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Abstract

This paper presents an efficient moving mesh method to solve a nonlinear singular

problem with an optimal control constrained condition. The physical problem is governed

by a new model of turbulent flow in circular tubes proposed by Luo et al. using Prandtl’s

mixing-length theory. Our algorithm is formed by an outer iterative algorithm for handling

the optimal control condition and an inner adaptive mesh redistribution algorithm for

solving the singular governing equations. We discretize the nonlinear problem by using a

upwinding approach, and the resulting nonlinear equations are solved by using the Newton-

Raphson method. The mesh is generated and the grid points are moved by using the

arc-length equidistribution principle. The numerical results demonstrate that proposed

algorithm is effective in capturing the boundary layers associated with the turbulent model.
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1. Introduction

The modeling of turbulent flows still plays an important role in computational fluid dynamics
because direct simulation of flows are restricted to very simple geometries and low Reynolds
number [6, 9, 18, 19]. Development of turbulence model is therefore still an important task and
even some semi-empirical means such as the eddy viscosity or Prandtl’s mixing length are very
helpful to deal with many problems in engineering practice due to their simplicity. Luo et
al. [15] established a new model of turbulent flow in circular tubes which is an application and
improvement of Prandtl’s mixing-length theory. The model expresses the single phase flow in
circular tubes, which is an optimal parameter control problem governed by a nonlinear singular
equation. The model yields many complex mathematical characters such as strong boundary
layer. The computational results resulting from the new model are found in good agreement
with the experimental results on fluid velocity distribution, eddy viscosity distribution and
friction factor. On the mathematical side, the governing equations associate with this model
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are quite complicated, and an effective numerical scheme for finding numerical approximations
seems useful.

The difficulties of this problem include the existence of the boundary layers and an optional
control condition enforced on the governing equations. To resolve the layers, numerical simu-
lations require extremely fine meshes on the small localized portions of the physical domain. It
will become very expensive if a uniform fine mesh is employed. Recent study has demonstrated
that moving mesh methods are powerful in resolving large solution variations by increasing the
solution accuracy and decreasing the cost of computations, see, e.g., Adaptive moving mesh
methods have important applications in solving partial differential equations (PDEs). Up to
now, there have been important progresses [1,3,20]. Harten and Hyman [11] began the earliest
study of the adaptive methods to improve resolution of discontinuous solutions of hyperbolic
equations. After their work, many other moving mesh methods on this direction have been pro-
posed based on combining the variational grid methods with high resolution shock capturing
methods, including the so-called moving mesh PDE (MMPDE) approach of moving mesh meth-
ods of W. Huang [10], moving finite element methods of Miller [17], and moving finite volume
methods [22]. Recently, there have been works on moving mesh methods based on Harmonic
maps [8,16,22]. Theoretical results on adaptive mesh arising from equidistribution of a monitor
function can be found in [3, 4, 12–14,21]. In particular, Kopteva [13] derived certain maximum
norm a posterior error estimates for one-dimensional singularly perturbed convection-diffusion
problems, see also a recent paper [14] for a similar posterior error estimate.

The aim of this paper is to present an efficient and fast numerical method for the tur-
bulent model. The proposed numerical algorithm includes two parts: (i) the outer iterative
algorithm is used to solve the optimal control condition and (ii) the inner adaptive mesh redis-
tribution algorithm is used to solve the singular problem. We discretize this nonlinear problem
by using upwinding scheme. The discretized nonlinear equations is solved by Newton-Raphson
method. The arc-length equidistribution principle is used in the part (ii) above. The numerical
examples will be provided to demonstrate the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, we briefly review the model of turbulent flow
in circular tubes by employing Prandtl’s mixing-length theory. In Section 3, we will present
the discrete schemes and algorithms. Numerical experiments will be carried out in Section 4.
Some concluding remarks will be presented in the final section.

2. A New Model of Turbulent Flow in Circular Tubes

In this section, we briefly review the background of the model of turbulent flow in circular
tubes which was proposed by Luo et al. [15]. Moreover, using dimensionless analysis we will
derive a complete mathematical description for this model.

