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Abstract

The artificial boundary method is applied to solve three-dimensional exterior problems.

Two kind of rotating ellipsoids are chosen as the artificial boundaries and the exact arti-

ficial boundary conditions are derived explicitly in terms of an infinite series. Then the

well-posedness of the coupled variational problem is obtained. It is found that error esti-

mates derived depend on the mesh size, truncation term and the location of the artificial

boundary. Three numerical examples are presented to demonstrate the effectiveness and

accuracy of the proposed method.
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1. Introduction

Many problems in science and engineering lead to solving boundary value problems of partial

differential equations in unbounded domains. The main difficulty in finding the numerical

solutions of these problems is the unboundedness of the domain. In the 1970s, attempts have

been made to apply the finite element method (FEM) [3] and the finite difference method

(FDM) [11] to solve these problems numerically. However, the standard FEM and FDM are

not effective in solving these problems. Later, Brebbia, Hsiao and Wendland developed the

boundary element method (BEM), which can reduce the dimension of the computational domain

and is suitable for solving problems in the unbounded domains. Then Zienkiewicz and Kelly [34],

Brezzi and Johnson [6], Johnson and Nedelec [25], Han [18], Costabel and Stephan [35] suggested

the coupling of FEM and BEM, which allows to combine the advantages of BEM in treating

linear problems over unbounded domains with those of FEM in treating linear and nonlinear

problems over the complicated bounded domains.

The artificial boundary method (including the coupling of FEM and BEM) [10, 12, 14, 15,

17, 26, 30] reduces the original problem in an unbounded domain to am equivalent problem

in a bounded domain with some suitable boundary condition on the artificial boundary. The

standard procedure of the method is described as follows. First, an artificial boundary Γ is

introduced to divide the original (unbounded) domain Ωc = R
3\(Ω∪∂Ω) into two subregions, a

bounded inner region and an unbounded outer one. Next, certain boundary condition must be
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imposed on it. Lastly, the original problem is reduced to an equivalent one in the bounded re-

gion which is solved numerically. It is very important that how to design the suitable boundary

condition on the artificial boundary and how to solve the coupled system. When the imposed

boundary condition is exact and non-reflective and usually is expressed by the series in gener-

alized sense, the method has been also called the DtN method by Keller [26,27] or the coupling

of FEM and natural boundary element method (NBEM) by Yu [30].

Natural boundary reduction proposed by Feng and Yu [13] has advantages over the usual

boundary reduction methods: the coupled bilinear form preserves automatically the symmetry

and coerciveness of the original bilinear form, so not only the analysis of the discrete problem

is simplified but also the optimal error estimates and the numerical stability are restored.

These advantages make the coupling of FEM and natural boundary reduction natural and

direct. Moreover, this coupling of FEM and NBEM [26,30, 32] also permits us to combine the

advantages of BEM for treating linear problems over unbounded domains and some problems

with singularity with those of FEM. The coupled method was first applied to solve the elliptic

problems in two-dimensional domain [32]. Later Du and Yu [8, 9], Wu and Yu [27, 29], Hu

and Yu [21], Liu [28], Gatica [36] use the method to handle evolution equations, the problems

over three-dimensional domains, nonlinear interface problems, the electromagnetic problems

and nonlinear problem in incompressible elasticity, respectively.

For three-dimensional exterior problems, a spherical surface [27, 29] is usually selected as

the artificial boundary. However, for an cigar-shaped or flying saucer-shaped obstacles, a ro-

tating ellipsoid boundary [22–24] is used as the artificial boundary. This turns out to be very

efficient since it leads to a smaller computational domain, as shown in Fig. 1.1 and does not

increase the computational complexity of the stiff matrix from boundary reduction using the

rotating ellipsoid artificial boundary. On the other hand, an anisotropic exterior problem with

the constant coefficients with the spherical artificial boundary can be reduced to an isotropic

problem with the ellipsoid artificial boundary.

Γ
0
 

Ω 

Ωc 

Fig. 1.1. Cross-section of cigar-shaped, ellipsoid and sphere.

Section 2 of this paper introduces two kind of rotating ellipsoids as the artificial boundaries

and derives the exact artificial boundary conditions, which are expressed explicitly by the series.

In Section 3, an equivalent coupled variational problem is given and the well-posedness of its

continuous and discrete variational problem is obtained. In Section 4, error estimates which

depend not only on the mesh size, but also on the term after truncating the series and the

location of the artificial boundary [20, 31] are discussed. Lastly, three numerical examples are

presented to demonstrate the effectiveness and accuracy of the proposed method.
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2. Exact Artificial Boundary Condition

Let Ω ⊂ R
3 be a cigar-shaped or flying saucer-shaped Lipschitz bounded domain including

the coordinate origin, Ωc = R
3\(Ω ∪ Γ0) and Γ0 = ∂Ω. Assume that the given functions f and

g satisfy g ∈ H1/2(Γ0) and f ∈ L2(Ωc), supp(f) ⊂ Ωc. Consider the following exterior Dirichlet

problem:
{

−∆u = f, in Ωc,

u = g, on Γ0,
(2.1)

subject to the asymptotic conditions

u(x1, x2, x3) = O
(

1

r

)

as r =
√

x1 + x2 + x3 → ∞,

|∇u(x1, x2, x3)| = O
(

1

r2

)

as r =
√

x1 + x2 + x3 → ∞.

The problem (2.1) is well-posed in W 1
g (Ωc) [33], where

W 1
g (Ωc) =

{

v :
v

r
,

∂v

∂x1
,

∂v

∂x2
,

∂v

∂x3
∈ L2(Ωc), v|∂Ω = g

}

.

