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Abstract

In this paper, we study variational discretization for the constrained optimal control

problem governed by convection dominated diffusion equations, where the state equation

is approximated by the edge stabilization Galerkin method. A priori error estimates are

derived for the state, the adjoint state and the control. Moreover, residual type a posteriori

error estimates in the L2-norm are obtained. Finally, two numerical experiments are

presented to illustrate the theoretical results.
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1. Introduction

Optimal control problem governed by convection dominated diffusion equations arises in
many science and engineering applications. Recently, extensive research has been carried out
on various theoretical aspects of optimal control problems governed by convection diffusion and
convection dominated equations, see, e.g., [2, 3, 10,29].

It is well known that the standard finite element discretizations applied to convection domi-
nated diffusion problems lead to strongly oscillations when layers are not properly resolved. To
stabilize this phenomenon, several well-established techniques have been proposed and analyzed,
for example, the streamline diffusion finite element method [16], residual free bubbles [4], and
the discontinuous Galerkin method [18]. Drawing on earlier ideas by Douglas and Dupont [11],
Burman and Hansbo proposed an edge stabilization Galerkin method to approximate the con-
vection dominated diffusion equations in [5]. The method uses least square stabilization of the
gradient jumps across element edges, and can be seen as a continuous, higher order interior
penalty method. The analysis of edge stabilization Galerkin methods has been extended to the
Stokes equations [6], and to incompressible flow problems [7,26].

Although above stabilization techniques are deeply studied for the convection dominated
diffusion equations, their application to optimal control problems governed by convection dom-
inated diffusion equations is not yet intensively studied. This may be due to the fact that stable
numerical treatment of the optimality conditions requires stabilization for both the state and
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the adjoint equation, and it is not straightforward to chose stabilization techniques such that
the approaches first optimize, then discretize and first discretize, then optimize commute. This
question for example pops up if one considers the streamline upwind Galerkin method (SUPG)
for discretizing the state and the adjoint equation in the optimality system, since this approach
seems not to be well suited for the duality techniques frequently used in optimal control. In [3]
and [29] stabilized finite element methods for optimal control governed by convection diffusion
equations are applied. Both approaches use standard finite element discretization with stabi-
lization based on symmetric penalty terms, where local projections (the so called LPS-method)
are used in [3], and edge stabilization (see [5]) in [29]. Then formulating the control problem on
the continuous level and then discretizing the optimality conditions appropriately is equivalent
to considering the control problem on the discrete level. Hence the question posed above of
which concept to apply is made redundant.

In [3] a priori error estimates are proved for both constrained and unconstrained problems,
while a priori and a posteriori error estimates are provided in [29].

In [14] the first author proposes the variational discretization concept for optimal control
problems with control constraints, which implicitly utilizes the first order optimality conditions
and the discretization of the state and adjoint equations for the discretization of the control
instead of discretizing the space of admissible controls. The application to the control governed
by elliptic equations is discussed, and optimal error estimates are provided.

Here we combine variational discretization and the edge stabilization Galerkin method and
apply them to the discretization of optimal control problems governed by convection diffusion
equations. We first derive the continuous optimality system, which contains the state equation,
the adjoint state equation and the optimality condition, which is given in terms of a variational
inequality. Then similar to the standard approaches to optimal control problems governed by
elliptic or parabolic partial differential equations (see, e.g., [21–24]), we derive the discrete opti-
mal control problem by using the edge stabilization Galerkin method to approximate the state
equation, whose optimality system then coincides with that obtained by discretizing the state
and adjoint state in the continuous optimality system by finite elements with edge stabilization.
The control is not discretized in our approach. For the control u, the state y and the adjoint
state p we prove the a priori estimate

‖ y − yh ‖∗,Ω + ‖ p− ph ‖∗,Ω + ‖ u− uh ‖0,Ω≤ C
(
h3/2 + hε1/2

)
,

where uh, yh, ph denote their discrete counterparts, and ‖ · ‖∗,Ω is defined in Section 3. We note
that this result is of the same quality as those obtained in [3] and [29], but is obtained without
structural assumptions like [3, Assumption 2], and also by a different simpler proof technique.
Furthermore, we construct a residual type a posteriori error estimator which only contains
contributions from the local residuals in the state and the adjoint equation. Contributions from
the optimality condition do not appear since the control is not discretized in the variational
approach taken here. Finally the numerical examples are presented to illustrate our theoretical
results.

