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Abstract

Projection methods are efficient operator-splitting schemes to approximate solutions of

the incompressible Navier-Stokes equations. As a major drawback, they introduce spurious

layers, both in space and time. In this work, we survey convergence results for higher order

projection methods, in the presence of only strong solutions of the limiting problem; in

particular, we highlight concomitant difficulties in the construction process of accurate

higher order schemes, such as limited regularities of the limiting solution, and a lack of

accurate initial data for the pressure. Computational experiments are included to compare

the presented schemes, and illustrate the difficulties mentioned.
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1. Introduction

Let Ω ⊂ R
d, for d = 2, 3 be a bounded Lipschitz domain, and T > 0; we consider the

time-dependent Navier-Stokes equations for incompressible, viscous (ν > 0) Newtonian fluids,

ut − ν∆u + (u · ∇)u + ∇p = f in ΩT := (0, T ) × Ω, (1.1)

div u = 0 in ΩT , (1.2)

u = 0 on ∂ΩT := (0, T )× ∂Ω, (1.3)

u(0, ·) = u0 in Ω. (1.4)

Here, u : ΩT → R
d denotes the velocity field, p : ΩT → R the scalar pressure of vanishing mean

value, i.e.,
∫

Ω
p(·,x) dx = 0, and a given force f : ΩT → R

d is driving the fluid flow, with initial

velocity field u0 : Ω → R
d.

In the following, we approximate strong solutions u ∈ W 1,2
(

0, T ;J0(Ω)
)

∩ L2
(

0, T ;J1(Ω) ∩
W2,2(Ω)

)

of (1.1)-(1.4), whose existence for data

u0 ∈ J1(Ω), f ∈ L2
(

0, T ;J0(Ω)
)

is well-known to be (at least) local (d = 3) resp. global (d = 2). Here and below, we adopt the

standard notation of Sobolev and Bochner spaces, and use the notation

J0(Ω) =
{

v ∈ L2(Ω) : div v = 0 weakly in Ω, 〈v,n〉 = 0 on ∂Ω
}

,

J1(Ω) =
{

v ∈ W1,2
0 (Ω) : div v = 0 weakly in Ω

}

,
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where 〈·, ·〉 denotes the standard scalar product in R
d, and n(x) ∈ S

d−1 is the unit vector field

pointing outside Ω.

Recall that solutions of (1.1)-(1.4) suffer a breakdown of regularity for t → 0, even in the

case of smooth (initial) data. Global regularity would require data u0 and f to satisfy a nonlocal

compatibility condition which is virtually uncheckable in actual cases: it is proved in [5] that

global regularity may only be valid if there exists a solution p0 ∈ W 1,2(Ω) ∩ L2
0(Ω) of the

overdetermined Neumann problem

∆p0 = div
(

f(0, ·) − (u0 · ∇)u0

)

in Ω,

∇p0 = ν∆u0 + f(0, ·) − (u0 · ∇)u0 on ∂Ω.

In order to justify existence of (local) strong solutions, we always suppose that the data in

(1.1)-(1.4) satisfy

(A1) (regularity of domain) The unique solution w ∈ J1(Ω) of the stationary, incompressible

Stokes problem

−ν∆w + ∇π = g in Ω ⊂ R
d

is already in J1(Ω) ∩W2,2(Ω), provided g ∈ L2(Ω), and satisfies

‖w‖W2,2 ≤ C ‖g‖L2 .

(A2) (regularity of data) For any T > 0, let

u0 ∈ J1(Ω) ∩ W2,2(Ω),

f ∈ W 2,∞
(

0, T ;L2(Ω)
)

.

A second-order temporal discretization of (1.1)-(1.4) uses the Crank-Nicholson method; in [6],

it has been shown that iterates {
(

um, pm
)

}m>0 satisfy

max
1≤m≤M

τm

[

‖u(tm, ·) − um‖L2 +
√

τmk ‖p(tm, ·) − pm−1/2‖L2

]

≤ Ck2, (1.5)

where

τm := min{1, tm}, pm−1/2 =
1

2

{

pm + pm−1
}

.

