Journal of Computational Mathematics, Vol.27, No.2-3, 2009, 299-314.

AN ANISOTROPIC NONCONFORMING FINITE ELEMENT
METHOD FOR APPROXIMATING A CLASS OF NONLINEAR
SOBOLEV EQUATIONS"

Dongyang Shi and Haihong Wang
Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China
Email: shi_dyQzzu.edu.cn, wath777@163.com
Yuepeng Du
Department of Computer, Nanyang Institute of Technology, Nanyang 473004, China
Email: nitduyp@163.com

Abstract

An anisotropic nonconforming finite element method is presented for a class of nonlinear
Sobolev equations. The optimal error estimates and supercloseness are obtained for both
semi-discrete and fully-discrete approximate schemes, which are the same as the traditional
finite element methods. In addition, the global superconvergence is derived through the
postprocessing technique. Numerical experiments are included to illustrate the feasibility
of the proposed method.
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1. Introduction

Consider the following nonlinear Sobolev equations [1]

V- (a(u)Vuy) = V- (b(u)Vu) = f(x,t), xeQte(0,T],
w(xt) = 0, x €00t e [0,T], (1.1)
(X, 0) = U()(X), X € Q,

where x = (z,y), Q is a bounded convex domain in R?, V and V- denote the gradient and the
divergence operators, respectively; a(u) = a(x,t,u) and b(u) = b(x,t,u) depend on x, ¢t and w.
In (1.1) and below, for notational convenience, we drop the dependence of these coefficients on
x and ¢. Furthermore, we assume that a(u) and b(u) satisfy the following properties as [2]

(i) There exist constants ag, a1, by and by, such that
0<ag < a(u) <a;, 0< by < b(u) < by. (12)

(ii) Both a(u) and b(u) are globally Lipschitz continuous in wu, i.e., for some constants C¢,
they satisfy

|€(u1) = §(u2)| < Celur —wa|, wr,uz € R, {=a,b. (1.3)

In addition, a(u) and b(u) are twicely continuously differentiable with respective to w.
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It is known that Sobolev equations have important applications including the flow of fluids
through fissured rock, the transport problems of humidity in soil, thermodynamics etc. Many
studies have been devoted to conforming finite elements. For example, for linear case, [3] con-
sidered the first-order generalized difference scheme and gave LP-norm and W!P-norm error
estimates by means of the Ritz-Volterra projection; [4] studied two least-squares Galerkin finite
element schemes, which yielded the approximate solutions with optimal accuracy in (L?)? x L?
norm and the first-order and second-order accuracy in time, respectively; [5] proposed an H!-
Galerkin mixed finite element method and established optimal error estimates for the semi-
discrete scheme and fully-discrete scheme. For nonlinear case, [6] gave finite difference stream-
line diffusion schemes with convection dominated term, and derived the stability and optimal
error estimates; [7] considered the time stepping along characteristic finite element methods,
and demonstrated optimal convergence rate in the sense of H! and L?; [2] presented discontin-
uous Galerkin method with penalties and derived L>°(H1) error estimate for the semi-discrete
scheme and L*°(H!) and L?(H") for the fully-discrete scheme.

However, there are still some defects in the work mentioned above. On the one hand,
although the detailed and systematic theoretical analysis were given in [2-7], there were no
numerical tests except [4] in one-dimension. On the other hand, to the best of our knowledge,
all the known results in the literature are based on the classical regularity assumption or quasi-
uniform assumption on the meshes, i.e., there exists a constant C' > 0, such that for all element
K, hx/px < C or h/hmin < C, where h = m}gxh;(,hmin = m];nhK, hx and pg are the

diameter and the superior diameter of all circles contained in K, respectively (see [8] for details).
However, in some cases, the solutions of some elliptic problems may have anisotropic behavior
in some parts of the solution domain. This means that the solutions only vary significantly
in certain directions. An obvious idea to reflect this anisotropy is to use anisotropic meshes
with a finer mesh size in the direction of the rapid variation of the solution and a coarser mesh
size in the perpendicular direction. Besides, some problems may be defined in narrow domain,
for example, in modeling a gap between rotator and stator in an electrical machine, the cost
of calculation will be very high when the regular partition is employed. Therefore, it is a
better choice to employ anisotropic meshes with few degrees of freedom to overcome the above
difficulties. Because the anisotropic elements K are characterized by hyi /px — 0o when the
limit is considered as h — 0, the well-known Bramble-Hilbert lemma can not be used directly
in estimating the interpolation error. At the same time, the consistency error estimate, the key
of the nonconforming finite element analysis, will become very difficult to be dealt with, for
there will appear a factor |F'|/| K| — oo when the estimate is made on the longer sides F of the
element K. It means that the traditional techniques for finite element analysis are no longer
valid.