Its norm and semi-norm are defined as

‖v‖W 1
g (Ωc) =

(

∥

∥

∥

v

r

∥

∥

∥

2

L2(Ωc)
+

∥

∥

∥

∥

∂v

∂x1

∥

∥

∥

∥

2

L2(Ωc)

+

∥

∥

∥

∥

∂v

∂x2

∥

∥

∥

∥

2

L2(Ωc)

+

∥

∥

∥

∥

∂v

∂x3

∥

∥

∥

∥

2

L2(Ωc)

)
1
2

|v|W 1
g (Ωc) =

( ∥

∥

∥

∥

∂v

∂x1

∥

∥

∥

∥

2

L2(Ωc)

+

∥

∥

∥

∥

∂v

∂x2

∥

∥

∥

∥

2

L2(Ωc)

+

∥

∥

∥

∥

∂v

∂x3

∥

∥

∥

∥

2

L2(Ωc)

)
1
2

,

respectively.

Introduce an artificial boundary Γ which divides Ωc into two subregions: a bounded inner

region Ω1 and a unbounded outer region Ω2 (Fig. 2.1 and Fig. 2.2) such that Ω1 ∩ Ω2 = ∅,

Ω1 ∪ Ω2 = Ωc, supp(f) ⊂ Ω1 ∪ Ω ∪ Γ0 .

Ω Ω
1
 

Ωc

Ω
2
 

Γ 

Fig. 2.1. prolate ellipsoid.
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Fig. 2.2. oblate ellipsoid.
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2.1. Prolate ellipsoid

When Ω is cigar-shaped, let the artificial boundary

Γ =
{

(x1, x2, x3) : x2
1/b2 + x2

2/b2 + x2
3/a2 = 1, a > b > 0

}

and its prolate ellipsoidal coordinate be Γ = { (µ, θ, ϕ) : µ = µ1 > 0, θ ∈ [0, π], ϕ ∈ [0, 2π) }. Let

f0 =
√

a2 − b2, a = f0 cosh µ1 and b = f0 sinhµ1. Take the following coordinate transformation:










x1 = f0 sinhµ sin θ cosϕ, µ ≥ µ1 > 0,

x2 = f0 sinhµ sin θ sin ϕ, θ ∈ [0, π],

x3 = f0 coshµ cos θ, ϕ ∈ [0, 2π).

(2.2)

According to the boundary reduction theories [22, 24], if u|Γ = u(µ1, θ, ϕ) is expanded to an

absolutely and uniformly convergent series

u(µ1, θ, ϕ) =

∞
∑

n=0

n
∑

m=−n

UnmYnm(θ, ϕ), (2.3)

where

Unm =

∫ π

0

∫ 2π

0

u(µ1, θ, ϕ)Y ∗

nm(θ, ϕ) sin θ dθ dϕ,

Ynm is the spherical harmonic functions and ∗ denote the conjugate complex number, then the

solution of the Laplace equation in the unbounded domain outside Γ is given by the series

u(µ, θ, ϕ) =

∞
∑

n=0

n
∑

m=−n

Qm
n (cosh µ)

Qm
n (coshµ1)

UnmYnm(θ, ϕ), µ ≥ µ1 > 0, (2.4)

which is convergent to the boundary value u(µ1, θ, ϕ). Here, the Qm
n (x) denote the second kind

associated Legendre functions. Its normal derivative of the solution (2.4) on Γ (point to Ω1) is

∂u

∂n
= − 1

f0

√

cosh2 µ1 − cos2 θ

∞
∑

n=0

n
∑

m=−n

dQm
n (coshµ1)/dµ

Qm
n (coshµ1)

UnmYnm
.
= Ku|Γ. (2.5)

2.2. Oblate ellipsoid

When Ω is flying saucer-shaped, let the artificial boundary

Γ =
{

(x1, x2, x3) : x2
1/a2 + x2

2/a2 + x2
3/b2 = 1, a > b > 0

}

and its oblate ellipsoidal coordinate be Γ = { (µ, θ, ϕ) : µ = µ1 > 0, θ ∈ [0, π], ϕ ∈ [0, 2π) }. Let

f0 =
√

a2 − b2, a = f0 coshµ1 and b = f0 sinhµ1. Take the following coordinate transformation










x1 = f0 coshµ sin θ cosϕ, µ ≥ µ1 > 0,

x2 = f0 coshµ sin θ sin ϕ, θ ∈ [0, π],

x3 = f0 sinhµ cos θ, ϕ ∈ [0, 2π),

(2.6)

Through the oblate coordinate transformation, the Laplace operator becomes

∆u =
1

f2
0 (cosh2 µ − sin2 θ)

{

1

coshµ

∂

∂µ

(

coshµ
∂u

∂µ

)

+
1

sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
( 1

sin2 θ
− 1

cosh2 µ

) ∂2u

∂ϕ2

}

. (2.7)
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Using the method of separation of variables, the general form of the solution of the exterior

harmonic equation is

u(µ, θ, ϕ) =

∞
∑

n=0

n
∑

m=−n

√

(n − m)!

(n + m)!
AnmT m

n (sinhµ)Ynm(θ, ϕ),

where, Anm are arbitrary constants independent of µ, θ and ϕ,

T m
n (x) = i exp

( iπn

2

)

Qm
n (ix), i2 = −1. (2.8)

If u|Γ = u(µ1, θ, ϕ) is expanded to an absolutely and uniformly convergent series

u(µ1, θ, ϕ) =
∞
∑

n=0

n
∑

m=−n

UnmYnm(θ, ϕ), (2.9)

where

Unm =

∫ π

0

∫ 2π

0

u(µ1, θ, ϕ)Y ∗

nm(θ, ϕ) sin θ dθ dϕ.

The method of separation of variables implies that the solution of the Laplace equation in the

unbounded domain outside Γ is given by the series

u(µ, θ, ϕ) =

∞
∑

n=0

n
∑

m=−n

T m
n (sinhµ)

T m
n (sinh µ1)

UnmYnm(θ, ϕ), µ ≥ µ1 > 0, (2.10)

which is convergent to the boundary value u(µ1, θ, ϕ) and the normal derivative of the solution

on Γ (pointed to Ω1) is

∂u

∂n
|Γ =

−1

f0

√

cosh2 µ1 − sin2 θ

∞
∑

n=0

n
∑

m=−n

dT m
n (sinhµ1)/dµ

T m
n (sinhµ1)

UnmYnm
.
= Ku1. (2.11)

The formulas (2.5) and (2.11) are both the exact artificial boundary conditions. K is the natural

integral operator [32], also is called the Steklov-Poincaré operator or DtN operator.