The practical disadvantage of implicit discretization strategies of (1.1)-(1.4) is the significant

computational effort implied from the necessity to solve coupled nonlinear algebraic problems to

determine (Galerkin approximations of) (um, pm ) at every time-step given by 1 ≤ m ≤ M . As

a consequence, splitting algorithms were developed to reduce complexity of actual computations;

among them, and one of the first, is Chorin’s projection method [1, 2, 13], where iterates for

velocity field and pressure are independently obtained at every time-step. However, it is known

that the quality of pressure iterates is deteriorated by unphysical boundary layers [3, 10]. One

strategy to improve their quality is to either construct (formally) first-order schemes which are

exempted from this deficiency (i.e., the Chorin-Uzawa scheme [7, Section 8], or Chorin-Penalty

scheme [9]), whereas another one would be to construct higher order projection schemes, where

possible boundary layers are less pronounced (i.e., the Van Kan scheme [14]). The Van Kan
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scheme formally combines the ideas of second-order time discretization (Crank-Nicholson) and

projection. For its formulation, we use notations dtφ
m := k−1

{

φm − φm−1
}

, where k =

tm − tm−1 > 0 is the (equi-distant) time-step, and φm−1/2 := 1
2

{

φm + φm−1
}

. Moreover, we

denote fm := f(tm, ·). Then, the scheme reads:

Algorithm 1.1. 1. Let m ≥ 1, and
(

um−1, ũm−1, pm−1
)

∈ J0(Ω) × W1,2
0 (Ω) × L2

0(Ω) be

given. Find ũm ∈ W1,2
0 (Ω) such that

1

k

{

ũm − um−1
}

− ν∆ũm−1/2 +
1

2
(PJ0

ũm · ∇)ũm

+
1

2
(um−1 · ∇)ũm−1 + ∇pm−1 = fm−1/2 in Ω. (1.6)

2. Given
(

ũm, pm−1
)

∈ W1,2
0 (Ω)×L2

0(Ω), find
(

um, pm
)

∈ J0(Ω)×
[

L2
0(Ω)∩W 1,2(Ω)

]

from

1

k

{

um − ũm
}

+
1

2
∇[pm − pm−1] = 0, div um = 0 in Ω, (1.7)

〈um,n〉 = 0 on ∂Ω. (1.8)

In (1.6), we choose an implicit discretization for the convection term, with orthogonal projec-

tion PJ0
: L2(Ω) → J0(Ω). Another admissible strategy is to replace the term 1

2

(

PJ0
ũm ·∇

)

ũm

by 1
2

[

(ũm · ∇)ũm + 1
2
(div ũm)ũm

]

.

The second step can be reformulated as a problem for pressure increments,

− ∆[pm − pm−1] = −1

k
div ũm in Ω, (1.9a)

∂npm+1 = 0 on ∂Ω, (1.9b)

which is followed by the update um = ũm − k
2
∇[pm − pm−1].

A convergence analysis for (1.6)-(1.8) started with [11], where second-order convergence for

iterates of the velocity field {um}M
m=1 in the norm ℓ2

(

0, tM ;L2
)

is proved, provided the solution

of (1.1) is sufficiently smooth. In [7, Section 7], (almost) optimal estimates for the velocity

field are shown in ℓ∞
(

0, tM ;L2
)

, while (almost) first-order is verified for pressure iterates in

ℓ2
(

0, tM ; L2
0

)

, i.e.,

max
1≤m≤M

√
τm

[

‖u(tm, ·) − ũm‖L2 + k ‖p(tm, ·) − pm−1/2‖L2

]

≤ Ck2 | log k|. (1.10)

For this purpose, the proof is based on interpreting Algorithm A as a semi-explicit pressure

correction scheme, with ǫ = 1
2
k2, where

div ũm − ǫ∆dtp
m = 0 in Ω, (1.11a)

∂n[pm − pm−1] = 0 on ∂Ω, (1.11b)

and p0 = p(0, ·) in Ω. Again, besides the requirement of accurate initial data for the pressure

which is hard to validate in practice, an assumption concerning higher regularity of solutions for

(1.1)-(1.4) is made which conflicts with the general breakdown of regularity for t → 0. In order

to overcome this problem and construct a stable second-order revised Van Kan scheme, certain

time-mesh geometries are introduced in [7, Chapter 10], which refine at the origin t = 0, and
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thus allow to distinguish between local mesh size
(

km = (m + 1)k2
0

)

for temporal discretization

effects, and the reference mesh size k0 > 0 at times t = O(1) which scales the perturbation of

the incompressibility constraint. Such strategies

1. are of the same asymptotic effort like equi-distant step sizes k0 > 0,

2. reliably overcome the time layer at the origin t = 0 in the sense that the above

convergence result for Algorithm A now holds for (general) strong solutions of (1.1)-

(1.4), and

3. does not require accurate initial data for the pressure, and p0 = 0 is sufficient.

To be precise, we introduce the mesh G2(km) = {km}m≥1, with tm =
∑m

ℓ=1 kℓ, and

k : m 7→ km =

{

mk2
0 , 0 < tm ≤ 1,

γk0, tm > 1.
(1.12)

Here, let k0 > 0 be the basic grid size, and γ = O(1). A simple calculation shows that t = 1 is

reached after
√

2/k0 steps.