Recently, there have appeared some studies focusing on the study of convergence, super-
closeness and superconvergence of anisotropic finite element methods. Both conforming and
nonconforming finite elements have been applied to some linear problems, we refer to Acosta
[9-10], Apel [11-13], Duran [14] and Shi [15-25]. Whether the results of the above literature are
valid for nonlinear problems with anisotropic nonconforming elements remains open.

The purpose of this paper is to apply an anisotropic nonconforming finite element method
to (1.1). Firstly, we consider both semi-discrete and backward Euler fully-discrete schemes and
obtain the optimal convergence estimates. By virtue of the special property of the element and
the postprocessing technique, the supercloseness and superconvergence are obtained. Secondly,
we carry out some numerical tests to examine the numerical performance of the element with
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anisotropic rectangular meshes.

The outline of this paper is as follows. In Section 2, we briefly introduce the construction
of a Crouzeix-Raviart type nonconforming element possessing the anisotropic property [21].
In Sections 3 and 4, the existence and uniqueness of the approximate solution, the optimal
error estimates and superclose result are derived for the semi-discrete scheme and fully-discrete
scheme, respectively. In Section 5, we present the superconvergence results. In the last section,
some numerical examples supporting our theoretical results are given.

2. Construction of Nonconforming Finite Element

Let K = [~1,1] x [~1,1] be the reference element in the i-j plane with vertices a; =
(—17 —1), &2 = (1, —1), dg = (1, 1) and &4 = (—1, 1) Let ll =
ly = a4a1 be the four edges of K. We define the finite element

&1&2, i2 = dgdg, 23 = d3&4 and
(K, P,%) (see [25-26]) as

Y= {60;ﬁ17®27®37@4}a p = span{l,:%,g,cp(:fc), @(g)}a

where

1 1 1
o(t) = =(3t* — 1), @Ozf/ vdidy, ;= — /ﬁd§, i=1,2,3,4.
2 |K| K I

|l

The interpolation defined above is properly posed and the interpolation function can be
expressed as

—

NP NN NEVIPICRIE P N n
(02 = 04)2 + 5(03 — 1) + 5 (02 + 04 = 200)p(2) + 5 (05 + 01 — 200)(§)-

19 =ty + 5

N | =
o}

It has been proved that the above interpolation operator has the anisotropic property [19], i.e.,
for multi-index a = (o, @2), when |a| = 1, there holds

|D(6 — I'0)|lg g < C|ID*D|, g, Vi € HX(K). (2.1)

For the sake of simplicity, let Q C R? be a polygon domain with edges parallel to the
coordinate axes, Jn be a rectangular subdivision of {2, which does not need to satisfy the above
regularity assumption or quasi-uniform assumption. Given K € [J,, denote the barycenter of
element K by (xx,yx ), the length of edges parallel to z-axis and y-axis by 2h, 2h, respectively.
Then there exists an affine mapping F : K—K

Y =YK +hy?j

The associated finite element space V), ¢ H(Q) is defined as
‘/}l:{v;le:ﬁoFKl,ﬁEP,/ ’UdSZ/ ’UdS7
KNOK K'NOK'
if K, K' are adjacent; and / vds = 0} .
dKNIN

The interpolation operator Ij, : HY(Q) — V}, is defined as

Inlx = Ix, Ixgv=(I0)oFg', Yve HY(Q). (2.3)
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3. Anisotropic Error Estimates for the Semi-Discrete Scheme

In this section, we discuss the error estimates and superclose of the semi-discrete scheme for
(1.1) on anisotropic meshes.

For our subsequent use, we employ the classical Hilbert Sobolev spaces W™?(Q) with a
norm || - |[mp. L2(2) denotes the set of square integrable functions on Q with its norm || - ||.

Then the corresponding weak formulation of (1.1) is: Find u: (0,7] — HJ(£2), such that

(a(u)Vug, Vo) + (b(w)Vu, Vo) = (f,v), Vv € HJ(Q), (3.1)
u(x,0) = up(x), x € (L ’
The Galerkin approximation to (3.1) reads as follows: Find up: (0,7] — V4, such that
(a(un)Vune, Vor), + (b(un)Vun, Vo), = (f,vn),  VYon € Vi, (3.2)
up(x,0) = Thuo(x), x € (), ’

where (-, ), = ZKEJ;L(W ).
Theorem 3.1. Problem (3.2) has a unique solution.

Proof. Let the basis functions in V}, be denoted by ¢;(x),i = 1,---,r. Then u; can be
expressed as

T
Up = th(t)(bz(x)a (Xv t) € x (OvT] (33)
i=1
For j =1,---,r, we take v, = ¢,(x) in (3.2) and utilize (3.3) to see that, for ¢ € (0,77,
dH (t)
A——=+BH(t)=F
@ PHO=E (3.4
H(0) = H,,

where Hj is given, and

T

H(t) = (ha(t), - he(1) " A((a(zm(t)@)v@si,wj)) ,

=1 TXT

B= ((b(ihi(t)@)v@av%)h) o F=((f,65),:

rXr

Since (3.4) gives a system of nonlinear ordinary differential equations (ODEs) for the vector
function H (t), by the assumptions on a,b and the theory of ODEs, it follows that H(¢) exists
and is unique for ¢ > 0 (see [27]). Therefore the proof is complete. O

The following lemma on anisotropic meshes will play an essential role in our analysis and
can be found in [25].

