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Abstract

We propose and analyze a C0 spectral element method for a model eigenvalue problem

with discontinuous coefficients in the one dimensional setting. A super-geometric rate of

convergence is proved for the piecewise constant coefficients case and verified by numerical

tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation

method and a spectral Galerkin method is established for a simplified model.
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1. Introduction

We often encounter eigenvalue problems with discontinuous coefficients in practice. Exam-

ples of such applications may be found in [11]. In this paper, we consider the following one

dimensional model problem: Find (λ, u) ∈ R
+ ×H2(−π, π) such that

−u′′(x) = λc(x)u(x), u(−π) = u(π), u′(−π) = u′(π). (1.1)

Here c(x) ≥ c0 > 0 is a piecewise constant, or piecewise analytic function. The physics back-

ground of this model problem comes from the source-free Maxwell equations describing the

transverse-magnetic mode in the one-dimensional periodic media, where the function u rep-

resents the electric field pattern, and the dielectric function c(x) describes a unit cell from

a multilayer structure with 2π-periodicity. This model problem was discussed by Min and
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Gottlieb in [11] where C1 conforming spectral collocation methods were constructed on two

elements over

H2
per(−π, π) =

{

v ∈ H2(−π, π) : v(−π) = v(π), v′(−π) = v′(π)
}

,

and error bounds of type O(p−m) were established. Note that the solution of (1.1) belongs to

C1.

It would be interesting to discuss C0 spectral element methods over

H1
per(−π, π) =

{

v ∈ H1(−π, π) : v(−π) = v(π)
}

,

since the construction of a C0 spectral element method is much simpler than that of the global

C1 spectral collocation method proposed in [11]. The idea of the spectral element can be

found, e.g., in an early work [12]. Note that the spectral element method is equivalent to the

so-called p-version finite element method, see e.g., [3]. Under the finite element variational

framework, we are able to prove a super-geometric error bound of type O(e−2p(log p−γ)). In

some earlier works of the third author, the super-geometric error bound of type O(e−p(log p−γ))

has been established for some spectral/collocation approximations of the two-point boundary

problem [17,18]. Our error bound for the eigenvalue approximation “doubles” the error bound

for the associated eigenfunction approximation, the fact we have known for the h-version finite

element method. It is worthy to point out that in the literature of the spectral method, it

is a common practice to consider error bounds of type O(p−m), see, e.g., [5–7, 10, 15, 16], and

reference therein. To the best of our knowledge, this is the first time that a super-geometric

convergence rate is established for the eigenvalue approximation by the spectral method.

2. Theoretical Setting

The variational formulation of (1.1) is to find (λ, u) ∈ R
+ ×H1

per(−π, π) such that

(u′, v′) = λ(cu, v), ∀v ∈ H1
per(−π, π). (2.1)

In this paper, we also consider the Dirichlet problem

−u′′(x) = λc(x)u(x), u(0) = 0 = u(1).

Its variational formulation is to find (λ, u) ∈ R
+ ×H1

0 (0, 1) such that

(u′, v′) = λ(cu, v), ∀v ∈ H1
0 (0, 1). (2.2)

By the general theory [2, 8], both problems (2.1) and (2.2) have countable infinite sequence of

eigen-pairs (λj , uj) satisfying

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞, (u′i, u
′
j) = λj(cui, uj) = λjδij .

Furthermore, eigenvalues can be characterized as extrema of the Rayleigh quotient R(u) =

(u′, u′)/(cu, u) as follows

λ1 = inf
u∈S

= R(u1),

λk = inf
u∈S, (u′,u′

j
)=0,j=1,...,k−1

R(u) = R(uk), k = 2, 3, . . . ,
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where S = H1
per(−π, π) or H1

0 (0, 1).

Next, we describe the framework of our numerical approximation. We partition the solution

interval into m sub-intervals (element) such that c(x) is analytic on each interval. Let h be the

maximum length of all elements, we then define a finite dimensional subspace Sh
p ⊂ S, as a

piecewise polynomial of degree p on each element. Our spectral element method is to find an

eigen-pair (λ(p), wp) ∈ R+ × Sh
p such that

(w′
p, v

′) = λ(p)(cwp, v), ∀v ∈ Sh
p . (2.3)

Note that the partition parameter h is fixed and convergence is achieved by increasing polyno-

mial degree p. Therefore, we may suppress the index h later.