Note that the shearing stress of Newtonian fluid for turbulent flow can be described by eddy
viscosity with dimensionless analysis [9]. We then have following expression:

dũ

dφ
=

−R̂φ

1 + µt/µL
, (2.1)

where ũ is dimensionless time-smoothed velocity, µt is eddy viscosity, µL is kinematic viscosity,
R̂ is dimensionless radius of a circular pipe and R̂ = ρûR/µ with R is the tube radius, ρ is
the liquid density, û is friction velocity, µ is the molecule viscosity, φ is dimensionless radial
position in a circular pipe, φ = 0 is the center of the tube and φ = 1 corresponds to the wall of
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the tube. As the velocity is disappeared on the wall, we have the boundary condition

ũ(φ)|φ=1 = 0. (2.2)

Based on Prandtl’s mixing-length theory, the eddy viscosity can be written as

µt

µL
= R̂

L

R

∣∣∣∣
L

R

dũ

dφ

∣∣∣∣ , (2.3)

and the constrained condition is

2
∫ 1

0

ũφdφ =
u

û
=

Re

R̂
, (2.4)

where L is the mixing length, u is average velocity in cross section of tubes, Re is the Reynolds
number defined by Re = ρuR/µ. Let λ = L/R be the dimensionless mixing length. Then (2.3)
can be rewritten as

µt

µL
= R̂λ

∣∣∣∣λ
dũ

dφ

∣∣∣∣ . (2.5)

Coupling (2.1) and (2.5), we have the following equation which is the application of the classical
Prandtl’s mixing-length,

dũ

dφ
=

−R̂φ

1 + R̂λ
∣∣∣λdũ

dφ

∣∣∣
. (2.6)

Set ũ′(φ) = dũ/dφ. Then (2.6) can be written as

ũ′(φ) =
−R̂φ

1 + R̂λ |λũ′(φ)| . (2.7)

Using the symmetry of turbulent flow, we have

dũ

dφ

∣∣∣∣
φ=0

= 0.

It can be seen from Eq. (2.5) that the eddy viscosity µt at the center of a circular tube will be
zero. However, the eddy viscosity at the center is non-zero according to either the conception
or the experiment. This inconsistency may be caused mainly by the fact that the Prandtl
theory only took the first-order derivative of velocity to approximate the eddy velocity (2.5).
Thus, Luo et al. [15] introduced a simple way to modify the Prandtl’s mixing length theory by
utilizing the second-order derivative to approximate the eddy velocity. By doing this, Eq. (2.5)
can be changed to

µt

µL
= R̂λ

∣∣∣∣λũ′(φ) +
1
2
λ2ũ′′(φ)

∣∣∣∣ . (2.8)

Combining (2.1) and (2.8) yields

ũ′(φ) =
−R̂φ

1 + R̂λ|λũ′(φ) + 1
2λ2ũ′′(φ)| . (2.9)

The dimensionless mixing length λ in (2.9) is found to be not a universal constant but a function
of position,

λ = L/R = kf(φ), f(φ) ≥ 0, f(0) = 1, f(1) = 0, (2.10)
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where k is a dimensionless positive constant.
For single phase flow in circular tubes, so ũ′ and ũ′′ are nonpositive, the absolute sign in

(2.9) can be dropped. Then (2.9) can be rewritten as

ũ′(φ)
[
1− R̂(kf(φ))2ũ′(φ)− R̂(kf(φ))3ũ′′(φ)

]
= −R̂φ. (2.11)

Since (
1− R̂(kf(φ))2ũ′(φ)− R̂(kf(φ))3ũ′′(φ)

)∣∣∣
φ=0

> 0,

and
ũ′(0)

(
1− R̂(kf(0))2ũ′(0)− R̂(kf(0))3ũ′′(0)

)
= 0,

we can derive that (2.11) satisfies the symmetry of the turbulent flow:

ũ′(0) = 0. (2.12)

We then obtain from (2.11) that

1− R̂k2f(φ)2ũ′(φ)− R̂k3f(φ)3ũ′′(φ) = − R̂φ

ũ′(φ)
, φ ∈ (0, 1]. (2.13)

Set a(φ) = R̂k2f(φ)2 and b(φ) = R̂k3f(φ)3. Letting φ → 0 in (2.13) gives

lim
φ→0

(1− a(φ)ũ′(φ)− b(φ)ũ′′(φ)) = lim
φ→0

−R̂φ

ũ′(φ)

= (1− b(0)ũ′′(0)) =
−R̂

ũ′′(0)
(using L’ Hospital rule).