Lemma 3.1. Suppose u,u; € H*(Q),uyy € H () and Iy, is the interpolation operator defined
n (2.2) of u. Then there hold

(V(u — Thu), Vvh)h =0, ||Uh|| < C||’U}l||}l, Yy, € Vy, (3.5)
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and
||U - Ihu|| < Ch2|U|27 ||Ut - IhUtH < Ch2|ut|27 ||Utt - Ihutt” < Ch|utt|17 (3 6)
llu = Inulln < Chlulz, |[us — Tnui|[n < Chlugla,
where )
1
2
[ lln = ( PONE |1K> -l = </(',')2d$dy) :
KeJgn Q
Moreover, we have
Lemma 3.2. If u,u; € H*(QY), then for all v, € Vj, there hold
> [ awSrtonds| < Chljuraljnl (37)
Keg, 9K
> / —vh ds| < Chllull2|[vn]|s- (3.8)
Keg, /oK
Furthermore, if u,us € H3(SY), then for all v, € Vj,, there hold
)> / ) 258, ds| < R (5:9)
Keg, /0K
Z —’Uh ds| < Ch2||ul|s||vn]|n- (3.10)
KeJn

Proof. Here we only give the proof of (3.10); and (3.7)-(3.9) can be proved similarly. For
two adjacent K, K’ € Jy, we have

ou
8nK

= —Poﬂ'b(u) Ou

Po,ib(u) anK/

= constant,

where Py ;w = \117,| J; wds, 1 <i < 4. Therefore

Z Z/ ]D()Z 7P07ﬂ)h)d8

KeJy, i=1

ZZPM 8 / — Py vp)ds = 0.

KeJy i=1

Similarly, since

ou ou
Poivn|k = Poivn|kr = constant, Py vplea =0, b(u)% = —b(u Trmes”

we have

ZZ/ POthdst

KeJy, i=1
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Consequently,
Z Z/ b(u —vh ds
KeJy i=1
_ Z Z </ PO i ?(Uh — Poﬂ-vh)ds —+ /l b(u)%’uh ds — /l b(u)%Po’i’Uh dS>
Ke Ih i=1 ki i i
-3 Z ~ Pybu )8“)(%7130 on)ds = 24:1-
7 on N : (2]
KeJy i=1 KeJy i=1
where

ou ou .
Ii/li(b( )58~ Posblu)s ) (un — Pojon) ds, 1<i<4.

Therefore I 4+ I4 can be expressed as

yicthy ou 1 fusth ou
I+ 1s = /W_hy (b5 @+ hasy) - %/y b(u) =) (@ + he.y) dy

1 Yy +hy
: [Uh(xK + hzay) /

2hy yr—hy

Yr+hy ou 1 yr+hy ou
_ /yK_hy [(b(u)ax)(m[{ h/a:ay) - % /yK_hy (b(u)%)(l’[{ - hzay) dy:|
1 yx+hy
[onten ~ haw) - 5 [

K—hy

vp(rg + hz,y)} dy

on(wic = hayy)| dy. (3.11)
2hy yx —hy
Since 5 5
v v
a—zh(fK + hay 2) = a—;(JUK — ha, 2),
we have
1 yr+hy
'Uh(xK‘i‘h:cvy)_—/ vp(TK + hayy) dy
2h yr—hy
1 Yy +hy Y Oy,
— (xx + hsy2)dz
2hy Yy —hy t aZ ¥
1 Yr+hy
= 'Uh(wK - hxa y) ~ 57 / ’Uh(IK - hl‘a y) dy (3'12)
2hy yr—hy
Note that

ou 1 yxthy ou
(b(u)az)(x;( + ha,y) — W/yk—hy b(u)g)(fﬂl( + ha,y) dy

ou 1 yrthy ou
- (o) 55 (e = het) + - /W 00 e~ ey dy
Y+

hy zrthe 02%u Ou 3u
ﬁ vic—hy dt/ dz/ “8 28z+ (u)8m28z
ou ., 0u 8%u Ou
+ (b(u))uu(%)Q— +2(b

5, T2 (U))umg)(%z) dz. (3.13)
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Using similar estimates of [25], we have

yr+h 1 yr+h 2
/y |:'Uh(xK+hx7?])_ﬂ/y vp(rr + hae,y)dy| dy < 30,

K—hy K—hy

yHé)vh

For notational convenience, let

82w Ou 93u 6’& 6’& u du

Applying Holder inequality yields

Yr+hy yx+hy Y Tr+he 2 4 )
/ [/ dt/ dz/ ﬁdI] dy < Chah||BI15 -
yx—hy LJyx—h, ¢ T —ha