By the general theory [2,8], the problem (2.3) has a finite sequence of eigen-pairs (λj,p, wj,p)

satisfying

0 < λ1,p ≤ λ2,p ≤ · · · ≤ λN,p, N =

{

mp− 1 H1
0 (0, 1)

mp H1
per(−π, π)

(w′
i,pw

′
j,p) = λj,p(cwi,p, wj,p) = λj,pδij ;

λ1,p = min
w∈Sp

= R(w1,p), (2.4)

λk,p = min
w∈Sp, (w′,w′

j,p
)=0,j=1,...,k−1

R(w) = R(wk,p), k = 2, 3, . . . (2.5)

One important observation from the above Minimum-Maximum principle is that the specific

eigenvalue approximation is from above in the sense

λk ≤ · · · ≤ λk,p+1 ≤ λk,p ≤ λk,p−1 · · · ≤ λk,1.

3. A Galerkin Spectral (p-Version) Method

Without loss of generality, we consider piecewise constant c(x) as in [11] with jump at the

center of the solution domain. In particular, we take

c(x) =

{

1 x ∈ (−π, 0),

ω2 x ∈ (0, π).

Instead of constructing C1 shape functions for eigenvalue problem (2.1), we seek for a C0

approximation wp ∈ H1(0, 1) with traditional expansion

wp(x) = w0(N− +N+) +

p−1
∑

j=1

wjφp−j+1(x) + wpN(x) +

2p−1
∑

j=p+1

wjψj−p+1(x), (3.1)

where N−(x), N(x), and N+(x) are linear nodal shape functions at the left end, middle point,

and right end of the solution interval, respectively; φj and ψj are bubble functions on the left

and right intervals, respectively. The counterpart of φk+1 in [−1, 1] is defined as

φ̂k+1(ξ) =

√

2k + 1

2

∫ ξ

−1

Lk(t)dt =
1

√

2(2k + 1)

(

Lk+1(ξ) − Lk−1(ξ)

)

. (3.2)

and the counterpart of ψk+1 in [−1, 1] is defined similarly. Note that w0 = 0 for the eigenvalue

problem (2.2). With this setting, the resulting stiffness matrix is diagonal and the mass matrix

is 5-diagonal, see Appendix.
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4. Super-Geometric Convergence Rate

Let (λk, uk) be the kth eigen-pair and (λk,h, uk,h) ∈ R × Sh be its h-version finite element

approximation. According to [2, p.700],

C1ǫ
2
h ≤ λk,h − λk ≤ C2ǫ

2
h,

with

ǫh = inf
χ∈Sh

‖uk − χ‖1,

for simple eigenvalue λk (see [2, p.695 (8.21)]. Transferring this theory to our spectral element

method language, we have, for any simple eigen-pair (λ, u),

C1ǫ
2
p ≤ λp − λ ≤ C2ǫ

2
p, (4.1)

with

ǫp = inf
χ∈Sp

‖u− χ‖1 ≈ inf
χ∈Sp

‖u′ − χ′‖ ≈ ‖u′ − u′p‖,

where up ∈ Sp such that u′p is the piecewise Legendre expansion of u′ (not solution of (2.1) or

(2.2)). Note that the first “≈” comes from the Poicaré inequality and the last “≈” is based on

the fact that the Legendre expansion minimizes the L2-norm.

Lemma 4.1. Let u satisfy the regularity assumption

max
x∈[−1,1]

|u(k)(x)| ≤ cMk

for fixed constants c and M , and let ũ′p be the Legendre expansion of u′ on [−1, 1]. Then under

the assumption (2p+ 1)(2p+ 3) > 2M2,

‖u′ − ũ′p‖L2[−1,1] ≤ C
√
p

(

eM

2p

)p+1

, (4.2)

where C is independent of p and M .

Proof. The error of (p− 1)-term Legendre expansion is

‖u′ − ũ′p‖2
L2[−1,1] =

∞
∑

k=p

2

2k + 1
b2k. (4.3)

Using the result [13, p.58, Theorem 2.1.6], we have

bk =
2kk!