3. Coupled Variational Problem and Well-posedness

The variational form of the problem (2.1) is: Find u ∈ W 1
g (Ωc) such that

∫

Ωc

∇u · ∇v dx =

∫

Ω1

f v dx, ∀ v ∈
{

v ∈ W 1
0 (Ωc) : v|Γ0

= 0
}

, (3.1)

where dx = dx1 dx2 dx3 is volume element. Define

Dk(u, v) =

∫

Ωk

∇u∇v dx, k = 1, 2,

and

D̂(γu, γv) =

∫

Γ

∂u

∂n
v dS, γu = u|Γ.

The Green formula in the unbounded domain satisfy
∫

Ωc

∇u · ∇v dx = D1(u, v) +

∫

Γ

∂u

∂n
v dS = D1(u, v) + D̂(γu, γv). (3.2)
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Let

Vg(Ω1) =
{

v : v ∈ H1(Ω1), v|Γ0
= g

}

V0(Ω1) =
{

v : v ∈ H1(Ω1), v|Γ0
= 0

}

.

Thus, the equivalent variational problem of the original problem is : Find u ∈ Vg(Ω1) such that

D1(u, v) + D̂(γu, γv) =

∫

Ω1

f v dx, ∀ v ∈ V0(Ω1). (3.3)

When µ ≥ µ1 > 0, set

Qnm(µ1, µ) =



















Qm
n (cosh µ)

Qm
n (coshµ1)

, as Γ is prolate ellipsoid,

T m
n (sinh µ)

T m
n (sinhµ1)

, as Γ is oblate ellipsoid.

Tnm(µ) =















−dQm
n (cosh µ)/dµ

Qm
n (coshµ)

sinhµ, as Γ is prolate ellipsoid,

−dT m
n (sinhµ)/dµ

T m
n (sinhµ)

coshµ, as Γ is oblate ellipsoid.

By the above analysis, we have

D̂(γu, γv) = f0

∞
∑

n=0

n
∑

m=−n

Tnm(µ1)V
∗

nmUnm. (3.4)

Let

D̂N(γu, γv) = f0

N
∑

n=0

n
∑

m=−n

Tnm(µ1)V
∗

nmUnm, (3.5)

where Unm and Vnm are the generalized Fourier coefficients of γu and γv with respect to

Ynm(θ, ϕ).

In actual computations, we solve the following variational problem: Find uN ∈ Vg(Ω1) such

that

D1(u
N , v) + D̂N (γuN , γv) =

∫

Ω1

f v dx, ∀ v ∈ V0(Ω1). (3.6)

In order to discuss the well-posedness of the variational problems, we first give the properties

of the second kind associated Legendre functions.

Lemma 3.1. If µ > µ1 > 0, then Qnm(µ1, µ) and Tnm(µ) satisfy the following properties:

(

sinhµ1

sinhµ

)n+1

< Qnm(µ1, µ) <

(

cosh µ1

coshµ

)n+1

, (3.7)

(n + 1)sinhµ < Tnm(µ) < (n + 1)coshµ. (3.8)

Proof. 1). The integral expression of Qm
n (x) gives [1]:

Qm
n (x) = (−1)m n!

(n − m)!

∫

∞

0

coshmt
(

x +
√

x2 − 1 cosh t
)n+1 dt, (3.9)
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which implies that

Qm
n (coshµ)

Qm
n (cosh µ1)

=

∫

∞

0

coshmt

(coshµ + sinhµ cosh t)n+1
dt

∫

∞

0

coshmt

(coshµ1 + sinhµ1 cosh t)n+1
dt

.

Also, sinh(µ1 − µ) < 0 satisfies

sinhµ1

sinhµ
<

cosh µ1 + sinhµ1 cosh t

coshµ + sinhµ cosh t
<

coshµ1

coshµ
.

namely,

(

sinhµ1

sinhµ

)n+1

<

∫

∞

0

coshmt

(cosh µ + sinhµ cosh t)n+1
dt

∫

∞

0

coshmt

(coshµ1 + sinhµ1 cosh t)n+1
dt

<

(

cosh µ1

coshµ

)n+1

.

Thus, we obtain
(

sinhµ1

sinhµ

)n+1

<
Qm

n (coshµ)

Qm
n (cosh µ1)

<

(

coshµ1

coshµ

)n+1

.

On the other hand, the formula (3.9) implies that the integral expression of T m
n (sinhµ) is

T m
n (sinh µ) =

(−1)mn!

in(n − m)!
exp(

iπn

2
)

∫

∞

0

coshmt

(sinhµ + coshµ cosh t)n+1
dt. (3.10)

For the same reason above, we have

(

sinhµ1

sinhµ

)n+1

<
T m

n (sinhµ)

T m
n (sinhµ1)

<

(

coshµ1

coshµ

)n+1

.

2). Let x = coshµ. Recursive relations of Qm
n (x) [1] lead to

−

d

dµ
Qm

n (coshµ)

Qm
n (coshµ)

sinhµ =

d

dx
Qm

n (x)

Qm
n (x)

(1 − x2) = (n + 1)x − (n − m + 1)
Qm

n+1(x)

Qm
n (x)

. (3.11)

When t ≥ 0, coshµ + sinhµ cosh t > coshµ + sinhµ. The integral expression [1] of Qm
n (x)

satisfies

(n + 1 − m)

(n + 1)

Qm
n+1(x)

Qm
n (x)

=

∫

∞

0

coshmt

(coshµ + sinhµ cosh t)n+2
dt

∫

∞

0

coshmt

(coshµ + sinhµ cosh t)n+1
dt

< (x −
√

x2 − 1).