The revised Van Kan scheme in [7, Chapter 10] uses G2(km), and p0 = 0, and is stated next.

Algorithm 1.2. 1. Let m ≥ 1, and
(

um−1, ũm−1, pm−1 ) ∈ J0(Ω) × W1,2
0 (Ω) × L2

0(Ω) be

given. Find ũm ∈ W1,2
0 (Ω) such that

1

km

{

ũm − um−1
}

− ν∆ũm−1/2 +
1

2
(PJ0

ũm · ∇)ũm

+
1

2
(um−1 · ∇)ũm−1 +

m − 1

m
∇pm−1 = fm−1/2 in Ω. (1.13)

2. Given
(

ũm, pm−1
)

∈ W1,2
0 (Ω) × L2

0(Ω), find
(

um, pm
)

∈ J0(Ω) ×
[

L2
0(Ω) ∩ W 1,2(Ω)

]

from

1

km+1

{

um − ũm
}

+
1

2
∇

[

m

m + 1
pm − m − 1

m + 1
pm−1

]

= 0, divum = 0 in Ω, (1.14)

〈um,n〉 = 0 on ∂Ω. (1.15)

Let us motivate the relevant effects in this algorithm; for this purpose, we distinguish be-

tween dtϕ
m := 1

km

{

ϕm − ϕm−1
}

, and d̃tϕ
m := 1

k0

{

ϕm − ϕm−1
}

. Then {ũm}m>0 ⊂ W1,2
0 (Ω)

solves

dtũ
m − ∆ũm−1/2 +

1

2
∇

[

3
m − 1

m
pm−1 − m − 2

m
pm−2

]

= fm−1/2 in Ω, (1.16)

div ũm − 1

2
k2
0 d̃tPm = 0 in Ω, (1.17)

∂nd̃tPm = 0 in ∂Ω, pm =
1

mk0

Pm. (1.18)

Hence, we observe a decoupling of scales reflecting time discretization, and perturbation of the

incompressibility constraint. In fact, one motivation to use the mesh G2(km) at this place is
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optimal convergence behavior of solutions
(

uǫ, pǫ
)

: ΩT → R
d ×R for ǫ → 0 of

(

τ := min{1, t},
and r ≥ 2

)

uǫ
t − ν∆uǫ +

(

PJ0
uǫ · ∇

)

uǫ + ∇pǫ = f in ΩT ,

div uǫ − ǫ∆
{

τrpǫ
}

t
= 0 in ΩT ,

∂n

{

τrpǫ
}

t
= 0 in ∂ΩT ,

towards (general) strong solutions of (1.1)-(1.4); cf. [9, Chapter 4]. — The following convergence

behavior for iterates
{(

ũm, pm
)}

m>0
of Algorithm B has been verified in [7, Chapter 10].

max
[

‖u(tm, ·) − um−1/2‖L2 + k0 ‖p(tm, ·) − pm−1/2‖L2

]

≤Ck2
0

[

1 + | log k0|
]

. (1.19)

A different strategy to improve the accuracy of pressure iterates from e.g. Chorin’s scheme

is realized in the following first-order projection scheme, where well-known artificial boundary

layers in the pressure in Chorin’s scheme [1,2,13] are removed. In the following, let p̃0 = p0 = 0,

and β ≥ 1.

Algorithm 1.3. 1. For 1 ≤ m ≤ M , let
(

um−1, ũm−1, pm−1, p̃m−1
)

∈ J0(Ω) × W1,2
0 (Ω) ×

[

L2
0(Ω)

]2
be given. Find ũm ∈ W1,2

0 (Ω) such that

1

k

{

ũm − um−1
}

− β ∇div dtũ
m − ν∆ũm

+(um−1 · ∇)ũm + ∇
{

pm−1 − p̃m−1
}

= fm in Ω. (1.20)

2. Find
(

um, p̃m
)

∈ J0(Ω) × L2
0(Ω) that solves

1

k

{

um − ũm
}

+ ∇p̃m = 0, div um = 0 in Ω, (1.21)

〈um,n〉 = 0 on ∂Ω . (1.22)

3. Determine pm ∈ L2
0(Ω) from

pm = −1

k
div ũm in Ω. (1.23)

By eliminating p̃m from the scheme, we obtain the following reformulation of Algorithm C

as a semi-explicit penalty method [7, 9],

dtũ
m − β ∇div dtũ

m − ν∆ũm + (um−1 · ∇)ũm + ∇pm−1 = fm in Ω, (1.24)

div ũm + k pm = 0 in Ω, (1.25)