(2k)!
u(k+1)(ηk), ηk ∈ (−1, 1). (4.4)

Note that (2kk!)/(2k)! = 1/(2k − 1)!!. Applying the regularity assumption |u(k)(x)| ≤ cMk, we

derive

‖u′ − ũ′p‖2
L2[−1,1]

<2(cMp+1)2
(

1

(2p− 1)!!(2p+ 1)!!
+

M2

(2p+ 1)!!(2p+ 3)!!
+

M4

(2p+ 3)!!(2p+ 5)!!
+ · · ·

)

=
2(cMp+1)2

(2p− 1)!!(2p+ 1)!!

(

1 +
M2

(2p+ 1)(2p+ 3)
+

M4

(2p+ 1)(2p+ 3)2(2p+ 5)
+ · · ·

)

<
4(cMp+1)2

(2p− 1)!!(2p+ 1)!!
, (4.5)
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when (2p + 1)(2p + 3) > 2M2. This last term can be readily estimated by Stirling type

formula [1, (4.48)]

n! ≈
(n

e

)n

√

2π

(

n+
1

6

)

, (4.6)

and [4]

(2n− 1)!! ≈
√

(2n)!

4

√

π(n+ 1
4 )
. (4.7)

Therefore,

(2p− 1)!!(2p+ 1)!! ≈
√

(2p)!
4

√

π(p+ 0.25)

√

(2p+ 2)!
4

√

π(p+ 1.25)

≈ (2p)!2p√
πp

≈
(

2p

e

)2p

2
√

2p,

which, combined with (4.5), leads to (4.2) with C = 4
√

2c. 2

Now we are ready to prove our main theorem.

Theorem 4.2. Let (λ, u) ∈ R+ × S be an eigen-pair of problem (2.2), where λ is a simple

eigenvalue. Let λ(p) be its approximation in the sense of (2.4) or (2.5). Then

λ(p) − λ ≤ Cp

(

e
√
λ

4p

)2p+2

, (4.8)

where C is independent of p and M .

Proof. Recall that c(x) is constants on (0, 1/2) and (1/2, 1), we separate

‖u′ − u′p‖2 = ‖u′ − u′p‖2
L2(0,1/2) + ‖u′ − u′p‖2

L2(1/2,1). (4.9)

Recall that u′p is the piecewise Legendre expansion of u′. The estimate for the first term is as

follows,

‖u′ − u′p‖2
L2(0,1/2) = 4‖û− û′p‖2

L2(−1,1), (4.10)

where û(ξ) = u((1 + ξ)/4). Now we apply Lemma 4.1 to have

‖û− û′p‖L2(−1,1) ≤ C
√
p

(

eM̂

2p

)p+1

= C
√
p

(

e
√
λ

4p

)p+1

.

Note that

M̂ =
M

4
=

√
λ

2
,

where M comes from the condition

max
x∈[0,1]

|uk(x)| ≤ cMk.

In our situation, u contains terms like sin 2
√
λx, cos 2

√
λx,... M = 2

√
λ, and M = 4M̂ from

du

dx
(x) = 4

dû

dξ
(ξ).
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The second term in (4.9) can be estimated similarly, and therefore, we have

‖u′ − u′p‖ ≤ C
√
p

(

e
√
λ

4p

)p+1

.

The error bound (4.8) follows from (4.1).

Theorem 4.3. Let (λ, u) ∈ R+ × S be an eigen-pair of problem (2.1), where λ is a simple

eigenvalue. Let λ(p) be its approximation in the sense of (2.4) or (2.5). Then

λ(p) − λ ≤ Cp

(

eπ
√
λ

2p

)2p+2

. (4.11)

Proof. The proof is the same by the scaling between (0, 1) and (−π, π).

Remark. The error bounds in Theorems 4.2 and Theorem 4.3 are super-geometric type

O(e−(2p+1)(log p−γ)) with γ = ln(e
√
λ/4) and γ = ln(eπ

√
λ/2), respectively. We shall demon-

strate in the next section, by numerical tests, that our error bounds are sharp.

Our estimates also indicate that we need higher p for larger λ to realize the convergence.

This is consistent with our numerical experiences.