The formula (3.11) yields

(n + 1)
√

x2 − 1 <

d

dx
Qm

n (x)

Qm
n (x)

(1 − x2) < (n + 1)x,

namely,

(n + 1)sinhµ ≤ −

d

dµ
Qm

n (coshµ)

Qm
n (cosh µ)

≤ (n + 1) coshµ.
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Also, inserting z = i sinhµ into (3.11) and (3.9) results in

−

d

dµ
T m

n (sinhµ)

T m
n (sinhµ)

coshµ = −i

d

dz
Qm

n (z)

Qm
n (z)

(1 − z2) = (n + 1)(−iz) + (n − m + 1)
iQm

n+1(z)

Qm
n (z)

,

and

0 ≤ iQm
n+1(z)

Qm
n (z)

=

∫

∞

0

(n + 1) coshmt

(sinhµ + coshµ cosh t)n+2
dt

∫

∞

0

(n + 1 − m) coshmt

(sinhµ + coshµ cosh t)n+1
dt

≤ (n + 1)

(n + 1 − m)
(cosh µ − sinhµ).

Thus, we have

(n + 1) sinhµ ≤ −

d

dµ
T m

n (sinhµ)

T m
n (sinhµ)

coshµ ≤ (n + 1) coshµ,

which proves the assertion (3.8). �

Remark 3.1. When a/b = cosh µ1/sinhµ1 → 1, µ1 → ∞. Let a1 = f0 coshµ and use Lemma

3.1. Then we have Qnm(µ1, µ) → (a/a1)
n+1 and Tnm(µ1) → C(n + 1). Therefore, when

µ1 → ∞, the relevant results on the rotating ellipsoidal surface Γ coincide with ones on a

sphere.

Theorem 3.1. The bilinear forms D̂(γu, γv) and D̂N(γu, γv) in the space H1/2(Γ) have the

following properties:

1). Both of two bilinear forms are symmetric;

2). For all u, v ∈ H1/2(Γ), we have

|D̂(γu, γv)| ≤ f0 coshµ1‖u‖H1/2(Γ)‖v‖H1/2(Γ),

|D̂N(γu, γv)| ≤ f0 coshµ1‖u‖H1/2(Γ)‖v‖H1/2(Γ);

3). For all v ∈ H1/2(Γ), we obtain

D̂(γv, γv) ≥ D̂N (γv, γv) >
f0

4π
sinhµ1

(
∫

Γ

vdσ

)2

,

where dσ = sin θdθdϕ.

Proof. Obviously, both two bilinear forms are symmetric with respect to u, v. For any

u, v ∈ H1/2(Γ), using the definition of the norm in H1/2(Γ), the formula (3.4) and Lemma 3.1

yields

|D̂(γu, γv)| ≤ f0 coshµ1

∞
∑

n=0

n
∑

m=−n

(n + 1)|V ∗

nm| |Unm|

≤ f0 coshµ1‖u‖H1/2(Γ)‖v‖H1/2(Γ).

Using the same inference, we can obtain

|D̂N(γu, γv)| ≤ f0 coshµ1‖u‖H1/2(Γ)‖v‖H1/2(Γ).
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D̂(γv, γv) ≥D̂N (γv, γv) = f0

N
∑

n=0

n
∑

m=−n

Tnm(µ1)|Vnm|2

≥f0T00(µ1)

4π

(
∫

Γ

v dσ

)2

≥ f0 sin µ1

4π

(
∫

Γ

v dσ

)2

.

This completes the proof of the theorem. �

Theorem 3.2. Suppose that g ∈ H1/2(Γ0) and f ∈ L2(Ω1) such that supp(f) ⊂ Ω ∪ Ω1 ∪ Γ0,

the variational problems (3.3) and (3.6) both exist a unique solution. Then we have the following

estimates

‖u‖H1(Ω1) ≤ C
(

‖f‖L2(Ω1) + ‖g‖H1/2(Γ0)

)

,

‖uN‖H1(Ω1) ≤ C
(

‖f‖L2(Ω1) + ‖g‖H1/2(Γ0)

)

.

Proof. From the Trace Theorem, when g ∈ H1/2(Γ0), there exists Rg ∈ H1(Ω1) such that

Rg|Γ0
= g and Rg|Γ = 0 and

‖Rg‖H1(Ω1) ≤ C‖g‖H1/2(Γ0).

Let u1 = u − Rg and uN
1 = uN − Rg. Then the equivalent variational problems with the

problems (3.3) and (3.6) are respectively: Find u1 ∈ V0(Ω1) such that

D1(u1, v) + D̂(γu1, γv) =

∫

Ω1

(f + ∆Rg) v dx, ∀ v ∈ V0(Ω1), (3.12)

and find uN
1 ∈ V0(Ω1) such that

D1(u
N
1 , v) + D̂N (γuN

1 , γv) =

∫

Ω1

(f + ∆Rg) v dx, ∀ v ∈ V0(Ω1). (3.13)

It is obvious that D1(·, ·) + D̂(·, ·) and D1(·, ·) + D̂N (·, ·) are both bilinear and symmetric.

Theorem 3.1 and the Friedrichs Inequality indicate that there exists a positive constant α such

that for any w ∈ H1(Ω1)

D1(w, w) + D̂N (γw, γw) ≥
∫

Ω1

|∇w|2 dx +
f0 sinhµ1

4π

(
∫

Γ

w dσ

)2

≥ α‖w‖H1(Ω1).

For the same reason, we have

D1(w, w) + D̂(γw, γw) ≥ α‖w‖2
H1(Ω1).

For any w, v ∈ H1(Ω1), Theorem 3.1 and the Trace Theorem satisfy

|D1(w, v) + D̂(γw, γv)| ≤|D1(w, v)| + C1‖w‖H1/2(Γ)‖v‖H1/2(Γ)

≤C‖w‖H1(Ω1)‖v‖H1(Ω1),

|D1(w, v) + D̂N (γw, γv)| ≤|D1(w, v)| + C1‖w‖H1/2(Γ)‖v‖H1/2(Γ)

≤C‖w‖H1(Ω1)‖v‖H1(Ω1).
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Moreover, it follows from f + ∆Rg ∈ H−1(Ω1) that
∫

Ω1
(f + ∆Rg)vdx is a bounded linear

functional with respect to v in H1(Ω1). Using the Lax-Milgram Theorem, we know that the

problem (3.12) has a unique solution and

‖u1‖2
H1(Ω1) ≤C

∫

Ω1

(f + ∆Rg)u1 dx = C

∫

Ω1

(f u1 + ∇Rg · ∇u1) dx

≤C
(

‖f‖L2(Ω1) + ‖Rg‖H1(Ω1)

)

‖u1‖H1(Ω1).

which implies that

‖u1‖H1(Ω1) ≤ C
(

‖f‖L2(Ω1) + ‖Rg‖H1(Ω1)

)

.