The paper is organized as follows: In Section 2, we describe the edge stabilization Galerkin
scheme for the constrained optimal control problem governed by convection dominated diffusion
equations using variational discretization. In Sections 3 we prove the a priori error estimate,
and in Section 4, the a posteriori error estimator is constructed. In Section 5, we present two
numerical examples to illustrate the theoretical results. In the last section, we briefly summarize
the method used, results obtained and possible future extensions and challenges.
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2. Model Problem and Its Variational Approximation Scheme

In this section we consider the following constrained optimal control problem governed by
convection dominated diffusion equations:

min
u∈K⊂U

J(y, u) (2.1)

subject to

−ε4y +~b · ∇y + ay = f + u, in Ω, (2.2)

y = 0, on ∂Ω,

where
J(y, u) =

1
2
‖ y − y0 ‖20,Ω +

α

2
‖ u ‖20,Ω,

α > 0 is a constant, Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω, K ⊂ U = L2(Ω)
denotes a closed convex set. From here onwards we use

K = {u ∈ U ;ua ≤ u ≤ ub a.e. in Ω},

where for simplicity ua < ub denote constants. Moreover, f ∈ L2(Ω), a > 0 is the reaction
coefficient, 0 < ε � 1 is a small positive number, ~b ∈ (W 1,∞(Ω))2 is a velocity field. We assume
that the following coercivity condition holds:

a− 1
2
∇ ·~b ≥ a0 > 0.

In this paper we adopt the standard notation Wm,q(Ω) for Sobolev space on Ω with a norm
‖ · ‖m,q,Ω and a semi-norm | · |m,q,Ω. We set Wm,q

0 (Ω) = {v ∈ Wm,q(Ω) : v |∂Ω= 0}. For q = 2,
we denote Hm(Ω) = Wm,2(Ω) and ‖ · ‖m,Ω=‖ · ‖m,2,Ω. Especially, we denote the state space
by Y = H1

0 (Ω). The inner product in L2(Ω) is indicated by and (·, ·). In addition, C denotes a
generic constant.

Let us first consider the weak formulation of the state equation. It is well known that the
weak formulation of the state equation (2.2) is to find y(u) ∈ Y , such that

(ε∇y,∇w) + (~b · ∇y, w) + (ay,w) = (f + u, w), ∀w ∈ Y.

Let A(·, ·) be the bilinear form given by

A(y, w) = (ε∇y,∇w) + (~b · ∇y, w) + (ay,w), ∀y, w ∈ Y.

We define an energy norm associated with (2.2) via

‖| y |‖Ω=
{

ε ‖ ∇y ‖20,Ω + ‖ a
1
2
0 y ‖20,Ω

}1/2

.

It is easy to see that
A(y, y) ≥‖| y |‖2Ω . (2.3)

Therefore the variational formulation corresponding to (2.1)-(2.2) can be rewritten as

min
u∈K

J(y, u) (2.4)
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subject to
A(y(u), w) = (f + u, w), ∀w ∈ Y. (2.5)

Since (2.4)-(2.5) defines a strictly convex optimal control problem it is clear (see, e.g., [13]
and [20]) that it admits a unique solution (y, u), and that a pair (y, u) is the solution of (2.4)-
(2.5) if and only if there is a adjoint state p ∈ Y, such that (y, p, u) satisfies the following
optimality conditions:

A(y, w) = (f + u, w), ∀w ∈ Y, (2.6)

A(q, p) = (y − y0, q), ∀q ∈ Y, (2.7)

(αu + p, v − u) ≥ 0, ∀v ∈ K. (2.8)

It is well known that using the pointwise projection on the admissible set K,

PK : U −→ K, PK(v) = max(ua,min(ub, v)), (2.9)

the optimality condition (2.8) can be equivalently expressed as

u = PK (−p/α) . (2.10)

Note that the state equation (2.5) is the convection dominated diffusion equation when ε

is very small. It is well known that the standard finite element method can not work well for
solving this kind of problems. Stabilized methods should be adopted in order to improve the
computational accuracy. The edge stabilization Galerkin scheme (see, e.g., [5]) has been proved
to be a efficient scheme for the equation (2.5). In this paper, we use the edge stabilization
Galerkin scheme to deal with the state equation and costate equation in the optimality system
(2.6)-(2.8).

Let Th be regular triangulations of Ω, so that Ω̄ = ∪τ∈T h τ̄ . Let h = maxτ∈T h hτ , where
hτ denotes the diameter of the element τ . Associated with Th is a finite dimensional subspace
Wh of C(Ω̄), such that φ|τ is the polynomial of k-order (k ≥ 1), ∀φ ∈ Wh. Set Y h = Wh ∩ Y .
Then it is easy to see that Y h ⊂ Y = H1

0 (Ω).
To control the advective derivative of the discrete solution sufficiently we introduce a stabi-

lization form S on Y h × Y h (see, e.g., [5]) such that

S(vh, wh) =
∑
l∈Eh

∫
l

γh2
l [~n · ∇vh][~n · ∇wh]ds,

where Eh ⊂ ∂Th denotes the collection of interior edges of the triangles in Th (∂Th is the
collection of all edges of the triangles in Th), hl is the size of the edge l, [q]l denotes the jump
of q across l for l ∈ Eh such that