5. Numerical Tests

In this section, we implement the numerical scheme described in Section 3 to solve (1.1) with

ω = 2 for the first 14 eigenvalues. We observe convergence for reasonably smaller p. Actually,

the error goes to the machine ǫ for p ≤ 10 for the first few eigenvalues. To verify our error

bounds, we plot the ratio

(λ(p) − λ)/(p(0.5eπ
√
λ/p)2p+2 (5.1)

with some different λs. Here is a list of the square roots of eigenvalues (
√
λ by increasing order):

1

π
arccos

(

−1

3

)

,
1

π
arccos

(

−2

3

)

,
1

π
arccos

2

3
+ 1,

1

π
arccos

1

3
+ 1, 2,

1

π
arccos

(

−1

3

)

+ 2,
1

π
arccos

(

−2

3

)

+ 2,
1

π
arccos

2

3
+ 3,

1

π
arccos

1

3
+ 3, 4,

1

π
arccos

(

−1

3

)

+ 4,
1

π
arccos

(

−2

3

)

+ 4,
1

π
arccos

2

3
+ 5,

1

π
arccos

1

3
+ 5, 6, · · ·

Figures 1-4 demonstrate the ratio (5.1) associated with λ1, λ2, λ3, λ4, λ5, λ7, λ9, λ14, respectively.

We plot the ratio with different range of p. Since for a larger eigenvalue, we need relatively

higher p to get into the asymptotic range. On the other hand, when p getting bigger and the

error approaching the machine ǫ, the round-off error kicks in. So we can only observe the ratio

in a small range of p. Nevertheless, it is sufficient to make our point clear. We see that the

ratio (5.1) maintains in a reasonable range for different eigenvalues.

6. A Collocation Method for the Smooth Case

As a special case when c(x) is sufficiently smooth, say a constant, we may use only one

element. Without loss of generality, let us consider

−u′′ = λu in (−1, 1) u(−1) = 0 = u(1). (6.1)
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Fig. 5.1. Ratio of the computed errors over the estimated errors for λ1 and λ2

In this case, we are seeking an eigen-pair (λ(p), wp) with

wp(ξ) =

p
∑

j=2

wj φ̂j(ξ)

to satisfy

(w′
p, φ̂

′
k) = λ(p)(wp, φ̂k), k = 2, . . . , p. (6.2)

Again, this result in an identity matrix on the left and a 5-diagonal matrix on the right. Based

on the analysis in Section 4, we have in this case

λ(p) − λ ≤ Cp

(

e
√
λ

2p

)2p+2

. (6.3)

Let us consider a spectral collocation method

−w′′
p (xj) = λ(p)wp(xj), j = 1, 2, . . . , p− 1, (6.4)

where xjs are zeros of L′
p and Lp is the Legendre polynomial of degree p on [−1, 1].

Theorem 6.1. For the model problem (6.1), the spectral collocation method (6.4) is equivalent

to replacing all integrations in (6.2) by the p+1-point Gauss-Lobatto quadrature. Furthermore,

all numerical integrations are exact except the last term with

(φ̂p, φ̂p)∗ =

p
∑

j=0

φ̂2
p(xj)wj = (φ̂p, φ̂p)

3(2p2 − p− 1)

2(2p2 − p)
, (6.5)

where wjs are weights of the Gauss-Lobatto quadrature.

Proof. We multiply both sides of (6.4) by φ̂k(xj)wj and sum up

−
p
∑

j=0

w′′
p (xj)φ̂k(xj)wj = λ(p)

p
∑

j=0

wp(xj)φ̂k(xj)wj (6.6)

Since the p + 1-point Gauss-Lobatto quadrature rule is exact for polynomials of degree up to

2p− 1, then we have

−
p
∑

j=0

w′′
p (xj)φ̂k(xj)wj = −(w′′

p , φ̂k) = (w′
p, φ̂

′
k), k = 2, . . . , p;

p
∑

j=0

wp(xj)φ̂k(xj)wj = (wp, φ̂k), k = 2, . . . , p− 1.
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Fig. 5.2. Ratio of the computed errors over the estimated errors for λ3 and λ4
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We see that the collocation method (6.4) is almost identical to the spectral method (6.2)

except one term

(wp, φ̂p) 6=
p
∑

j=0

wp(xj)φ̂p(xj)wj = (wp, φ̂p)∗.