Therefore, the problem (3.3) exists a unique solution and we have

‖u‖H1(Ω1) ≤ C
(

‖f‖L2(Ω1) + ‖Rg‖H1(Ω1)

)

≤ C
(

‖f‖L2(Ω1) + ‖g‖H1/2(Γ0)

)

.

For the similar reason, the problem (3.6) exists a unique solution and

‖uN‖H1(Ω1) ≤ C
(

‖f‖L2(Ω1) + ‖g‖H1/2(Γ0)

)

. �

Assume that Γ1 ⊂ Ω1 is the confocal ellipsoid of Γ and its rotating ellipsoidal coordinate

is (µ2, θ, ϕ)(µ2 < µ1). Γ1 divided the domain Ω1 into two non-overlapped subdomain Ω10 and

Ω11 such that supp(f) ⊂ Ω ∪ Ω10 ∪ Γ0.

Theorem 3.3. Suppose that u and uN are the solutions of the problem (3.3) and (3.6), respec-

tively. If u ∈ H3/2(Γ1), then there is a positive constant C independent of truncation term N

such that

‖u − uN‖H1(Ω1) ≤
C

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1).

Proof. The variational problems (3.3) and (3.6) indicate that

D1(u − uN , v) + D̂(γu, γv) − D̂N(γuN , γv) = 0, ∀ v ∈ V0(Ω1).

Let

Fnm =

∫

Γ

(u − uN )|ΓY ∗

nm(θ, ϕ) dσ, Unm =

∫

Γ

u|ΓY ∗

nm dσ, Pnm =

∫

Γ1

u|Γ1
Y ∗

nm dσ.

Then

α‖u − uN‖2
H1(Ω1) ≤ D1(u − uN , u − uN) + D̂N

(

γ(u − uN ), γ(u − uN )
)

= D̂N

(

γu, γ(u − uN)
)

− D̂
(

γu, γ(u − uN )
)

= f0

∞
∑

n=N+1

n
∑

m=−n

Tnm(µ1)FnmU∗

nm

≤f0 coshµ1

(

∞
∑

n=N+1

n
∑

m=−n

(n + 1)|Unm|2
)1/2( ∞

∑

n=N+1

n
∑

m=−n

(n + 1)|Fnm|2
)1/2

≤f0 coshµ1‖u − uN‖H1/2(Γ)

(

∞
∑

n=N+1

n
∑

m=−n

(n + 1)|Unm|2
)1/2

≤f0 coshµ1 Ctr‖u − uN‖H1(Ω1)

(

∞
∑

n=N+1

n
∑

m=−n

(n + 1)|Unm|2
)1/2

.



206 H.Y. HUANG AND D.H. YU

Set C = f0 coshµ1 Ctr/α (independent of N). The formulas (2.4) and (2.10) satisfy

Unm = Qnm(µ2, µ1)Pnm.

Thus, we have

‖u − uN‖2
H1(Ω1)

≤C

(

∞
∑

n=N+1

n
∑

m=−n

(n + 1)|Unm|2
)1/2

≤ C

N + 2

( ∞
∑

n=N+1

n
∑

m=−n

(n + 1)3Q2
nm(µ1, µ)|Pnm|2

)1/2

≤ C

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1).

This completes the proof of the theorem. �

4. Discrete Variational Problem and Its Error Estimate

We divide Ω1 into the regularly quasi-uniformly tetrahedral meshes. When computing

the element of the coupled matrix from the bilinear form D̂N (γu, γv), we adopt the surface

triangular elements which are the projections on Γ of the triangles of the tetrahedrons near Γ.

Let Vh(Ω1) denote the corresponding piecewise linear finite element space on Ω1 and Nh be the

node set in Ω1 ∪ Γ0 ∪ Γ1. Let

V h
g (Ω1) =

{

v ∈ Vh(Ω1) : v(a) = g(a),a ∈ Nh ∩ Γ0

}

.

V h
0 (Ω1) =

{

v ∈ Vh(Ω1) : v(a) = 0,a ∈ Nh ∩ Γ0

}

.

Thus, V h
0 (Ω1) ⊂ V0(Ω1).

The discrete variational problems of the problem (3.3) and (3.6) are the following, respec-

tively: Find uh ∈ V h
g (Ω1) such that

D1(u
h, v) + D̂(γuh, γv) =

∫

Ω1

f v dx, ∀ v ∈ V h
0 (Ω1), (4.1)

and find uNh ∈ V h
g (Ω1) such that

D1(u
Nh, v) + D̂(γuNh, γv) =

∫

Ω1

f v dx, ∀ v ∈ V h
0 (Ω1). (4.2)

Since V h
0 (Ω1) ⊂ V0(Ω1), the Lax-Milgram Theorem assures that the problems (4.1) and (4.2)

are both well-posed.

