µ∆ + ω2ρ)u + ∇p = 0 in Ω − D,

(µ̃∆ + ω2ρ)u + ∇p = 0 in D,

u|− = u|+ on ∂D,

(p|+ − p|−)N + µ ∂u

∂N
|+ − µ̃ ∂u

∂N
|− = 0 on ∂D,

∇ · u = 0 in Ω,

u = F on Γ1,

pν + µ∂u

∂ν
= 0 on Γ2,

(3.1)

where ∂
∂N

denotes 1
2
( ∂

∂n
+ ∂

∂n

t
) and n is the outward unit normal to ∂D, we have set the following

a priori inner and outer expansions, that correspond to the perturbed near- and far-fields:































u(x) = U0(x) + ǫU1(x) + ǫ2U2(x) + . . .

û(ξ) = v0(ξ) + ǫv1(ξ) + ǫ2v2(ξ) + . . .

lim
x→0

u(x) = lim
|ξ|→∞

û(ξ).

(3.2)

The same kind of expansions for the pressure field p, which we omit because we are primarily

considering the displacement field u, holds.

By plugging in this ansatz in equation (3.1) and making the change of variables x → x−z
ǫ

,

one can see, after identifying the terms in ǫ−2 and ǫ−1, that

û(ξ) = Uµ=µ̃(z) + ǫv̂(ξ) + O(ǫ2),

where v̂ is the displacement part of the pair (v̂, p̂) defined by



























µ∆v̂ + ∇p̂ = 0 in Ω − D,

µ̃∆v̂ + ∇p̂ = 0 in D,

v̂|− = v̂|+ on ∂D,

(p̂|+ − p̂|−)N + µ ∂v̂

∂N
|+ − µ̃ ∂v̂

∂N
|− = 0 on ∂D,

∇ · v̂ = 0 in Ω,

(3.3)
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subject to the matching conditions:

{

v̂(ξ) −∇Uµ=µ̃(z)ξ → 0 as |ξ| → ∞,

p̂(ξ) → 0, as |ξ| → ∞,
(3.4)

which couple the inner and outer expansions. Condition (3.4) corresponds to

lim
x→z

u(x) = lim
|ξ|→∞

û(ξ).

For the far-field asymptotic expansion, the difference between the perturbed field and the

background field U0 (associated to the pressure field q0) satisfies the following system:











































































(∆ + κ2)(u − U0) +
1

µ
∇(p − q0) = 0 in Ω \ D,

(∆ + κ2)(u − U0) +
1

µ
∇(p − q0) = (κ2 − κ̃2)u +

(

1

µ
−

1

µ̃

)

∇p in D,

(u − U0)
∣

∣

+
− (u − U0)

∣

∣

−
= 0 on ∂D,

1

µ
(p − q0)

∣

∣

+
N +

∂

∂N
(u− U0)

∣

∣

+

=
1

µ
(p − q0)

∣

∣

−
N +

∂

∂N
(u − U0)

∣

∣

−
+

µ̃ − µ

µ

∂u

∂N

∣

∣

−
on ∂D,

∇ · (u − U0) = 0 in Ω,

u − U0 = 0 on ∂Ω,

(3.5)

where κ = ρω/µ and κ̃ = ρω/µ̃. Integrating over y ∈ Ω \ D the first equation in (3.5) against

the Green function Gi(x, y), which is defined by











(

∆y + ω2ρ
µ

)

Gi(x, y) + ∇π = δy=xei,

∇y.Gi(x, y) = 0,

(3.6)

and using the divergence theorem, we have obtained the following representation formula for

x ∈ Ω:

u(x) = U0(x) +

(

µ̃

µ
− 1

)
∫

∂D

G(x, y)
∂u

∂N

∣

∣

∣

∣

−

(y) dσ(y) +

(

1

µ
−

1

µ̃

)
∫

D

G(x, y)∇p(y) dy,

where GX =
∑

i,j eiG
i
jXj and Gi

j is the j-th component of Gi. Since

(

µ̃

µ
− 1

)
∫

∂D

∂u

∂N

∣

∣

∣

∣

−

(y) dσ(y) + (
1

µ
−

1

µ̃
)