[q(x)]x∈l = lim
s→0+

(
q(x + s~n)− q(x− s~n)

)
,

where ~n is the outward unit normal.
Using the stabilization form defined above, an edge stabilization Galerkin approximation of

the optimal control problem (2.4)-(2.5) can be defined as follows

min
uh∈K

J(yh, uh) (2.11)
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subject to
A(yh, wh) + S(yh, wh) = (f + uh, wh), ∀wh ∈ Y h. (2.12)

As in the continuous case it can be shown that the control problem (2.11)-(2.12) admits a
unique solution (yh, uh), and that a pair (yh, uh) is the solution of (2.11)-(2.12) if and only if
there is a unique adjoint state ph ∈ V h, such that (yh, ph, uh) satisfies the optimality conditions

A(yh, wh) + S(yh, wh) = (f + uh, wh), ∀wh ∈ Y h, (2.13)

A(qh, ph) + S(qh, ph) = (yh − y0, qh), ∀qh ∈ Y h, (2.14)

(αuh + ph, v − uh) ≥ 0, ∀v ∈ K. (2.15)

Concerning (2.15) it should be pointed out that we minimize over the infinite dimensional set
K instead of minimizing over a finite-dimensional subset of K. Similar to (2.10), the projection
(2.9) allows to rewrite the optimality condition (2.15) as

uh = PK (−ph/α) . (2.16)

In general, uh is not a finite element function corresponding to the mesh Th, especially on
triangles containing the discrete free boundary. This fact requires more care for the construction
of the algorithms for computing uh, see [11] for details.

3. A Priori Error Estimates

In this section, we consider a priori error estimates for the optimal control problem (2.6)-
(2.8) and its edge stabilization Galerkin approximation (2.13)-(2.15).

Theorem 3.1. Let (y, p, u) and (yh, ph, uh) denote the solutions to (2.6)-(2.8) and (2.13)-
(2.15), respectively. Assume that y, p ∈ H2(Ω). Then we have

‖ y − yh ‖∗,Ω + ‖ p− ph ‖∗,Ω + ‖ u− uh ‖0,Ω≤ C
(
h3/2 + hε1/2

)
, (3.1)

where
‖ wh ‖2∗,Ω= ε ‖ ∇wh ‖20,Ω + ‖ a

1
2
0 wh ‖20,Ω + ‖ h

1
2~b · ∇wh ‖20,Ω +S(wh, wh).

Proof. Let Ĵ(v) := J(yh(v), v) denotes the reduced functional, where for given v ∈ U the
function yh(v) ∈ Y h solves (2.11) with uh replaced by v. Then straightforward calculation
yields Ĵ ′h(v) = αv + ph(v), where for given v ∈ U the function ph(v) ∈ Y h solves

A(qh, ph(v)) + S(qh, ph(v)) = (yh(v)− y0, qh), ∀qh ∈ Y h.

Now we test (2.15) with v = u, (2.8) with v = uh, and add the resulting inequalities. This
implies

α‖u− uh‖20,Ω ≤ (p− ph, uh − u)

= (p− p̃h(u), uh − u) + (p̃h(u)− ph, uh − u) := (1) + (2),

where for given v ∈ U the function p̃h(v) solves

A(qh, p̃h(v)) + S(qh, p̃h(v)) = (y(v)− y0, qh), ∀qh ∈ Y h. (3.2)
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Then
|(1)| ≤ ‖p− p̃h(u)‖0,Ω‖u− uh‖0,Ω.

Using duality we obtain

(2) = A(yh − yh(u), p̃h(u)− ph) + S(yh − yh(u), p̃h(u)− ph)

= (y − yh, yh − yh(u)) = −‖y − yh‖20,Ω + (y − yh, y − yh(u))

≤ −1
2
‖y − yh‖20,Ω +

1
2
‖y − yh(u)‖20,Ω.

Combining the estimates for (1) and (2) we obtain

α‖u− uh‖20,Ω + ‖y − yh‖20,Ω ≤
1
α
‖p− p̃h(u)‖20,Ω + ‖y − yh(u)‖20,Ω. (3.3)

Using the results of [1] and [5], we obtain

‖ p− p̃h ‖∗,Ω≤ C
(
h3/2 + hε1/2

)
‖p‖2,Ω. (3.4)

and similarly for y, noting that yh(u) is the edge stabilization Galerkin solution of y,

‖ yh(u)− y ‖∗,Ω≤ C
(
h3/2 + hε1/2

)
‖y‖2,Ω. (3.5)