In the following, we discuss error estimates. Suppose that the linear interpolation operator

Πh : Vg(Ω1) ∩ H2(Ω1) 7→ V h
g (Ω1) has error estimate

|v − Πhv|Hs(Ω1) ≤ Ch2−s|v|H2(Ω1), s = 0, 1.
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Theorem 4.1. Assume that f ∈ L2(Ω1) and g ∈ H1/2(Γ0). Also let u and uNh be the solutions

of the problem (3.3) and (4.2), respectively. If u ∈ H2(Ω1) and u|Γ1
∈ H3/2(Γ1), then there is

a positive constant C independent of the mesh size h and truncation term N such that

‖u − uNh‖H1(Ω1) ≤ C

(

h‖u‖H2(Ω1) +
1

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1)

)

. (4.3)

Proof. Let uN be the solution of the problem (3.6), then

D1(u
N − uNh, vh) + D̂N

(

γ(uN − uNh), γvh
)

= 0, ∀ vh ∈ V h
0 (Ω1). (4.4)

For any wh ∈ V h
g (Ω1), wh − uNh ∈ V h

0 (Ω1) satisfies

α‖uN − uNh‖2
H1(Ω1) ≤D1(u

N − uNh, uN − uNh) + D̂N

(

γ(uN − uNh), γ(uN − uNh)
)

=D1(u
N − uNh, uN − wh) + D̂N

(

γ(uN − uNh), γ(uN − wh)
)

≤C1‖uN − uNh‖H1(Ω1)‖uN − wh‖H1(Ω1),

which yields

‖uN − uNh‖H1(Ω1) ≤
C1

α
‖uN − wh‖H1(Ω1), ∀wh ∈ V h

g (Ω1), (4.5)

where C1 and α are only independent of the domain Ω1. Thus,

‖u − uNh‖H1(Ω1) ≤‖u − uN‖H1(Ω1) + ‖uN − uNh‖H1(Ω1)

≤‖u − uN‖H1(Ω1) +
C1

α
‖uN − Πh u‖H1(Ω1)

≤
(

1 +
C1

α

)

‖u − uN‖H1(Ω1) +
C1

α
‖u − Πh u‖H1(Ω1)

≤C1

α
h‖u‖H2(Ω1) +

(

1 +
C1

α

)

‖u − uN‖H1(Ω1).

Through Theorem 3.3, we have the formula (4.3). �

Theorem 4.2. Under the same assumptions of Theorem 4.1, there is a positive constant C

independent of the mesh size h and the truncation term N such that

‖u − uNh‖L2(Ω1) ≤ C

(

hα+1‖u‖H2(Ω1) +
1

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1)

)

. (4.6)

Here, α > 0 only depends on the regularity hypothesis of the solution of the problem (2.1).

Proof. Assume that uN is the solution of the problem (3.6) and w1 ∈ V0(Ω1) is the solution

to the following problem

D1(v, w1) + D̂N(γv, γw1) =

∫

Ω1

(uN − uNh)v dx, ∀ v ∈ V0(Ω1).

It can be verified that w1 has the following regularity hypothesis

‖w1‖Hα+1(Ω1) ≤ C‖uN − uNh‖L2(Ω1), α > 0.
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Because Πhw1 ∈ V h
0 (Ω1), the formulas (4.4) and (4.5) imply that

‖uN − uNh‖2
L2(Ω1)

= D1(u
N − uNh, w1) + D̂N

(

γ(uN − uNh), γw1

)

= D1(u
N − uNh, w1 − Πh w1) + D̂N

(

γ(uN − uNh), γ(w1 − Πh w1)
)

≤C1‖w1 − Πh w1‖H1(Ω1) ‖uN − uNh‖H1(Ω1)

≤Chα‖w1‖Hα+1(Ω1)‖uN − Πh u‖H1(Ω1)

≤Chα ‖uN − uNh‖L2(Ω1)

(

‖u − Πh u‖H1(Ω1) + ‖u − uN‖H1(Ω1)

)

.

Consequently,

‖uN − uNh‖L2(Ω1) ≤ C

(

hα+1‖u‖H2(Ω1) +
hα

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1)

)

.

Therefore, we have

‖u − uNh‖L2(Ω1) ≤‖u − uN‖L2(Ω1) + ‖uN − uNh‖L2(Ω1)

≤‖u − uN‖H1(Ω1) + ‖uN − uNh‖L2(Ω1)

≤C

(

hα+1‖u‖H2(Ω1) +
1

N + 2

(

coshµ2

coshµ1

)N+2

‖u‖H3/2(Γ1)

)

.

This completes the proof of the theorem. �

Remark 4.1. The above estimates indicate that when the mesh size h is given, we choose the

optimal truncation term Nopt = ln(h)/ ln(cosh µ2/ coshµ1)− 2 with respect to the norm in H1

and the optimal truncation term Nopt = (α + 1) ln(h)/ ln(coshµ2/ coshµ1) − 2 with respect to

the norm in L2.

5. Numerical Examples

Let N denote the truncation term, nodes denote the total number of nodes in Ω1, tetra

denote the total number of tetrahedral elements in Ω1. Let

‖v‖0 = ‖v‖L2(Ω1), ‖v‖1 = ‖v‖H1(Ω1), ‖v‖∞ = ‖v‖L∞(Ω1).

In Fig. 5.6 and Fig. 5.11, Error denotes the value of uNh − u50h about three norms when the

grid is given. In the other figures, Error denotes the value of u−uNh about the corresponding

norms.

Example 5.1. Let f = 0, f0 = 4 and the prolate ellipsoid surface Γ0 = {(µ, θ, ϕ) : µ = µ0, θ ∈
[0, π], ϕ ∈ [0, 2π)}. Assume that the exact solution of the problem (2.1) is

u = (x2
1 + x2

2 + x2
3)

−1/2.

Take g = u|Γ0
. We choose the prolate ellipsoidal surface Γ =

{

(µ, θ, ϕ) : µ = µ1, θ ∈ [0, π], ϕ ∈
[0, 2π)

}

as the artificial boundary. µ0 = 0.5 and µ1 = 1.0. The correspondent numerical results

are shown in Table 5.1 and Fig. 5.1. Ek on axis ordinate of Fig. 5.1 denotes ‖u−uNh‖k, k = 0, 1.
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Table 5.1: Example 5.1 Prolate ellipsoid and N = 50.

nodes tetra h || u − u
Nh ||1 ratio || u − u

Nh ||0 ratio || u − u
Nh ||∞ ratio

52 144 2.7317 1.8815e-1 — 1.2350e-1 — 2.3038e-2 —

342 1344 1.2974 7.1476e-2 2.6324 3.1364e-2 2.0660 5.9223e-3 3.9903

2410 11520 0.6340 3.0187e-2 2.3678 7.8214e-3 4.0100 1.4851e-3 3.9878

17874 95232 0.3135 1.4612e-2 2.0660 1.9601e-3 3.9903 3.6214e-4 4.1009

1 2 3 4 5 6
−9

−8

−7

−6

−5

−4

−3

−2

−1

N+1

ln
(E

N
)

k=1
k=0

Fig. 5.1. Example 5.1: Prolate ellipsoid, h = 0.3135.