16,
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(3.14)

(3.15)

(3.16)

Substituting (3.12)-(3.16) into (3.11), and applying Cauchy-Schwartz inequality, we have

[la + Ly] < ChQH—Ho K

v 3u 0%u Ou
n [| o+

o 20_y| 0,K
H(a“) 200+ Hﬂ%
Or 8y 0zxdy Oy 0.K
Similarly, we obtain
avh Bu 9%u Ou
2
o+ 1l < O G2 o I o + 1 5 5 ok
8u 2 0u 0*u du
G Gl + e Sl |
It follows from (3.17)-(3.18) that
—’Uh ds
‘K;? /8K on
<O (h2 4+ h2) (Jul + lulz + |uls) [[onlln < Ch?|[ulls]|val|n,

K

which completes the proof.

Based on Lemmas 3.1-3.2, we have

(3.17)

(3.18)

Theorem 3.2. Assume that u and up are the solutions of (3.1) and (3.2), respectively. If

u,uy € H?(Q), then

u— unln < ch<lu|2 + [/Ot (a3 + llu(r)I[3) dr| )

Moreover, if u,u; € H>(Q), then
1
2

[Hnu = up[n < Ch2</0 (lu(r)I5 + IIUt(T)II§)dT>

(3.19)

(3.20)
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Proof. Let uw —up = (u — Inu) + (Inu — up) =: n+ 6. It is easy to see that for all v, € Vj,
there holds the following error equation

(a(uh)VHt, Vvh)h + (b(uh)VH, Vvh)h
= —((a(u) - a(uh))Vut, Vvh)h — ((b(u) — b(uh))Vu, Vvh)h — (a(uh)Vnt, Vvh)h
8ut ou
— (b(un) V), Vur), + Z a(u)a—vh ds + Z b(u)a—vh ds. (3.21)
Keg, K " Keg, 9K "
Firstly, by (1.2), we have
b d
2 dt
Secondly, Lemma 3.1, (1.2), e-Young inequality and Cauchy-Schwartz inequality imply that

‘ ((a(u) — a(up))Vuy, V9t>h‘
< Callullwr. @) (IInll + NOIDIIVO:| < C (Inl]* +[[VO][?) + e[| VO] (3.23)

(a(un)V0:,V0;), + (b(un)V0,V0;), > aol|VO|]* + Vo[> (3.22)

Similarly,
[((6(w) = blun)) Ve, V8, ) | < C (Inlf? + [IVO]12) + =] |01 (3.24)

Applying (3.7), (3.8) and e-Young inequality to yield

ou aut

KeJn KeTdn
< OR? ([[uell3 + [[ull3) + e[|V [*. (3.25)

With properly small e, substituting (3.22)-(3.25) into (3.21) with v, = 6, gives
d
V6% + [Vl
< C (21wl 3 + W2 Jull3 + lInl|? + V]| + 1Vmel 2 + 1V0][2). (3.26)

Integrating both sides of (3.26) from 0 to ¢, and noticing that 6(0) = 0, we obtain
t
1901 < € [ (k2 + 21l + P+ 191 + 9]+ VoI )ar. (3.27)

Here, we have omitted a positive term ||V6;||> on the left hand of (3.27) in order to coincide
with the following analysis. Then applying Gronwall lemma and (3.6), we have

e / (P2l (I3 + B2 ()13 ) dr. (3.28)

By the triangle inequality and Lemma 3.1, we get (3.19).
On the other hand, by Lemma 3.1, we have

|(a(un) Ve, V0:), — (b(un)Vn, V0,), |
= |((atuwn) = @) Ve, V6:) = ((b(un) = b)) V1, V1) |
< CR? ([[Vnel P + 1V [?) + e[V %, (3.29)
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where

1 —_— 1
alup) = W/Ka(uh)da:dy, b(up) = W/Kb(u}l) dz dy.

Similarly, with sufficiently small €, we have
t
161> < c/o (P llul 3+ B lel3 + 2192 + Il + 10112 + 52 Vel 2) dr

The estimate (3.20) follows by the triangle inequality and Lemma 3.1. O

Now we give the following estimate in L2-norm.

Theorem 3.3. Let u and uy, be the solutions of (3.1) and (3.2), respectively. Foru,u; € H3(2),
we have

o=l < 002l + ([ (ol + ) o) (3.30)

Proof. Similarly to the proof of Theorem 3.2, we choose vp, = 6 € V}, in (3.21). Using
Lemmas 3.1-3.2 and e-Young inequality gives

d
—[Ivol* < C(||77||2 + RVl + (VO[> + B[ Vel * + 2l 5 + h4||ut||§>- (3.31)
Integrating both sides of (3.31) from 0 to ¢ and noticing that #(0) = 0 yield
t
V61 < C [ (Il + VO + BTl + WV 4+l + )
By Gronwall lemma and Lemma 3.1, we obtain
t
]| < C|[vo)* < Cnt / (llue(DIE + lu()|13) dr. (3.32)

Finally, applying the triangle inequality and Lemma 3.1, we complete the proof. O

4. Backward Euler-Galerkin Scheme

In this section, we consider a backward Euler-Galerkin scheme for (1.1) and present the
corresponding optimal error analysis.