Then we obtain that

ũ′′(0) =
1−

√
1 + 4b(0)R̂

2b(0)
=

1−
√

1 + 2R̂2k3

R̂k3
. (2.14)

For the turbulent flow, Re ∈ (4000, 10000). In (2.10), k and f(φ) have many possible choices.
Because we are aimed at showing how to solve the non-linear singular model (2.11) with an
optimal control condition (2.4), we use the expression proposed by Prandtl. When the Reynolds
number is sufficiently high, the mixing length in the wall turbulence can be written as

f(φ) = 1− φ, k = 0.2. (2.15)

Then we change the problem to the following mathematical model. For any given α ∈ (4000,

10000), find constant c such that y satisfy

y′(x)
(

1− k2c(1− x2)2y′(x)− 1
2
k3c(1− x2)3y′′(x)

)
= −cx, x ∈ [0, 1] (2.16)

and the constrained condition

2
∫ 1

0

xydx =
α

c
, (2.17)

together with three boundary conditions

y(1) = 0, y′(0) = 0, y′′(0) =
1−√1 + 2c2k3

ck3
. (2.18)
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It is easy to show that c > 0. Set x = 1 in (2.16), it can be verified that

y′(1) = −c. (2.19)

Since y′(x) and y′′(x) are nonpositive, k and c are positive, we have

y′(x) ≤ 0, (2.20a)(
1− k2c(1− x2)2y′(x)− 1

2
k3c(1− x2)3y′′(x)

)
≥ 0, (2.20b)

− cx ≤ 0. (2.20c)

It is then expected that we have the boundary condition y′(0) = 0 and y′(x) has no other zero
point. Moreover, x = 1 is the singular point of the equation, which may yield a boundary layer
on the right end.

3. A Moving Mesh Algorithm

In this section, we present an efficient and fast approach for the model (2.16)-(2.18), which
includes an iterative method and an adaptive method.

3.1. Analysis of the model

We consider the model (2.16)-(2.17). The difficulty of this problem involves two parts.
Firstly, c is unknown as well as y; this problem is an optimal control problem and (2.17) is
a control equation. For a given α, we want to obtain the solution y and c which not only
satisfy the differential equation (2.16) but also the control (2.17). Secondly, (2.16) is not only
a nonlinear differential equation, but also a singular problem.

In order to solve the optimal control problem, we use an iterative algorithm to compute
y and c. For an initial c0, solve (2.16) to obtain y. Then compute c by solving (2.17) with
the obtained y. Compare the computed c and the initial c0, if the discrepancy satisfies an
preassigned tolerance, stop computing, else, the obtained c becomes the initial value and repeat
the process. This is an outer iteration for solving the model. A detailed algorithm will be
described in the next subsection.

Then we consider Eq. (2.16) with boundary conditions in (2.18). As a singular problem,
there is a region in which the solution of the differential equation is steep. For (1 − x2) ¿ 1
when x → 1, the solution has a boundary layer near the boundary x = 1. It is well known
that central or upwinding differential scheme on an uniform mesh will not give a satisfactory
numerical solution in this case. To obtain a reliable numerical solution for (2.16) and (2.18), it
is better to use a mesh that concentrates nodes in the boundary layer. Ideally, the mesh should
be generated by adapting it to the features of the computed solution and this is usually done
by equidistributing a monitor function over the domain of the problem. This adaptive methods
can handle not only boundary layer but also interior layer problems. In fact, this is a moving
mesh approach that can capture the layer effectively.

3.2. Numerical method and algorithm

Given a partition of [0, 1]:

ΩN = {xj | 0 = x0 < x1 < · · · < xN = 1}.
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On ΩN , we discretize (2.16) and (2.18) by using a upwinding scheme as follows:

D+yi(1− aiD
+yi − biDD−yi) = −cxi for 1 ≤ i ≤ N − 1 (3.1)

with yN = 0, where the operators used are given by

D−vi =
vi − vi−1

hi
, D+vi =

vi+1 − vi

hi+1
, Dvi =

vi+1 − vi

h̄i
,

hi = xi − xi−1, h̄i = (hi+1 + hi)/2,

ai = k2c(1− xi
2)2, bi =

1
2
k3c(1− xi

2)3.