∫

D

∇p(y) dy = −

(

µ̃

µ
− 1

)

κ2

∫

D

u dy,

as it can be seen by integration by parts, we obtain from the inner expansion that for x far

away from z, in R
2,

u0(x) ≈ U0(x) + ǫ2
2

∑

i,j,ℓ=1

ei∂ℓG
i
j(x, z)

[

(
µ̃

µ
− 1)

∫

∂B

(

∂v̂

∂N

)

j

∣

∣

∣

∣

−

(ξ)ξℓ dσ(ξ)

+

(

1

µ
−

1

µ̃

)
∫

B

∂j p̂(ξ)ξℓ dξ

]

.
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which may be simplified as follows:

u0(x) ≈ U0(x) + 2ǫ2(
µ̃

µ
− 1)

2
∑

i,j,ℓ=1

ei∂ℓG
i
j(x, z)

[
∫

B

e(v̂)j,ℓ(ξ) dσ(ξ)

]

,

where e is defined in (2.1).

The quantity
∫

B
e(v̂)j,ℓ(ξ) dσ(ξ) is given in terms of the viscous moment tensor (V p,q

j,ℓ )j,ℓ,p,q,

defined in [4], by

V(B)j,ℓ =

∫

B

e(v̂)j,ℓ(ξ) dσ(ξ) = ∂pU
q
0V

p,q
j,ℓ .

These asymptotics can be summarized as follows:






û(ξ) ≈ Uµ=µ̃(z) + ǫ v̂(ξ) in the near-field,

u(x) ≈ Uµ=µ̃(x) + ǫ2( µ̃
µ
− 1)∇G : V(B) in the far-field.

(3.7)

Here, ∇G : V is a compact notation for ei∂ℓG
i
jV(B)j,ℓ. We stress the following points:

• Although the perturbation in the displacement field decays rapidly with the volume of

the defect, there exists a coupling between a local perturbation at the location z and the

far-field everywhere in the domain.

• As expected, the far-field perturbation carries a less accurate information since the field

v̂ is integrated over the boundary of B and it is multiplied by ∇G, whereas the near-field

carries a more accurate information.

• The fact that there is no uniform asymptotics for the perturbed field over the whole

domain, shows that it is impossible to do accurate inverse processing of the data on the

whole domain, one has to perform local reconstruction. We exploit this fact by running

the method on a subregion just around the suspected defect.

In the case of two anomalies, by minimizing the discrepancy functional on a small window

W , we can treat coherently the near-field information and achieve a well resolved reconstruction;

see Figure 3.2. We conclude that scale separation increases the performance of the method.

From the optimization point of view, we observed that the standard gradient method on the

whole domain did not converge well toward the real solution µ∗. Using the scale separation

method allowed us to achieve better convergence to the true minimizer µ∗. To further illustrate

this, Figure 3.3 shows the values of the discrepancy functional at the first iteration and after

100 ones (typical number of iterations when the algorithm converges). Note that the residual

discrepancy is located around the anomaly. This residual error cannot be treated on the whole

domain because each local modification of the map µ would cause propagation of the error in

the whole domain and thus would increase the discrepancy. There is a natural comparison to be

made with a Pareto-optimum. One could not decrease the ”near-field” error without causing,

through the coupling ǫ2( µ̃
µ
− 1)∇G : V, an equivalent increase in the ”far-field” error.

This technique however allows us to bypass this scale coupling obstacle to further decrease

the functional, and reach a more accurate minimizer. So, by analyzing the basic properties of

equation (2.1), we achieved a better convergence of the minimization algorithm.

Computing the shape derivative of the discrepancy functional on W , we find that dSJ has

the following form [3]:

dSJ = V [e(umod)] : e

(
∫

W

G(umod − uexp)

)

,
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Fig. 3.2. Reconstruction without separation of scales on the left, a zoom on the anomaly that we are

trying to recover in the middle, and on the right the reconstruction limited on the subregion defined

by the boxed region on the left.