ũm = 0 on ∂Ω. (1.26)

On putting ǫ = k in (1.24)-(1.26), this system may be considered as a semi-implicit temporal

discretization of (β̃ ≥ 0)

uǫ
t − β̃∇div uǫ

t − ν∆uǫ +
(

PJ0
uǫ · ∇

)

uǫ + ∇pǫ = 0 in ΩT , (1.27)

div uǫ + ǫp = 0 in ΩT , (1.28)

u = 0 on ∂Ω. (1.29)
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For β̃ = 0, this formulation is known as penalty method, which is studied in [12], and [7, Section

3.2]. Hence, (1.27) is a modification thereof, which uses the additional term −β̃∇div uǫ
t to

additionally enforce the incompressibility constraint for β̃ > 0.

Another interpretation of system (1.24)-(1.26) for β = 1 comes from its reformulation

dtũ
m
k − 1

k
∇div ũm

k − ν∆ũm
k +

(

PJ0
ũm−1

k · ∇
)

ũm
k = fm. (1.30)

As a consequence, iterates
{

ũm
k

}

m
⊂ H1

0(Ω) from Algorithm C solve an implicit temporal

discretization of the penalty formulation (1.27)-(1.29), with ǫ = k, and β̃ = 0 For β ≥ 1, the

system combines different stabilizing mechanisms to enforce the incompressibility constraint for

iterates
{

ũm
k

}

. Also, (1.30) is an implicit discretization to effectively describe iterates
{

ũm
k

}

in

this case, and does not require initial data for the pressure; this is in contrast to Algorithm C,

due to the (decoupling) projection step to obtain
{

um
}

m
⊂ J0.

Note that no unphysical boundary conditions, and no accurate initial data for the pressure

are needed in (1.24)-(1.26) any more. The following result is shown in [9] for general strong

solutions of (1.1)-(1.4),

max
1≤m≤M

[

‖ũm − u(tm, ·)‖L2 +
√

τm ‖ũm − u(tm, ·)‖W1,2

+ τm ‖pm − p(tm, ·)‖L2

]

≤ C k. (1.31)

From (1.19) and (1.31), we may conclude that pressure iterates from Algorithms B and C are

comparable.

Over the last two decades, many different projection schemes to efficiently solve (1.1)-(1.4)

have been constructed and studied, cf. [4]; hence, Algorithms A to C only represent some

second- and first-order time-discretizations out of them. However, a numerical analysis of each

of these (higher order) projection methods shares the following common challenges:

(i) limited regularity of solutions of (1.1)-(1.4),

(ii) avoidance of requiring accurate initial data for the pressure, which are nontrivial to

obtain with sufficient accuracy, and

(iii) smallness or absence of artificial boundary data for the pressure.

This is the authors’ motivation for the upper selection of schemes, and presentation of tools to

overcome those inherent limitations (i.e., artificial boundary layers, regularity requirements of

solutions of (1.1)-(1.4), assumed known initial pressure) of earlier projection schemes.

The remainder of this work is organized as follows: In Section 2, we compare the accuracy

of pressure iterates obtained from Algorithms A to C, where the initial pressure is not available

explicitly. Conclusions are made in Section 3.

2. Computational Experiments

We computationally compare the accuracy of pressure iterates from the second-order schemes,

i.e., Algorithms A (Van Kan scheme) and B (revised Van Kan scheme). As has been pointed

out, the original Van Kan scheme suffers from the need to provide accurate initial data, and

smoothness of solutions of (1.1)-(1.4), in order to validate (1.10). Algorithm B, together with
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the mesh G2(km) has been designed to introduce an additional damping mechanism into the

scheme to reliably overcome the initial time period [0, 1].

Another strategy to obtain accurate pressure approximations is realized in Algorithm C

(Chorin-Penalty scheme), where Chorin’s first-order projection scheme is modified in such a

way that formerly arising numerical boundary layers are avoided. The following example for

the evolutionary Stokes problem is to compare higher order projection schemes, creating small

artificial boundary layers for pressure iterates, with first-order projection methods exempted

from this deficiency. The examples are meant to illustrate arising time-layer structures for

iterates of Algorithm A for absent nonlinear convection.