At x = 0, since
y′(x) ≈ y′(0) + xy′′(0) = xy′′(0),

we set

y′′(0) ≈
y0−y−1

h1
− y1−y0

h1

h1
= 2

y1 − y0

h2
1

,

where y−1 = y1 is used. Consequently, the discretization of (2.16) at x = 0 becomes

2
y1 − y0

h2
1

(
1− b02

y1 − y0

h2
1

)
= −c. (3.2)

As Eq. (3.1) is a nonlinear equation, we use Newton-Raphson iteration method to solve it. The
integration in (2.17) is approximated by the following quadrature formula:

2
∫ 1

0

xydx ≈
N∑
0

hi(xiyi + xi−1yi−1). (3.3)

Denote yi(x) ∈ C[0, 1] the piecewise linear interpolant through the knots (xi, yi). We choose a
monitor function:

w(x) =
√

1 + |y′i(x)|2

to equidistribute mesh which is the discrete analogue of the standard arc-length monitor func-
tion

w(x) =
√

1 + |y′(x)|2.

Note that

(yi(x))′ = D−yi, x ∈ Ii = (xi−1, xi), 1 ≤ i ≤ N − 1.

In an other words, we construct a mesh by solving the following equations:

(xi+1 − xi)2 + (yi+1 − yi)2 = (xi − xi−1)2 + (yi − yi−1)2, 1 ≤ i ≤ N − 1,

x0 = 0, xN = 1. (3.4)

To equidistribute the mesh and to capture the boundary layer, we move mesh iteratively to
generate a fine mesh.
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Main Algorithm

1. Initialize c0 and give mesh ΩN ;

2. Use Newton-Raphson method and call adaptive algorithm to compute the discrete
solution {yi} by (3.1) on ΩN ;

3. Solve c = α
2

∫ 1
0 xydx

by (3.3) , if |c− c0| ≤ η, goto step 5, otherwise continue;

4. Set c0 =
√

c× c0, return to step 2;

5. Set c = c0, then stop.

Adaptive Algorithm

1. Initialize mesh: Ω(0)
N = {x(0)

j |0 = x
(0)
0 < x

(0)
1 < · · · < x

(0)
N = 1}, k = 0;

2. Solve (3.1) for {y(k)
i }, let

l
(k)
i =

√
(y(k)(x(k)

i )− y(k)(x(k)
i−1))2 + (h(k)

i )2, L(k) =
N∑

i=1

l
(k)
i .

3. Test mesh: let τ be a user chosen constant with τ > 1. If max l(k)/L(k) ≤ τ/N , then
goto step 5.

4. Generate new mesh: choose point 0 = x
(k+1)
0 < x

(k+1)
1 < · · · < x

(k+1)
N = 1, such

that for each i, the distance from (x(k+1)
i−1 , y(k)(x(k+1)

i−1 ) to (x(k+1)
i , y(k)(x(k+1)

i )) equals
L(k)/N . Let k = k + 1, return to step 2.

5. Set xi = x
(k)
i , yi = y

(k)
i , then stop.

4. Numerical Results

This section considers numerical solutions of the model (2.16)-(2.17) to demonstrate the
performance of the iterative method and the moving mesh method proposed in last section.
The parameters α in (2.17) are taken as 2000, 4000, 6000, 8000, 10000 respectively. For a given
α, there is a corresponding c satisfying (2.16)-(2.17). Table 4.1 and Fig. 4.1 show the relation
between α and c. From Table 4.1, we conclude that c is monotonically increasing with respect
to α for a fixed N and c is convergent with increasing N . Fig. 4.1 shows that the relation of
α and c is almost linear. So using least-square methods we can write α and c in the form of
c = kα + b with k = 0.079 and α = 110.24.

Table 4.1: The value of c for different α and different N .

N α = 2000 α = 4000 α = 6000 α = 8000 α = 10000

64 249.36 434.97 606.60 769.94 927.64

128 245.98 428.30 596.61 756.84 910.98

256 244.31 425.02 591.73 750.13 902.87

512 243.38 423.51 589.26 746.92 898.89

1024 242.99 422.66 588.31 745.48 897.06

2048 242.99 422.66 588.31 745.46 897.03
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Fig. 4.1. The relation of dimensionless radius c and the Reynold number α.

In this model y(x) is the velocity distribution. Eq. (2.16) is a nonlinear convection-dominated
stationary convection-diffusion problem. The solution y(x) to (2.16) and (2.18) has a boundary
layer near x = 1. Our numerical solution {yi} showing by Fig. 4.2 confirms that {yi} is very
steep near x = 1.
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Fig. 4.2. Liquid velocity distribution y for different Reynold number α.