Fig. 3.3. The discrepancy functional at the first iteration (left) and after 100 iterations (right). The

residual discrepancy is located around the anomaly.

Fig. 3.4. Oscillations in the Dirichlet Green function G in a window W of size of order of the wavelength

(on the left) and much larger than the wavelength (on the right).

where G is the Dirichlet Green function in the window W and V [e(umod)] is a viscosity matrix

defined at any point on the boundary of the anomaly. Therefore, smaller W , higher the oscilla-

tions in G and better the resolution in reconstruction the anomaly. See Figure (3.4). However,

it becomes unstable for finite signal-to-noise ratio in the measurements. This stability issue is

the topic of the next section.
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4. Stability of the Reconstruction Method

The previous section tends to show that performing local reconstruction allows perfect

reconstruction, for a specific sampling of the data. As previously mentioned for the analytical

reconstruction,

µ̃ =
ρω2∇× uexp

∆∇× uexp

,

stability is a crucial issue in practice. So we want to test the stability behavior of our proposed

approach. Stability analysis is in general a challenging problem because little is known about

the noise structure, yet different noise models give different stability behaviors. We face in this

paper the same difficulties, and we merely test the robustness of our method to a perturbation

of the data with the following form:

For each pixel Xi uexp(Xi) → uexp(Xi) +
δ

uMAX

Yi = un
exp(Xi),

where Yi are gaussian random variables of unitary variance, δ is an amplitude parameter,

uMAX is the maximum amplitude of uexp. We run our reconstruction method on the noisy sets

un
exp.

4.1. Stability of the ”Global” Reconstruction Method

When we reconstructed the shear modulus from the data from the whole domain Ω (that

is without scale separation), we observed that the method was robust as it can be seen in

Figure 4.1, where we tried to recover an anomaly of different shear modulus in a homogenous

background. This stability feature is due to the fact that the spatial frequencies which dominate

in the data are not too high. If we define the wavelength λ by
√

µ
ρω2 , then we can assume that

for smooth media the signal uexp in the far-field has mostly spatial frequencies of the order

of k = 1/λ. On the other hand, the noise is uncorrelated and has a broad distribution across

the spatial spectrum. The signal-to-noise ratio (SNR) is high in the framework of the global

reconstruction. The algorithm is thus marginally disturbed by the noise. This causes the

efficient noise to be reduced and the problem to be better posed in the sense of stability.

4.2. Instability of the Local Reconstruction Method

We performed the same test with the near-field reconstruction, on the model example of

Figure 3.2. We aim to investigate the stability of the separation of scales when the data is noisy.

We observed that the method was unstable if it uses the local data. This was because the fine

information of the local data has a high spatial frequency and consequently the information

is significantly disturbed by the noise. This means that the SNR is largely affected in this

situation. In Figure 4.2, we can see that even with a little noise, we cannot recover the two

anomalies. The reconstruction is unstable and gives no information about the shear modulus

of the medium.

We investigated the possibility of regularization to recover the stability of the local technique.

Instead of minimizing the discrepancy functional over the local domain W , we minimized a

regularized functional (see [6]):

Jreg(µ) = J(µ) + β

∫

Ω

|∇µ(x)|dx,
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which depends on a regularization parameter β. To compute the gradient of this functional,

one only needs to modify the technique described in Section 2.3 by adding the derivative with

respect to µ of the regularization term. The gradient of the regularization term, which is the

Fig. 4.1. Elastic field with 35 % noise, and reconstruction of an anomaly. Although the data is seriously

noisy, the anomaly is still visible.

Fig. 4.2. Noisy displacement field (local data), and reconstruction pattern with 5% noise: the recon-

struction crashes.

Fig. 4.3. Local reconstruction of an anomaly without regularization (left) and with regularization

(right). The anomaly in more visible with the regularized reconstruction.
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total variation of the shear modulus map, is given by

∂TV (µ)

∂µ
= −

∫

Ω

∇ · (
∇µ

|∇µ|
)dx.