Let At and up(t,) € Vi, be the time step and the approximation of u(t) at time ¢ = t,,
respectively. The time discretization scheme will be established with the backward difference
quotient

Uh(tn) - uh(tnfl) )

5tuh(tn) = At

On time level ¢ = t,,, we can rewrite (3.2) as

{ (a(u (tn )5tVuh(tn),V’uh)h + (b(uh(tn))Vuh(tn),Vvh)h = (f(tn),vn), Yun €V, (4.1)

n(tn)
Uh(()) = Ihu(())
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Theorem 4.1. Let u(t,) and up(t,) be the solutions of (3.1) and (4.1), respectively. Suppose
that w, ug, uy € H3(Q), then the following error estimates hold

[Mhu(tn) = un(tn)lln

<on( /Ot"<||ut<r>||§+||utt<r>||§+||u<r>||§>df) r et / unRar) . 42)

lu(ta) —un(t)l < CR2S [ fue@adr + ([ (B + @B + lla()B) dr ’
0 0

+ |u0|2} + C(At)(/otn g (7)) dT) ° (4.3)

[u(tn) = un(tn)ln < Ch (eI + e ()IE + () By dr )
0

+ o2 +/Ot” |ut(7')|2d7'} +C(At)(/0t” |utt(r)|§dr) § (4.4)

Proof. Set u(t,) — un(tn) = (u(tn) — Inu(tn)) + (Inu(tn) — un(tn)) = n™ 4+ 6™. There holds
the following error equation for all v, € V3

(a(uh)étVH”, Vvh)h + (b(uh)VH”, Vvh)h
- (a(uh)R"7Vvh) — ( a(u) — a(uh))Vut(tn) Vvh) — ((b(u) — b(uh))Vu(tn),Vvh)h

— (b(un) V"™, Von), Z / 0ut hds + Z / Uh ds, (4.5)
Keg, 9K KETn
where
R"™ = 0I5 Vu(t,) — Vug(t,) = 0:Vn™ + 0;Vu(t,) — Vug(t,)
= —é tjnl Vne(r)dr — E/ / Vu (o) do dr. (4.6)
By the property (1.2), we get
(a(un)0, Vo™, V@”)h + (b(up)VO", VH")h
> ag(20) 7 ([IVO" = 196" 4 [[V0" = VO |) bl [ VO"IP. (47)
Applying the Cauchy-Schwartz inequality and e-Young inequality yields
[(a(un)R"™,VO"), |
< C[Alt /1t V(7)) [2dr + Ot /tt" ||Vutt(r)||2d7'} T | |v6n . (4.8)

It follows from the assumption (1.3) and e-Young inequality that

‘ ((a(u) — a(up)) Vg, V@")h — ((b(u) — b(un)) Vu, Vﬂn)h‘
< C(I"I12 + 1V0"[2) + ¢l 76" 2. (4.9)
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Similarly, by (1.2) and e-Young inequality, we obtain

|(b(un) V™, V0"™), | < ClIVn"|]* +¢|[VO"]|. (4.10)
By using (3.7) and e-Young inequality, we get

0ut n 0u n g
Z/aK 9d+Z/M dultn) ,

‘KEJ} KeJn
< Ch?|[us(tn)|5 + Ch?[Ju(ta)| |3 + el [VO" . (4.11)

Combining the above inequalities from (4.7) to (4.11) with vy, = 0™ in (4.5) , and choosing ¢
small enough, we can derive

tn
VO [[2 = [[VO" 1] <C(A) {/ (AEHIVn(n)I[? + Atl[Vure(7)[2) dr + [

tn—1

+ V" 17 + V0”1 + b2l ()15 + hQIIU(tn)Ilg] - (4.12)

Summing up form ¢ = 1 to n, applying Gronwall lemma and noticing that 8(0) = 0, we obtain

n

Ve[| < C(At) {Z (' 1P+ I+ B2 [Jue (£)]13 + hQIIU(ti)H%)]

" 2 2 2
o [T UvnP + 20 vuan|) ar . (@13)

By the integral technique, we have

n

S (e ()13 + )| 13)

< At[ [ el + s B + 1) 1) df] (4.14)