Example 2.1 (from [4]) Let Ω = (−1, 1)2 ⊂ R
2, and

u(x, y, t) =

(

πsin t sin 2πy sin2 πx

−πsin t sin 2πx sin2 πy

)

, p(x, y, t) = sin t cos πx sin πy,

be solutions of the evolutionary Stokes problem, i.e., f : ΩT → R
2 is computed from (1.1)-(1.4),

where the nonlinear term in (1.1) is neglected. Let Th be an equi-distant triangulation of Ω

of mesh-size h = 1/30, and k = 2−j/500, j = 0, 1, 2, 3 an equidistant time-step for the time

interval [0, 1]. The LBB-stable MINI-Stokes element is used for spatial discretization of the

three projection methods, and p̃0 = p0 = 0 is chosen. For the solution of the system of linear

equation we used the direct solver.

We computed all the examples with zero initial pressure, which is the correct initial data.

In Fig. 2.1, we plot L2-errors for iterates of Algorithms A to C to compare the behavior of the

three algorithms which shows comparative results for the higher order schemes A and B, with

slightly improved convergence properties of B; at positive times, the overall error is dominated

by spatial discretization effects. Iterates of the first-order scheme C are of non-comparable

quality.
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Fig. 2.1. Example 2.1: Evolution of the L2 norm of the pressure error for the Algorithms A,B and C

(left to right)

Since in practical computations the initial pressure is not known, we take another example

with a polynomial solution, in order to see the effects of the noncorrect initial data and the

difference between first-order and second-order projections.

Example 2.2. Let Ω = (0, 1)2 ⊂ R
2, and

u(x, y, t) =

(

x2(1 − x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x − 6x2 + 4x3)

)

, p(x, y, t) =

(

x2 + y2 − 2

3

)

(

1 + t2
)

,
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be solutions of the evolutionary Stokes problem, i.e., f : ΩT → R
2 is computed from (1.1)-(1.4),

where the nonlinear term in (1.1) is neglected. Let Th be an equi-distant triangulation of Ω

of mesh-size h = 1/30, and k = 2−j/500, j = 0, 1, 2, 3 an equidistant time-step for the time

interval [0, 1]. The LBB-stable MINI-Stokes element is used for spatial discretization of the

three projection methods, and p̃0 = p0 = 0 is chosen. For the solution of the system of linear

equation we used the direct solver.

Plots of evolving L2-errors for iterates of Algorithms A to C (with β = 1.1) at times

t = 0.05, 0.1, 0.3, 1 are shown in Fig. 2.4. We observe marked errors only for Algorithm A at

times close to zero, as opposed to uniform small errors in space-time for Algorithms B, C. In

Fig. 2.3, we plot L2-errors for iterates of Algorithms A to C to compare the behavior of the

three algorithms. We remark that the given m-dependent coefficients in Algorithm B which

uses G2(km) are essential to implement, and otherwise lead to divergent results.

Plots of evolving L2-errors for iterates of Algorithms A to C are shown in Fig. 2.2. We

observe marked layers in time for pressure iterates in the case of Algorithm A, as opposed to

iterates from Algorithms B and C. The depicted oscillatory behavior in the error plot vanishes

for

m 7→ ‖p(tm, ·) − pm−1/2‖L2 ,

see also (1.10) and (1.19).
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Fig. 2.2. Example 2.2: Evolution of the L2 norm of the pressure error for the Algorithms A,B and C

(left to right)
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Fig. 2.3. Example 2.2: Comparison of the evolution of the L2 norm of the pressure error for the

Algorithms A,B and C for k = 1/500, 1/1000, 1/2000 (left to right)
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Fig. 2.4. Example 2.2: Snapshots of the pressure error at time T = 0.05, 0.1, 0.3, 1 (top to bottom) for

k = 1/500 for the Algorithms A,B and C (left to right)

3. Concluding Remarks

Projection methods are efficient methods to approximate strong solutions of the nonstation-

ary incompressible Navier-Stokes equations; the most well-known example is Chorin’s method,
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which suffers from marked pressure error boundary layers. There are two strategies available to

cure this deficiency: either (i) modify this scheme in such a sense that the mechanism respon-

sible for boundary layers is eliminated, i.e., Algorithm C (Chorin-Penalty method), or (ii) use

a higher order projection method where this effect is significantly reduced (Van Kan scheme).

The second approach, however, has to face other critical issues in the construction process,

which are the expected breakdown of the regularity of solutions to (1.1)-(1.4), and, typically,

the need of accurate initial data for such schemes. Algorithm B (revised Van Kan scheme) uses

a stretched time-grid structure G2(km), and is designed to overcome both of these hurdles: the

error estimate (1.19) for corresponding iterates is comparable to the one of the fully implicit

Crank-Nicholson method (see, e.g.(1.5)), while the scheme keeps all advantages of a (higher-

order) projection scheme. The comparative computational studies shown above illustrate these

considerations.
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