Then, applying the same numerical algorithm with a homogenous initial guess µ0 and an initial

updating step δ0, we implemented this modified gradient descent method and obtained the

results of Figure 4.3. We tried in this example to recover a disk-shaped anomaly located at

the center of the domain. We observed that the distribution recovered with the regularization

term is indeed smoothed (in the sense of total variation) and the anomaly is visible, whereas it

was completely invisible in the classical reconstruction. However, this regularization technique

has some drawbacks. Its application is limited if there is no prior knowledge of the smoothness

of the target to recover (tumors, pathologies). Moreover, setting the values of δ0 and β is a

sensitive task. If the regularization parameter is too high, the numerical solution of the inverse

problem µ̃ will be homogenous and gives no information about the medium, while if there is not

enough regularization, the reconstruction becomes unstable. Finally, setting these parameters

is data-dependent, which limits its practical applications.

4.3. Resolution Performance of the Algorithm

We discuss now the resolution performance of our technique: given a specific data set uexp,

how accurately does our technique recover µ∗ ? If we assume that we have no noise in the data

and that the sampling density is infinite, which means we know the value of the displacement

in each point of Ω, then we can perfectly reconstruct the shear modulus map.

Indeed, as explained in [4], with perfect data, one could scale the local data and the problem

would be reduced to solving an inverse problem for the Stokes equation, namely problem (3.3)

in Section 3. We have a unique solution for this problem. Moreover, our numerical method is

efficient; cf. Figure 3.2. Thus with infinite SNR, infinite sampling density, the resolution is also

infinite; we could recover perfectly the map µ∗.

In practice, the data is noisy and acquired on a finite number of points in the domain Ω. This

changes the performance one could expect when one solves the elastography inverse problem.

If one acquires enough points per wavelength, and have infinite SNR, one can recover the map

µ with the same accuracy as the sampling. The reconstruction is still accurate, since one can

still use the scale separation technique.

The most important problem arises when some noise is added to the data, since the scale

separation technique becomes unstable in this case. There is a trade-off between accuracy

and stability. The global optimization method applied to the entire domain is stable but not

accurate. On the other hand, the local method is accurate but unstable.

We have to choose a window that is not so small to preserve some stability and not so big

so that we can gain some accuracy. In the presence of noise, the loss of accuracy due to the

scale coupling is thus inevitable. The resolution of the algorithm is therefore limited in the

noisy data case. The question is to quantify this limit: what is the critical size of the window

W that switches between far-field and near-field reconstructions ?

In practice, the critical size is of order of the wavelength λ. However, it is unclear exactly

how far from an arbitrary shaped object would the near-field still be dominant over the far-field.

It is important to underline that the size of W is frequency dependant, especially when it comes

to study the frequency dependance of µ∗, which is of clinical relevance.
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In the finite difference methods used in [18], which exploit the formula µ = ρω2q/∆q (see

Section 2), the data has to be smoothed to compute its derivatives in a stable manner. This is

achieved with a low-pass spatial filter that has a cut-off frequency, which can be interpreted in

terms of the spatial dimension Wcut. If Wcut is too small, then the filter does not smooth enough

and the algorithm is unstable while if Wcut is too high, then the smoothing is drastic and it

kills the relevant information. This is the same trade-off in our scale separation technique. So

both techniques are semi-local in practice. Therefore, one needs to carefully analyze the spatial

spectrum of the data.

5. Conclusion and Perspectives

In this paper we have implemented an optimization technique in order that solves the

inverse problem in MRE. We have presented the scale separation technique, which is inspired

by the rigorous asymptotic expansion for the perturbations in the elastic field that are due to an

anomaly. We have discussed the numerical results of this technique, and compared their intrinsic

properties to existing methods. Further work to quantify the window size W should allow us

to be more quantitative about the performance of the proposed reconstruction techniques in

elastography.
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