The result (4.2) follows from triangle inequality and Lemma 3.1.
Now we begin to analyze (4.3) and (4.4) by using the technique of [1]. Since

|(a(un)R",V6"), |
B ‘ R Ait/t 7 ((atun) — alwn)) Vi (r), v8") dr
i/tn /t” (a(Uh) *M)Vutt(s)vvgn)hds dr
/ a(un) Vuu(s (s),V0"), dsdr

tn—1

h2
< V(e >||2+At||wtt<7>||2) dr + £||Vo"| 2. (4.15)

tn
gc/
tr—

n—1

and

| (b(un) V", V6"), | = |((b(un) = Bun)) V", V6" ) |
< CR2||Vn"||* + €||Vo"| 2. (4.16)
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By (3.9) and (3.10), we get

—9”d + / —9” ‘
PyRE >/,

§C’h4||u1t||§+C’h4||u||§+€||Vt9”||2. (4.17)

Substituting (4.7),(4.9) and (4.15)-(4.17) with v, = 6™ in (4.5), and choosing properly small ¢
to yield

t 2
_ " rh
V6" |2 = [[V6" 12 <C(at) [/ (S IV + 28 Tuar(p)]2) dr + |
+ RV 4 [[VOP A+ B a5 + h4IIUII§]- (4.18)
Similarly, by summing up n and using Gronwall lemma, we have

V6|12 < C(at) [Z I + B2+ B )] + h4||u<ti>||§]

i=1
tn

+C’</ ||Vnt(7)||2+At2||Vutt(T)||2dT>. (4.19)
0

Noticing that

n tn
>~ (el + ut)13) < C(a) / (1sel 13 + el 13 + 13 ) ar
=1

by Lemma 3.1, we obtain

167[] < ClIVo™||

<c|ie( /Ot"<||u<r>||§+||ut<r>||§+||utt<r>||§>dT) v / e ar) | 20

1
2

Using the triangle inequality together with Lemma 3.1 leads to the desired results. (|

5. Global Superconvergence

Let Jop = {k } be an rectangular partition of Q parallel with axis. Dividing each K into
four equal rectangles yields the new rectangular anisotropic partition Jp of 2. That is to say,
K = Ule Ki,K; € Ju(i = 1,2,3,4). Let Ly, Ly, Ly and Ly be the four edges of K. In order
to get the superconvergence result, we construct the following post-processing interpolation
operator 2, on K as follows (see [23])

Bz € Po(K), VK € Jop,
2 _ S
/Li(IQhUU)dso, i=1,2,3,4, (5.1)

/ (IZ,u —u)dedy =0, / (I3, u—u)drdy =0, YK € Jop,
K1UK3 KoUKy

where Pg(f( ) denotes the set of polynomials of degree 2.
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Ly
K ~ Ko
L4 = L2
Ky K3
Ls

Fig. 5.1. Illustration of an element K which consists of four small elements.

Lemma 5.1. ([23]) On the anisotropic meshes, for all u € H3(Y), the interpolation operator
12, satisfies
Bplnu = Iyu,  |[13u—ullp < Ch?luls, (5.2)
13,000 < Cllvlln, Vv € Vi

Theorem 5.1. Under the assumptions of Theorems 3.2 and 4.1, we can get the following global
superconvergence result

t .
o= Buunlh < 82l + [ Qe + o By ar) . (5.4)

Proof. Note that
IZup —u = I3 up — o, Inu + I3, Thu — . (5.5)

By (5.2), we obtain
122, — wll = |2y — ulln < CH2Juls. (5.6)

Consequently, it follows from (5.3) that

| Ly un — I3, Inul|n

= |3, (wn, — Inu)||n < Cllup, — Inul|n
< ch2[||u||3 ; ( [ i+ ||u<r>||§>drﬂ. (5.7)

Thus we can get the desired result via (5.5)-(5.7). O

6. Numerical Experiments

In order to illustrate our theoretical analysis in previous sections, we carry out two numerical
simulations using the nonconforming finite element for the nonlinear Sobolev equations (1.1).

Experiment 1. Given a(u) = sin(u) 4+ 1.01, b(u) = sin(u) + 1.01. Then the exact solution is
u=-¢clzy(l—x)(1—1y).

We consider two meshes on 2: Mesh 1 and Mesh 2 as shown in Fig. 6.1. Mesh 1 are square
meshes and Mesh 2 are rectangular meshes with n divisions along the z-axis and m divisions
along the y-axis, respectively, where n/m = 1/10.

The numerical solutions on Mesh 1 and Mesh 2 are plotted in Fig. 6.2, which are found in
good agreement with the exact solution.



312 D.Y. SHI, HH. WANG AND Y.P. DU

(a) (b) (c)
Fig. 6.1. (a) Mesh 1; (b) Mesh 2; (c) Mesh 3.

(a) (b)
Fig. 6.2. Experiment 1 at ¢ = 0.1: (a) exact solution; (b) FEM solution on Mesh 1; (¢) FEM solution
on Mesh 2.

f

f

B {«;‘:}}:‘ X .
b i
(b) o~ (c)

Fig. 6.3. Experiment 2 at ¢ = 0.1 and p = 0.02: (a) exact solution; (b) FEM solution on Mesh 1; (c)
FEM solution on Mesh 3.