This delivers the intermediate result

‖u− uh‖0,Ω + ‖y − yh‖0,Ω ≤ C
(
h3/2 + hε1/2

)
{‖y‖2,Ω + ‖p‖2,Ω} . (3.6)

Finally we estimate ‖ y − yh ‖∗,Ω and ‖ p− ph ‖∗,Ω. To begin with we recall that yh(u) is the
edge stabilization Galerkin solution of y. By the stability property of A(·, ·)+S(·, ·) (see,e.g., [5])
we obtain

‖ yh − yh(u) ‖∗,Ω≤ C ‖ u− uh ‖0,Ω . (3.7)

Similarly,
‖ ph − p̃h(u) ‖∗,Ω≤ C ‖ y − yh ‖0,Ω, (3.8)

so that the triangle inequality combined with (3.4)-(3.8) gives (3.1). �

Remark 3.1. A close inspection of the previous proof shows that the result of Theorem 3.1
remains valid for every stabilization S which allows error estimates of the form (3.5) and (3.4),
where the discretization of the adjoint equation is performed according to (3.2). Our result
therefore immediately applies to the approach taken in [3], since [3, Lemma 5, Lemma 6] are
also valid in our setting.

4. A Posteriori Error Estimates

We now derive residual type a posteriori error estimates in the L2-norm for problem (2.6)-
(2.8) and its edge stabilization Galerkin approximation (2.13)-(2.15). For this purpose we need
some auxiliary lemmas. In Lemma 4.1 we consider an interpolation operator of Clement type,
which has been introduced in [9] and [28]. In our sample case, we can set the interpolant of v

to be

Ihv =
∑

z∈Zh

vzφz ∈ Y h ⊂ H1
0 (Ω), vz =

∫
ωz

v∫
ωz

1
,
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where Zh is the set of all inner nodes, φz is the base function on the node z, and ωz is the
support of φz. For the interpolant defined in this way, the following approximation property
with the weak assumption on the regularity of the function to be interpolated can be proved
(see [9] and [28] for more details).

Lemma 4.1. Let Ih : H1
0 (Ω) → Y h be the interpolation operator of Clement type. Then for all

τ ∈ Th, l ∈ Eh, and v ∈ H1(N(τ)) or v ∈ H1(N(l)), we have

‖v − Ihv‖i,τ ≤ Chk−i
τ ‖v‖k,N(τ), 0 ≤ i ≤ k ≤ 1,

‖v − Ihv‖0,l ≤ Ch
1/2
l ‖v‖k,N(l), ‖|Ihv‖|τ ≤ C‖|v‖|N(τ),

where Eh ⊂ ∂Th denotes the collection of interior edges of the triangles in Th, N(τ) and N(l)
denote the union of all elements that share at least one point with τ and l, and ‖| · ‖| is defined
in Section 2.

In order to obtain the a posteriori error estimates for y − yh and p − ph, we introduce the
following auxiliary dual problems:{

−ε4φ1 −∇ · (~bφ1) + aφ1 = f1, in Ω,

φ1 = 0, on ∂Ω,
(4.1)

and {
−ε4φ2 +~b · ∇φ2 + aφ2 = f2, in Ω,

φ2 = 0, on ∂Ω.
(4.2)

Noting that a− 1
2 ∇ ·~b ≥ a0 > 0, it is easy to derive the following stability estimates for above

auxiliary dual problems (see [25] for more details).

Lemma 4.2. Let φi be the solution of (4.1) or (4.2). For i = 1 or 2, we have

ε ‖ φi ‖21,Ω + ‖ φi ‖20,Ω≤ C|||φi|||2 ≤ C ‖ fi ‖20,Ω .

Now we are in the position to prove the a posteriori error estimate.

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) denote the solution of (2.6)-(2.8) and (2.13)-(2.15),
respectively. Then we have

‖u− uh‖20,Ω+ ‖ y − yh ‖20,Ω + ‖ p− ph ‖20,Ω≤
4∑

i=1

η2
i , (4.3)

where

η2
1 =

∑
τ∈T h

h2
τ

ε

∫
τ

(
f + uh + ε4yh −~b · ∇yh − ayh

)2

,

η2
2 =

∑
l∈Eh

(
ε +

h2
l

ε

)
hl

∫
l

[∇yh · ~n]2ds,

η2
3 =

∑
τ∈T h

h2
τ

ε

∫
τ

(
yh − y0 + ε∆ph +∇ · (~bph)− aph

)2

,

η2
4 =

∑
l∈Eh

(
ε +

h2
l

ε

)
hl

∫
l

[∇ph · ~n]2ds,

l = τ̄1
l ∩ τ̄2

l denotes the edge of the element, hl its length, and [v]l the jump of v over the edge l.
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Proof. Set Ĵ(u) = J(y(u), u) as in the problem (2.1). Then,

(Ĵ ′(u), v) = (αu + p, v), (4.4)