and their difference is

(wp, φ̂p) − (wp, φ̂p)∗ = wp[(φ̂p, φ̂p) − φ̂p, φ̂p)∗].
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Using the fact (Lp, Lp)∗ = 2/p, a direct calculation yields,

(φ̂p, φ̂p) =
1

2(2p− 1)
(Lp − Lp−2, Lp − Lp−2)

=
1

2(2p− 1)
((Lp, Lp) + (Lp−2, Lp−2))

=
1

2(2p− 1)

(

2

2p+ 1
+

2

2p− 3

)

, (6.7)

and

(φ̂p, φ̂p)∗ =
1

2(2p− 1)
((Lp, Lp)∗ + (Lp−2, Lp−2))

=
1

2(2p− 1)

(

2

p
+

2

2p− 3

)

. (6.8)

Therefore,

(φ̂p, φ̂p)∗

(φ̂p, φ̂p)
=

3(2p+ 1)(p− 1)

2p(2p− 1)
,

and (6.5) follows.

We see that the p + 1-points Gauss-Lobatto quadrature has a 50% over-shoot asymptot-

ically in calculating (φ̂p, φ̂p). Nevertheless, the last coefficient wp decays fast in general and

the collocation method (6.4) is asymptotically equivalent to the spectral method (6.2). As a

consequence, the spectral collocation method (6.4) also enjoys the super-geometric convergence

rate (6.3).

Remark. It is feasible that a parallel result may be developed for the Chebysheve spec-

tral/collocation methods. It is also feasible that the error bounds in [11] may be improved to

the similar super-geometric rate as in this paper.

7. Appendix. The property of stiffiness matrix

Since (φ̂′i, φ̂
′
j) = δij , it is straightforward to verify that

(φ′i, φ
′
j) = 4δij = (ψ′

i, ψ
′
j), (N ′, φ′j) = 0 = (N ′, ψ′

j), (N ′, N ′) = 4.

Furthermore, observe that

4(φi, φj) = (φ̂i, φ̂j) = 4(ψi, ψj),

(φk+1, N) = 0 = (ψk+1, N) k > 2,

(N,N) =
1

4

∫ 1

−1

(

1 + ξ

2

)2

+

(

1 − ξ

2

)2

=
1

16

(

4 +
4

3

)

=
1

3
,

(φ2, N) =
1

4
(φ̂2, N̂2) =

1

4
√

6
(L2 − L0, N̂2) =

−1

4
√

6

∫ 1

−1

1 + ξ

2
=

−1

4
√

6
,

(φ3, N) =
1

4
(φ̂3, N̂2) =

1

4
√

10
(L3 − L1, N̂2) =

−1

4
√

10

∫ 1

−1

ξ
1 + ξ

2
=

−1

12
√

10
,

(ψ2, N) =
1

4
(φ̂2, N̂1) =

1

4
√

6
(L2 − L0, N̂1) =

−1

4
√

6

∫ 1

−1

1 − ξ

2

−1

4
√

6
,

(ψ3, N) =
1

4
(φ̂3, N̂1) =

1

4
√

10
(L3 − L1, N̂1) =

−1

4
√

10

∫ 1

−1

ξ
1 − ξ

2
=

1

12
√

10
.
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The special arrangement of ordering has advantage of symmetric structure in the resulting

matrix. It is straightforward to verify that the weak formulation

(u′p, v
′) = λ(cup, v), ∀v ∈ Sp

yields a diagonal stiffness matrix 4I and a 5-diagonal mass matrix λ
4A, where the upper half of

A is of the form


















































2
(2p+1)(2p−3) 0 −(2p−3)−1

(2p−1)(2p−5)

0 2
(2p−1)(2p−5) 0

−(2p−3)−1

(2p−1)(2p−5) 0 2
(2p−3)(2p−7)

. . .

. . .
. . .

. . .
. . .

0 2
45 0 −1

5
√

21

. . . 0 2
21 0 1

3
√

10

− 1
5
√

21
0 2

5 − 1√
6

1
3
√

10
− 1√

6
2
3



















































,

and the lower half of A is obtained by taking the above expression up-side-down and multiplied

by ω2. The bottom right entry 2/3 of the upper part and the top left entry 2ω2/3 of the lower

part is the only overlap of the two parts.
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