396 Y. YANG, Y. CHEN AND Y. HUANG

With the boundary condition y′(0) = 0 and since y′(x) may have no other zero point, we
change Eq. (2.16) to

(
1− k2c(1− x2)2y′ − 1

2
k3c(1− x2)3y′′

)
= −cx

y′
, x ∈ (0, 1].

Set

z(x) =
(

1− k2c(1− x2)2y′ − 1
2
k3c(1− x2)3y′′

)
= −cx

y′
, x ∈ (0, 1]. (4.1)

At x = 0, by (2.18), we have

z(0) =
−c

y′′(0)
=

1 +
√

1 + 2k3c2

2
.

Note that z(x) is the eddy viscosity distribution. Let zi be the discrete form of z(x). Then we
have

z0 =
1 +

√
1 + 2k3c2

2
,

zi = − cxihi+1

yi+1 − yi
, for i = 1, · · · , N − 1,

zN = z(1) =
−cx

y′(x)

∣∣∣∣
x=1

=
−c

−c
= 1.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

x

z

Fig. 4.3. The eddy viscosity distribution z for Reynold number α = 6000.

Denote zi(x) the piecewise linear interpolation though the knots (xi, zi). Fig. 4.3 presents
the value of z(x) in the case of α = 6000 with N = 1024. Fig. 4.4 shows the whole history of
the mesh moving from its initial uniform mesh and the convergence history of c from its initial
value c = 1.0. It is clearly demonstrated that the mesh concentrates nodes near the boundary
layer.

From Fig. 4.4, it is observed that for c = 1.0 the mesh move from the uniform mesh to the
1st level mesh; for c = 156 the mesh moves from 2nd to 3rd mesh while the 3rd mesh is the
final adaptive mesh corresponding to c = 156. The mesh of 6th level is good enough for other
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N=64, k th moving mesh

initial mesh: uniform mesh

c=1.0,       0 th

c=1.0,       1 th

c=156.03,  2 th

c=156.03,  3 th

c=364.34,  4 th

c=497.80,  5 th

c=561.44,  6 th

c=588.48,  7 th

c=599.45,  8 th

c=603.82,  9 th

c=605.55, 10 th

c=606.23, 11 th

c=606.50, 12 th

c=606.60, 13 th

0 1

Fig. 4.4. Moving mesh history.

choices of c, so only outer iterations are needed to compute the convergent c while the mesh
does not need to move any more.

In our algorithm, for a fixed α, c can be convergent from an arbitrary initial value. Taking
α = 6000 for example, the following datum shows how c0 = 1 and c0 = 1000 convergence
respectively with N = 1024:

c0 =1.0 → 156.35 → 358.95 → 487.13 → 547.38 → 572.81 → 582.81 → 586.51

→ 587.88 → 588.20 → 588.24 → 588.27 → 588.29 → 588.30 → 588.31.

c0 =10000 → 1904.78 → 944.58 → 710.318 → 634.28 → 596.04 → 591.98

→ 590.40 → 589.79 → 588.50 → 588.37 → 588.32 → 588.31.

Our outer iterative is mainly to compute c and y. Take α = 6000 and N = 1024 with initial
c0 = 1.0 as an example. Fig. 4.5 gives the convergent velocity of c by plotting log(|c − c0|),
where c is computed by the present iterative value, c0 the last iterative value. We can find that
its convergence is almost linear.

We close this section by making several remarks. First, in the main algorithm, we have
another choice of step 4, i.e., set c0 = c, return to step 2. Secondly, in the Newton-Raphson
iteration, we choose the initial guess for y

(0)
i = 0 and y

(0)
i = 1; both give the same convergent

value. Thirdly, in step 3 of the adaptive algorithm, τ can be chosen that to satisfy τ ≥ 1. In
this paper, we set τ = 1.1.

5. Conclusions and Future Works

In this paper, following a new proposal of Luo et al. [15] the mathematical governing equa-
tions for a model for turbulent flow in circular tubes are derived. The mathematical setting
involves a nonlinear singular problem with an optimal control condition. An efficient numeri-
cal strategy based on the moving mesh method is proposed. The numerical results show that
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−4
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i−th outer iterative

lo
g(

|c
−c

0|)

Fig. 4.5. Variation of log(|c− c0|) vs. i-th outer iteration.

our proposed numerical scheme is efficient in solving the nonlinear singular problem with con-
straints. In our future work, we will consider the theoretical aspects of the proposed method
including issues on stability and accuracy.
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