(Ĵ ′(uh), v) = (αuh + p(uh), v), (4.5)

where p(uh) is the solution of the following equations:

A(y(uh), w) = (f + uh, w), ∀w ∈ Y, (4.6)

A(q, p(uh)) = (y(uh), q), ∀q ∈ Y. (4.7)

It follows from (4.4)-(4.5) that

(Ĵ ′(u), u− uh)− (Ĵ ′(uh), u− uh)

= α ‖ u− uh ‖20,Ω +(p− p(uh), u− uh). (4.8)

From (4.6)-(4.7) we derive that

(p− p(uh), u− uh) = A(y − y(uh), p− p(uh))

= (y − y(uh), y − y(uh)) ≥ 0. (4.9)

Thus, (4.8) and (4.9) imply that

(Ĵ ′(u), u− uh)− (Ĵ ′(uh), u− uh) ≥ α ‖ u− uh ‖20,Ω . (4.10)

Then it follows from (2.8), (2.15) and (4.10) that

α‖u− uh‖20,Ω ≤ (Ĵ ′(u), u− uh)U − (Ĵ ′(uh), u− uh)

= (αu + p, u− uh)− (αuh + p(uh), u− uh)

≤ (αuh + ph, uh − u) + (ph − p(uh), u− uh)

≤ (ph − p(uh), u− uh). (4.11)

Consequently,

‖u− uh‖0,Ω ≤ C ‖ ph − p(uh) ‖0,Ω . (4.12)

Let f1 = y(uh)− yh in (4.1). Then integration by parts gives

‖ y(uh)− yh ‖20,Ω = (f1, y(uh)− yh)

= (−ε4φ1 −∇ · (~bφ1) + aφ1, y(uh)− yh)

= A(y(uh), φ1)−A(yh, φ1).

Note that

A(y(uh), w) = (f + uh, w), ∀w ∈ Y,

A(yh, wh) + S(yh, wh) = (f + uh, wh), ∀wh ∈ Y h.
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Setting w = φ1 and wh = Ihφ1, where Ih is defined in Lemma 4.1, we obtain

‖ y(uh)− yh ‖20,Ω = (f + uh, φ1)−A(yh, φ1 − Ihφ1)−A(yh, Ihφ1)

− S(yh, Ihφ1) + S(yh, Ihφ1)

= (f + uh, φ1 − Ihφ1)−A(yh, φ1 − Ihφ1) + S(yh, Ihφ1)

=
∑

τ∈T h

∫
τ

(f + uh + ε∆yh −~b · ∇yh − ayh, φ1 − Ihφ1)

+
∑
l∈Eh

∫
l

[ε∇yh · ~n](Ihφ1 − φ1)ds + S(yh, Ihφ1)

=: I1 + I2 + I3. (4.13)

Using the approximation properties of the interpolation presented in Lemma 4.1, we have that

| I1 | ≤
∑

τ∈T h

‖ f + uh + ε4yh −~b · ∇yh − ayh ‖0,τ‖ φ1 − Ihφ1 ‖0,τ

≤ C
∑

τ∈T h

hτ ‖ f + uh + ε4yh −~b · ∇yh − ayh ‖0,τ‖ ∇φ1 ‖0,N(τ)

≤ C(δ)
∑

τ∈T h

h2
τ

ε

∫
τ

(f + uh + ε4yh −~b · ∇yh − ayh)2 + Cδε ‖ φ1 ‖21,Ω, (4.14)

where δ is an arbitrary positive number. By Lemma 4.2, the first term on the right-hand side
of (4.13) can be bounded by

| I1 | ≤ C(δ)
∑

τ∈T h

h2
τ

ε

∫
τ

(
f + uh + ε4yh −~b · ∇yh − ayh

)2

+ Cδ ‖ y(uh)− yh ‖20,Ω

= C(δ)η2
1 + Cδ ‖ y(uh)− yh ‖20,Ω . (4.15)

In a similar way, the second term on the right-hand side of (4.13) can be estimated as

| I2 | ≤ C
∑
l∈Eh

h
1/2
l

( ∫
l

[ε∇yh · ~n]2
) 1

2 ∑
l∈Eh

‖ ∇φ1 ‖0,N(l)

≤ C(δ)
∑
l∈Eh

εhl

∫
l

[∇yh · ~n]2 + Cδε‖φ1‖21,Ω

≤ C(δ)η2
2 + Cδ ‖ y(uh)− yh ‖20,Ω . (4.16)

Finally for I3 we get

| I3 | =
∣∣∣ ∑

l∈Eh

∫
l

γh2
l [~n · ∇yh][~n · ∇(Ihφ1)]ds

∣∣∣
≤ C

∑
l∈Eh

h2
l ‖ [~n · ∇yh] ‖0,l‖ [∇(Ihφ1)] ‖0,l .