Example 5.2. Let f = 0 and Γ0 be the surface of the cuboid Ω = { (x1, x2, x3) : |x1| ≤
1, |x2| ≤ 1, |x3| ≤ 3 }. Let the exact solution of the problem (2.1) be

u = x1(x
2
1 + x2

2 + x2
3)

−3/2
.

Take g = u|Γ0
. Because the inner domain is elongated, we choose prolate ellipsoidal surface

Γ =

{

(x1, x2, x3) :
x2

1

a2
+

x2
2

a2
+

x2
3

9 a2
= 1, a ≥

√
3

}

as the artificial boundary. The correspondent numerical results are shown in Table 5.2 and Fig.

5.2–Fig. 5.6.

Example 5.3. Let f = 0 and Γ0 be the surface of the cuboid Ω = { (x1, x2, x3) : |x1| ≤
3, |x2| ≤ 3, |x3| ≤ 1 }. Let the exact solution of the problem (2.1) is

u = x1(x
2
1 + x2

2 + x2
3)

−3/2
.

Take g = u|Γ0
. According to the shape of inner domain, we choose the oblate ellipsoidal surface

Γ =
{

(x1, x2, x3) :
x2

1

9 a2
+

x2
2

9 a2
+

x2
3

a2
= 1, a ≥

√
3
}

as artificial boundary. The correspondent numerical results are shown in Table 5.3 and Fig.

5.7–5.11.



210 H.Y. HUANG AND D.H. YU

Table 5.2: Example 5.2: Prolate ellipsoid, a = 2 and N = 50.

nodes tetra h || u − u
Nh ||1 ratio || u − u

Nh ||0 ratio || u − u
Nh ||∞ ratio

232 1008 1.2599 2.4874e-1 — 6.4101e-2 — 3.5785e-2 —

1582 8064 0.7368 1.0120e-1 2.4579 2.8031e-2 2.2868 1.3578e-2 2.6355

11674 64512 0.3889 3.2943e-2 3.0720 9.8109e-3 2.8572 6.5498e-3 2.0730

38342 217728 0.2622 1.5400e-2 2.1390 4.4389e-3 2.2102 2.66328e-3 2.4593

Table 5.3: Example 5.3: Oblate ellipsoid a = 2 and N = 50.

nodes tetra h || u − u
Nh ||1 ratio || u − u

Nh ||0 ratio || u − u
Nh ||∞ ratio

488 2160 1.3896 2.4189e-1 — 8.5921e-2 — 4.7080e-2 —

3374 17280 0.7612 8.3443e-2 2.8988 2.9324e-2 2.9301 1.5732e-2 2.9926

24986 138240 0.3924 2.4973e-2 3.3414 8.6189e-3 3.4023 4.28392e-3 3.6724
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and error in H
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Fig. 5.3. Example 5.2: Relation between h, N

and error in L
2(Ω1).

6. Conclusions

In this paper, we use the artificial boundary method to solve the Poisson equation over three-

dimensional unbounded domain. According to the special shape of the obstacles, we choose the

different special artificial boundary, e.g., prolate ellipsoid for cigar-shaped obstacles, and oblate

ellipsoid for dish-shaped obstacles. We give the exact artificial boundary conditions, present

the coupled variational problems, prove the well-posedness of the solutions of the continuous

and discrete coupled variational problem, obtain error estimates, and give some numerical

examples. We mainly analyze how truncation term, the mesh size and the location of the

artificial boundary have affected the numerical solutions in these examples. The numerical

results are in good agreement with the theoretical analysis. The corresponding conclusions are

as follows:

1). Figs. 5.2, 5.3, 5.7 and 5.8 have demonstrated that for different mesh sizes h, after trunca-

tion term N increases to a certain value (concerned with the mesh size h), the error of

the approximate solution with respect to the norms in H1(Ω1) and L2(Ω1) changes very

little. This indicates that errors mainly come from the mesh size when the truncation term
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Fig. 5.5. Example 5.2: Relation between lo-

cation of artificial boundary, N and error in

L
2(Ω1).
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Fig. 5.6. Example 5.2: h = 0.2622,a = 2.0.
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Fig. 5.7. Example 5.3: Relation between mesh,

N and error in H
1(Ω1).

amounts to a certain value.

2). Tables 5.1– 5.3 have indicated that when truncation term arrive at a certain value, e.g.,

N = 50, the convergent order of ||u−uNh||H1(Ω1) with respect to h is approximate 1, while

the convergent order of ||u− uNh||L∞(Ω1), and ||u− uNh||L2(Ω1) with respect to h is greater

than 1.5.

3). Figs. 5.4, 5.5, 5.9 and 5.10 have shown that when h and N are given, the error of the

approximate solution become smaller as the distance between Γ0 and the artificial boundary

Γ increase. However, in order to decrease the error, it is inadvisable to extend the distance

between Γ0 and Γ, because if the size of the computational domain is increased, then the

computational complexity will increase significantly.

4). Figs. 5.1, 5.6 and 5.11 have illustrated that when the mesh size is given, the relation between

the logarithm of the error of uNh − u50h with respect to three norms and truncation term

N is approximately a straight line. This implies that the error of the approximate solution
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N and error in L
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Fig. 5.9. Example 5.3: Relation between lo-

cation of artificial boundary, N and error in

H
1(Ω1).

0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

Truncation   Terms   N

L
2 (Ω

1) 
   

E
rr

or

a=2.0,    h=0.7612
a=2.4,    h=0.7480
a=2.88,  h=0.7275

Fig. 5.10. Example 5.3: Relation between lo-
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Fig. 5.11. Example 5.3: h = 0.3924, a = 2.0.

from truncation term is approximately an exponential function about N whose base is less

than 1, which is consistent with our theoretic prediction.