Experiment 2. Given a(u) = sin(u) + 1.01, b(u) = sin(u) 4+ 1.01. Then the exact solution is
u= eyl — )1 )1~ e F) 42l — )1 )1~ e H)]

When p is small enough, the exact solution varies significantly near the boundary of the domain.
We denote the boundary layer of the two edges of Q (z = 0 and y = 0) by (0,0.1) x (0,1) and
(0,1)x(0,0.1)), respectively. Each boundary layer is divided into n segments with 0.5n segments
in [0,0.1] and 0.5n segments in [0.1,1.0]. Here we consider y = 0.02.

The numerical solutions on Mesh 1 and Mesh 3 are shown in Fig. 6.3, where Mesh 3 gives
refined mesh near the layers. It is clear that Mesh 3 gives better numerical solution.

In Tables 6.1-6.3, up, and Iu denote the finite element solution of problem (3.2) and the
interpolation of u; o and Ighuh represent the average convergence order and the post-processing
interpolation of up,, respectively.

Tables 6.1 and 6.2 give the numerical errors obtained for Experiment 1 using Mesh 1 and
Mesh 2. As the exact solutions are smooth, as expected that both meshes yield similar accuracy.

In order to show the good performances of anisotropic meshes, we give a comparison of the
numerical results of Experiment 2 on Mesh 1 and Mesh 3 at ¢ = 0.1. Tables 6.3 and 6.4 present
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Table 6.1: Numerical results of Experiment 1 on Mesh 1 at ¢t = 1.

313

nxm 4 x4 8x8 16 x 16 32 x 32 a
[lu — un|n 0.0929514859 | 0.0462722597 | 0.0231269933 | 0.0115600372 | 1.0024439624
[lu — unl| 0.0068196986 | 0.0016830983 | 0.0004311137 | 0.0001044366 | 2.0096695597

[[{nu — un|ln

0.0227032573

0.0054598915

0.0014208785

0.0003339775

2.0290015259

llu — I3, un]|n

0.0928848664

0.0252562833

0.0064488990

0.0016152231

1.9485460686

Table 6.2: Nume

rical results of Experiment 1 on

Mesh 2 at ¢t = 1.

nxm 2 x 20 4 x 40 8 x 80 16 x 160 «a
[luw — un|n 0.1231389904 | 0.0647267605 | 0.0323633802 | 0.0161816901 | 0.9759511473
[lu — unl| 0.0080782671 | 0.0020553902 | 0.0005138475 | 0.0001284618 | 1.9915448421

[[{nu — un|ln

0.0361811121

0.0091947673

0.0022986918

0.0005746729

1.9921173084

llu — I3, un]|n

0.1239241398

0.0317862127

0.0079465531

0.0019866382

1.9876614255

Table 6.3: Numer

ical results of Experiment 2 on Mesh 3 at ¢t = 0.1.

nxXm 8§ x 8 16 x 16 32 x 32 64 x 64 o
[l — un|n 0.2717014445 | 0.1334134968 | 0.0663179095 | 0.0331020769 | 1.0123428636
[lu — unl| 0.0038727749 | 0.0009551080 | 0.0002389055 | 0.0000597034 | 2.0064700461

[[{nu — un|ln

0.0333197803

0.0066401811

0.0014492098

0.0003398491

2.2051135645

llu — I3y unl|n

0.3666523703

0.1195242932

0.0324563756

0.0084233402

1.8146255371

Table 6.4: Numer

ical results of Experiment 2 on Mesh 1 at ¢t = 0.1.

nxXm 8§ x 8 16 x 16 32 x 32 64 x 64 o
[luw — un|n 0.5486807867 | 0.3335207890 | 0.1289363686 | 0.0440594955 | 1.2128140581
[lu — unl| 0.0127328763 | 0.0030821459 | 0.0005954116 | 0.0001152333 | 2.2626188387

[[Tnu — un|[n

0.0127759516

0.0020869701

0.0006337161

0.0001467605

2.1479409198

llu — I3y unlln

0.5021471271

0.5368144150

0.3222638558

0.1170999050

0.7001234081

the numerical results at ¢ = 0.1 on Mesh 3 and Mesh 1, respectively. It is observed that the
numerical errors in Table 6.3 are smaller than those in Table 6.4; and the superconvergence
result in Table 6.4 is very poor. We conclude that when the solution varies significantly only
in certain directions, to use anisotropic meshes with a small mesh size in the direction of the
rapid variation of the solution and a larger mesh size in the perpendicular direction is indeed
a good choice. In other words, the quasi-uniform assumption in the traditional finite element
analysis is not appropriate.

It can be seen from the Tables 6.1-6.4 that on the anisotropic meshes, when h — 0, ||u—up||n,
llu —up]|, |[Inu — up||p and |Ju — I2, up||p converge at optimal rates of O(h), O(h?), O(h?) and
O(h?), respectively, which coincide with our theoretical predictions.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China No. 10671184.