Using a well-known inverse inequality, we obtain

‖ [∇(Ihφ1)] ‖0,l≤ Ch
− 1

2
l ‖ Ihφ1 ‖1,τl

. (4.17)
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It follows that
|I3| ≤ C

∑
l∈Eh

h
3
2
l ‖ [n · ∇yh] ‖0,l‖ Ihφ1 ‖1,τl

.

Collecting the above estimates and using Lemmas 4.1 and 4.2, we obtain

|I3| ≤ C(δ)
∑
l∈Eh

h3
l

ε

∫
l

[n · ∇yh]2 + Cδε ‖ φ1 ‖21,Ω

≤ C(δ)η2
2 + Cδ ‖ y(uh)− yh ‖20,Ω . (4.18)

Combining (4.13), (4.15), (4.16) and (4.18) we end up with

‖ y(uh)− yh ‖20,Ω≤ C(η2
1 + η2

2). (4.19)

Similar to the estimates of the state y, inserting f2 = p(uh)− ph in (4.2), we derive that

‖ p(uh)− ph ‖20,Ω = (f2, p(uh)− ph)

= (−ε4φ2 +~b · ∇φ2 + αφ2, p(uh)− ph)

= A(φ2, p(uh))−A(φ2, ph).

Then repeating the estimations as in (4.13)-(4.18), we have

A(φ2, p(uh))−A(φ2, ph)

= (y(uh)− y0, φ2)−A(φ2 − Ihφ2, ph)−A(Ihφ2, ph)− S(Ihφ2, ph) + S(Ihφ2, ph)

= (y(uh)− yh, φ2) + (yh − y0 + ε∆ph +∇ · (~bph)− aph, φ2 − Ihφ2)

+
∑

l∩∂Ω=∅

∫
l

[ε∇ph · ~n](Ihφ2 − φ2)ds + S(ph, Ihφ2)

≤ C ‖ y(uh)− yh ‖0,Ω‖ φ2 ‖0,Ω

+
∑

τ∈T h

∫
τ

(yh − y0 + ε∆ph +∇ · (~bph)− aph)(Ihφ2 − φ2)

+
∑

l∩∂Ω=∅

∫
l

[ε∇ph · ~n](Ihφ2 − φ2)ds +
∑
l∈Eh

∫
l

γh2
l [n · ∇ph][n · ∇(Ihφ2)]ds

≤ C(δ)
∑

τ∈T h

h2
τ

ε

∫
τ

(
yh − y0 + ε∆ph +∇ · (~bph)− aph

)2

+ C(δ)
∑
l∈Eh

εhl

∫
l

[∇ph · ~n]2ds + C(δ)
∑
l∈Eh

h3
l

ε

∫
l

[n · ∇ph]2

+ C(δ) ‖ y(uh)− yh ‖2 +Cδ ‖ p(uh)− ph ‖20,Ω .

Therefore,

‖ p(uh)− ph ‖20,Ω≤ C(η2
3 + η2

4) + C ‖ y(uh)− yh ‖20,Ω≤ C
4∑

i=1

η2
i . (4.20)

Thus (4.12) and (4.20) imply that

‖u− uh‖20,Ω ≤ C
4∑

i=1

η2
i . (4.21)
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Moreover, it is easy to see that

‖y − y(uh)‖0,Ω ≤ C‖u− uh‖0,Ω, (4.22)

and
‖p− p(uh)‖0,Ω ≤ C‖y − y(uh)‖0,Ω ≤ C‖u− uh‖0,Ω. (4.23)

Thus, it can be deduced from (4.19)-(4.23) that

‖y − yh‖20,Ω ≤ C‖y − y(uh)‖20,Ω + C‖y(uh)− yh‖20,Ω ≤ C
4∑

i=1

η2
i , (4.24)

‖p− ph‖20,Ω ≤ C‖p− p(uh)‖20,Ω + C‖p(uh)− ph‖20,Ω ≤ C
4∑

i=1

η2
i . (4.25)

Then (4.3) follows from (4.21), (4.24) and (4.25). �

Remark 4.1. When ε is very small, say, ε ≤ Ch2, the above theorem can be improved. In
this case, we can use the stability estimate ‖φi‖0,Ω ≤ ‖fi‖0,Ω instead of ε‖φi‖21,Ω ≤ ‖fi‖20,Ω, and
replace (4.14), (4.17) by

| I1 | ≤
∑

τ∈T h

‖ f + uh + ε4yh −~b · ∇yh − ayh ‖0,τ‖ φ1 − Ihφ1 ‖0,τ

≤ C(δ)
∑

τ∈T h

∫
τ

(f + uh + ε4yh −~b · ∇yh − ayh)2 + Cδ ‖ φ1 ‖20,Ω,

and
‖ [∇(Ihφ1)] ‖0,l≤ Ch

− 3
2

l ‖ Ihφ1 ‖0,τl
.