Acknowledgment. This work was subsidized by the National Basic Research Program of

China under the grant 2005CB321701,the National Natural Science Foundation of China under

the grant 10531080, the Beijing Natural Science Foundation under the grant 1072009 and the

Research Project of Zhejiang Ocean University (X08M013, X08Z04).

References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Function, New York: Dover, 1972.

[2] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[3] K.J. Bathe and E.L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, En-

glewood Cliffs, New York, 1976.

[4] P. Bettess, Infinite elements, Int. J. Numer. Meth. Eng., 11 (1977), 53-64.



The Ellipsoid Artificial Boundary Method for 3D Unbounded Domains 213

[5] C. A. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London, 1978.

[6] F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods,

Calcolo, 76 (1979), 189-201.

[7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Com-

pany, New York, 1978.

[8] Q.K. Du, D.H. Yu, The coupled method based on natural boundary reduction for parabolic

equation, Comput. Phys., 17:6 (2000), 593-601 (in Chinese).

[9] Q.K. Du, D.H. Yu, On the natural integral equation for initial boundary value problems of two

dimensional hyperbolic equation, Acta Math. Sin., 24:1 (2001), 17-26.

[10] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,

Math. Comput., 31 (1977), 629-651.

[11] D.J. Evans, Numerical solution of exterior problems by the peripheral block overrelaxation

method, J. Inst. Maths. Appl., 19 (1977), 399-405.

[12] K. Feng, Differential versus integral equation and finite versus infinite element, Mathematicae

Numerica Sinica, 2:1 (1980), 100-105.

[13] K. Feng, D.H. Yu, Canonical integral equations of elliptic boundary value problems and their nu-

merical solutions, In Proceedings of China-France Symposium on Finite Element Method, Beijing:

Science Press, 1983, 211-252.

[14] C.I. Goldstein, A finite element method for solving Helmholtz type equations in waveguides and

other unbounded domains, Math. Comput., 39:160 (1982), 309-324.

[15] T.M. Hagstrom and H.B. Keller, Exact boundary conditions at artificial boundary for partial

differential equations in cylinders, SIAM J. Math. Anal., 17 (1986), 322-341.

[16] T.M. Hagstrom and H.B. Keller, Asymptotic boundary conditions and numerical methods for

nonlinear elliptic problems on unbounded domains, Math. Comput., 48 (1987), 449-470.

[17] H.D. Han, X.N. Wu, Approximation of infinite boundary condition and its application to finite

element methods, J. Comput. Math., 3:3 (1985), 179-192.

[18] H.D. Han, A new class of variational formulations for the coupling of finite and boundary element

methods, J. Comput. Math., 8 (1990), 223-232.

[19] H.D. Han and X.N. Wu, The approximation of the exact boundary conditions at an artificial

boundary for linear elastic equations and its application, Math. Comput., 59 (1992), 21-37.

[20] H.D. Han, W.Z. Bao, Error estimates for the finite element approximation of problems in un-

bounded domains, SIAM J. Numer. Anal., 37 (2000), 1101-1119.

[21] Q.Y. Hu and D.H. Yu, A solution method for a certain nonlinear interface problem in unbounded

domains, Computing, 67 (2001), 119-140.

[22] H.Y. Huang and D.H. Yu, Natural boundary element method for three dimensional exterior har-

monic problem with an inner prolate spheroid boundary, J. Comput. Math., 24:2 (2006), 193-208.

[23] H.Y. Huang and D.H. Yu, The coupled NBEM and FEM for three-dimensional exterior problem

with a prolate spherical artificial boundary, In Proceedings of the Fourth International Workshop

on Scientific Computing and Applications, Beijing: Science Press, 2007, 117-122.

[24] H.Y. Huang, An Artificial Boundary Method for Three-Dimensional Problems over Unbounded

Domain with an Ellipsoidal Artificial Boundary, PhD Dissertation, Academy of Mathematics and

System Sciences of the Chinese Academy of Sciences, 2007 (in Chinese).

[25] C. Johnson and J.C. Nedelec, On the coupling of boundary integral and finite element methods,

Math. Comput., 35 (1980), 1063-1079.

[26] J.B. Keller, M.J. Grote, Exact non-reflecting boundary conditions, J. Comput. Phys., 82 (1989),

172-192.

[27] J.B. Keller, M.J. Grote, On non-reflecting boundary conditions, J. Comput. Phys., 122 ( 1995),

231-243.

[28] Y. Liu, Solution of Some Electromagnetic Problems Based on Natural Boundary Elements and

Domain Decomposition Method, PhD Dissertation, Academy of Mathematics and System Sciences



214 H.Y. HUANG AND D.H. YU

of the Chinese Academy of Sciences, 2007 (in Chinese).

[29] J.M. Wu, Natural Boundary Element Method and Domain Decomposition Algorithm for Three

Dimensional Problems, PhD Dissertation, Institute of Computational Mathematics, the Chinese

Academy of Sciences, 1999 (in Chinese).

[30] D.H. Yu, Coupling canonical boundary element method with FEM to solve harmonic problem

over cracked domain, J. Comput. Math., 1:3 (1983), 195-202.

[31] D.H. Yu, Approximation of boundary conditions at infinity for a harmonic equation, J. Comput.

Math., 3:3 (1985), 219-227.

[32] D.H. Yu, Natural Boundary Integral Method and its Applications, Dordrecht, Netherlands:Kluwer

Academic Publishers, 2002.

[33] J.L. Zhu, Boundary Element Analysis of Elliptic Boundary Value Problems, Beijing: Science

Press, 1992 (in Chinese).

[34] O.C. Zienkiewicz, D.W. Kelly, and P. Bettess, The coupling of the finite element method and

boundary solution procedures, Int. J. Numer. Meth. Eng., 11 (1977), 355-375.

[35] M. Costabel, E.P. Stephan, Coupling of finite element and boundary element methods for an

elasto-plastic interface problems, SIAM Numer. Anal., 27 (1990), 1212-1226.

[36] G.N. Gatica, L.F. Gatica, E.P. Stephan, A FEM-DtN formulation for a nonlinear exterior problem

in incompressible elasticity, Math. Method. Appl. Sci., 26 (2003), 151-170.