References

[1] Q. Lin and N.N. Yan, Construction and Analysis for Effective Finite Element Methods, Baoding,
Hebei University Press, 1996.

[2] T.J. Sun and D.P. Yang, A priori error estimates for symmetric interior penalty discontinuous
Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), 147-



314

[19]
[20]
21]
[22]
23]
[24]
[25]
126]

27]

D.Y. SHI, HH. WANG AND Y.P. DU

159.

Y.H. Cao, The generalized difference scheme for linear Sobolev equationin in two dimensions,
Math. Numer. Sini., 27 (2005), 243-256.

H. Guo and H.X. Rui, Least-squares Galerkin procedures for Sobolev equations, Math. Appl. Sini.,
29 (2006), 610-618.

L. Guo and H.Z. Chen, H'-Galerkin mixed finite element method for the Sobolev equation, J.
Syst. Scie. and Math. Scie., 26 (2006), 301-314.

T.J. Sun and D.P. Yang, The finite difference streamline diffusion methods for Sobolev equations
with convection-dominated term, Appl. Math. Comput., 125 (2002), 325-345.

H.M. Gu, Charcteristic finite element methods for nonlinear Sobolev equations, Appl. Math. Com-
put., 102 (1999), 51-62.

P.G. Ciarlet, The Finite Element Method for Elliptic Problem, Amsterdam, North-Holland, 1978.
G. Acosta and R.G. Duran, The maximum angle condition for mixed and nonconforming elements:
Application to the Stokes equations, SIAM J. Numer. Anal., 37 (1999), 18-36.

G. Acosta, Langrange and average interpolation over 3D anisotropic meshes, J. Comput. Appl.
Math., 135 (2001), 91-109.

T. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element
method, Computing, 47 (1992), 277-293.

T. Apel, Anisotropic Finite Element: Local Estimates and Applications, Stuttgart Teubner, 1999.
T. Apel, S. Nicaise and J. Schéberl, Crouzeix-Raviart type finite elements on anisotropic meshes,
Numer. Math., 89 (2001), 193-223.

R.G. Duran and A.L. Lombardi, Error estimates on anisotropic @1 elements for functions in
weighted sobolev spaces, Math. Comput., T4 (2005), 1679-1706.

D.Y. Shi, S.P. Mao and S.C. Chen, A locking-free anisotropic nonconforming finite element for
planar linear elasticity problem, Acta. Math. Sci., 27B (2007), 193-202.

D.Y. Shi and Y.R. Zhang, Rectangular Crouzeix-raviart anisotropic finite element method for
nonstationary Stokes problem with moving grids, Acta. Math. Sci., 26 A (2006), 659-670.

D.Y. Shi, S.P. Mao and S.C. Chen, A class of anisotropic Crouzeix-Raviart type finite element
approximations to signorini variational inequality problem, Math. Numer. Sini., 27 (2005), 45-54.
D.Y. Shi and H.B. Guan, A class of Crouzeix-Raviart type nonconforming finite element methods
for parabolic variational inequality problem with moving grid on anisotropic meshes, Hokkaido
Math. J., 36 (2007), 687-709.

S.C. Chen, D.Y. Shi and Y.C. Zhao, Anisotropic interpolation and quasi-Wilson element for
narrow quadrilateral meshes, IMA J. Numer. Anal., 24 (2004), 77-95.

D.Y. Shi and H. Liang, superconvergence analysis of Wilson’s element on anisotropic meshes,
Appl. Math. and Meth., 28 (2007), 119-125.

D.Y. Shi and H. Liang, Superconvergence analysis and extrapolation of a new unconventional
Hermite-type anisotropic rectangular element, Math. Numer. Sini., 27 (2005), 369-382.

D.Y. Shi, S.P. Mao and S. C. Chen, Superconvergence analysis of ACM plate element on
anisotropic meshes, J. Comput. Math., 23 (2005), 635-646.

D.Y. Shi, P.L. Xei and S.C. Chen, The nonconforming finite element approximation to hyperbolic
integro-differential equations on anisotropic meshes, Math. Appl. Sini., 30 (2007), 654-666.

D.Y. Shi and L.F. Pei, Low order Crouzeix-Raviart type nonconforming finite element methods
for approximating Maxwell’s equations, Int. J. Numer. Anal. Mod., 5 (2008), 373-385.

D.Y. Shi, S.P. Mao, and S.C. Chen, An anisotropic noncomforming finite element with some
superconvergence results, J. Comput. Math., 23 (2005), 261-274.

Q. Lin, L. Tobiska and A.H. Zhou, Superconvergence and extrapolation of nonconforming low
order finite elements applied to the Poisson equation, IMA, J. Numer. Anal., 25 (2005), 160-181.
J.K. Hale, Ordinary Differential Equations, New York, Willey-Interscience, 1969.