Then the a posteriori error estimate in Theorem 4.1 can be improved to

‖u− uh‖20,Ω+ ‖ y − yh ‖20,Ω + ‖ p− ph ‖20,Ω≤
4∑

i=1

η̂2
i ,

where

η̂2
1 =

∑
τ∈T h

γτ

∫
τ

(f + uh + ε4yh −~b · ∇yh − ayh)2,

η̂2
2 =

∑
l∈Eh

(ε + γl)hl

∫
l

[∇yh · ~n]2ds,

η̂2
3 =

∑
τ∈T h

γτ

∫
τ

(yh − y0 + ε∆ph +∇ · (~bph)− aph)2,

η̂2
4 =

∑
l∈Eh

(ε + γl)hl

∫
l

[∇ph · ~n]2ds,

with
γτ = min{1, h2

τ/ε}, γl = min{1, h2
l /ε}.
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5. Numerical Examples

In this section we illustrate our theoretical results by numerical examples for the optimization
problem

min
u∈K

{
1
2

∫
Ω

(y − y0)2 +
α

2

∫
Ω

u2

}
(5.1)

subject to

−ε4y +~b · ∇y + ay = f + Bu in Ω, (5.2)

where Ω = [0, 1]× [0, 1].
In the numerical simulation, we use the conforming piecewise linear finite element space for

the approximation of the state y and the adjoint state p. A projection gradient method (see,
e.g., [14, 15]) is used to compute the solution of the infinite dimensional optimization problem
(2.11), where the projection operator P b

K in (4.2) of [15] is replaced by PK defined in (2.9)
(see [14] for more details), and ρ = 1/α. The iteration is stopped if the relative difference of
two consecutive iteration is smaller than 10−5.

Example 5.1. Consider problem (5.1)-(5.2) with α = 0.1,~b = (2, 3), a = 2 and ε = 10−3.
The admissible set K = {v ∈ U, v ≥ 0}. To examine the convergence properties of the discrete
scheme presented in this paper we use the smooth solution

y = 100(1− x1)2x2
1x2(1− 2x2)(1− x2),

p = 50(1− x1)2x2
1x2(1− 2x2)(1− x2),

u = max{0,−p/α}.

to problem (5.1)-(5.2), where the corresponding source functions f and y0 are obtained by in-
serting y, p, u into the optimality system (2.6)-(2.7) and (2.10).

In this example, the numerical solutions are computed on a series of triangular meshes, which are
created from consecutive global refinement of an initial coarse mesh. At each refinement, every
triangle is divided into four congruent triangles. Table 5.1 displays the errors of ‖ y − yh ‖∗,Ω,
‖ p − ph ‖∗,Ω and ‖ u − uh ‖0,Ω, where Dofs denotes the number of nodes in the meshes. It is
shown in Table 5.1 that

‖ y − yh ‖∗,Ω + ‖ p− ph ‖∗,Ω= O(h
3
2 ),

‖ u− uh ‖0,Ω= O(h2),

which are in coincidence with (and better than) our theoretical results on a priori error estimates
presented in Section 3.

Table 5.1: Convergence results on uniform mesh.

Dofs || y − yh ||∗,Ω order || p − ph ||∗,Ω order ‖ u − uh ‖0,Ω order

41 5.682e-001 2.332e-001 2.702e-001

145 2.050e-001 1.47 8.121e-002 1.52 7.748e-002 1.80

545 7.302e-002 1.49 2.883e-002 1.49 1.992e-002 1.96

2113 2.594e-002 1.49 1.030e-002 1.49 5.031e-003 1.99
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Table 5.2: Convergence results on uniform mesh.

Dofs || y − yh ||∗,Ω order || p − ph ||∗,Ω order ‖ u − uh ‖0,Ω order

41 5.636e-001 2.341e-001 2.548e-001

145 2.052e-001 1.46 8.132e-002 1.53 7.962e-002 1.68

545 7.334e-002 1.48 2.883e-002 1.50 2.356e-002 1.76

2113 2.608e-002 1.49 1.030e-002 1.49 7.089e-003 1.73

Let us recall the results obtained by the fully discrete approaches (see, e.g., [3, 29]), where
discrete controls are sought in a finite dimensional finite element space Kh ⊂ K. It has been
proved there that ‖ u − uh ‖0,Ω= O(h) for piecewise constant approximations of the control,
and ‖ u−uh ‖0,Ω= O(h3/2) for piecewise linear approximations of the control. In the piecewise
linear case, the convergence order is only O(h

3
2 ) instead of the optimal order O(h2). This

is caused by the fact that u may not be smooth near the free boundary even if y and p are
smooth there. The numerical results demonstrate above results (see [29]). In order to show
the comparison, we present another convergence result in Table 5.2, where uh is the standard
piecewise linear, continuous finite element function, and the projection is chosen as QK , where
v = QK(w) for given w is the conforming piecewise linear finite element function with nodal
values vi = max{ua,min{w(xi), ub}}. Comparing the results of Table 5.1 with Table 5.2, it
turns out that the scheme using variational discretization approximates the control u better
than the standard method.

We present the numerical results for a priori error estimate in Example 5.1. In the next
example, we will show the numerical results for a posteriori error estimate.
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Fig. 5.1. Left: The surface of the state y; Right: The adaptive mesh for the state y.

Example 5.2. Consider problem (5.1)-(5.2) with α = 0.1,~b = (2, 3), a = 1, ε = 10−4. The
exact solutions are taken as

y =
2
π

(
tan−1(100(−0.5x1 + x2 − 0.25))

)
,

p = 16x1(1− x1)x2(1− x2)
(

1
2

+
1
π

tan−1
(
200(

1
16
− (x0.5)2 − (x2 − 0.5)2

))
,

u = max
{
− 5,min{−1,−p/α}

}
,

and the corresponding source terms f and y0 again are obtained by inserting u, y, p into the
associated optimality system.
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Fig. 5.2. Left: The surface of the adjoint state p; Right: The adaptive mesh for the adjoint state p.
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Fig. 5.3. Left: The numerical solution yh; Right: The numerical solution ph.

It should be pointed that y does not satisfy homogeneous Dirichlet boundary conditions.
Clearly the state y develops steep gradients along the line x2 − 0.5x1 − 0.25 = 0, the adjoint
state p develops steep gradients along the circle

1
16
− (x1 − 0.5)2 − (x2 − 0.5)2 = 0,

and the singularity of u is similar to p. The purpose of this example is to show that the
constructed error estimators are able to detect these areas containing steep gradients. In this
example, the adaptive mesh refinement is applied for the finite element approximation. We
use η2

1 + η2
2 and η2

3 + η2
4 as the indicators to construct the adaptive finite element mesh Th for

the state y and the adjoint state p, respectively. Fig. 5.1 shows the surface and the adaptive
mesh of the state y. Fig. 5.2 displays the surface and the adaptive mesh of the adjoint state
p. Numerical solutions yh and ph are presented in Fig. 5.3. The adaptive meshes in Figs. 5.1
and 5.2 are obtained with the indicators η2

1 + η2
2 and η2

3 + η2
4 , respectively, while the adaptive

mesh in Fig. 5.4 is obtained with the whole estimator
∑4

i=1 η2
i . It is shown that the y-mesh

and p-mesh adapt the areas with steep gradients very well. Furthermore, Table 5.3 presents the
comparison of the errors of the state y, the costate p and the control u on the uniform mesh
and the adaptive mesh. The error of y− yh, p− ph and u− uh on the adaptive mesh with 1174
nodes is similar to the error on the uniform mesh with 2113 nodes. It can be deduced from
Table 5.3 that substantial computing work can be saved by using the adaptive finite element
method.
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Fig. 5.4. The adaptive mesh for both yh and ph.

Table 5.3: Comparison of the error of y, p and u on uniform and adaptive meshes.

uniform mesh, nodes=2113 adaptive mesh, nodes=1174

‖ y − yh ‖0,Ω 3.259e-002 1.492e-002

‖ p − ph ‖0,Ω 1.100e-002 1.589e-002

‖ y − yh ‖∗,Ω 6.191e-002 3.891e-002

‖ p − ph ‖∗,Ω 4.213e-002 4.593e-002

‖ u − uh ‖0,Ω 7.245e-002 9.854e-002

Fig. 5.5 clearly shows that the active set crosses element edges and is not restricted to finite
element edges by our variational discretization for control u.

6. Conclusions

In this paper, we discuss variational discretization for the constrained optimal control prob-
lem governed by convection dominated diffusion equations based on the edge stabilization
Galerkin method. With this concept the control is discretized implicitly by a projection op-
erator instead of using the finite element method as in the standard discretization scheme.
We provide a priori and a posteriori error estimates and construct appropriate error estima-
tors, which we apply for adaptive mesh refinement. Two numerical examples are presented to
demonstrate our theoretical results. Among other things our numerical results show that the
our new scheme improves the quality of the approximation, especially close to the boundary of
the active set corresponding to the control constraints.

There are still many important issues related to optimal control governed by convection
dominated diffusion equations to be addressed, such as optimal control governed by nonlinear
problems, the handling of state constraints, and the numerical and theoretical investigation of
optimal control problems governed by evolution convection dominated diffusion problems.
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