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Abstract

In this paper we review a number of auxiliary space based preconditioners for the

second order definite and semi-definite Maxwell problems discretized with the lowest order

Nédélec finite elements. We discuss the parallel implementation of the most promising

of these methods, the ones derived from the recent Hiptmair-Xu (HX) auxiliary space

decomposition [Hiptmair and Xu, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509]. An

extensive set of numerical experiments demonstrate the scalability of our implementation

on large-scale H(curl) problems.

Mathematics subject classification: 65F10, 65N30, 65N55.
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1. Introduction

The numerical solution of electromagnetic problems based on Maxwell’s equations is of
critical importance in a number of engineering and physics applications. Recently, several
implicit electromagnetic diffusion models have become popular in large-scale simulation codes
[5, 21, 22]. These models require the solution of linear systems derived from discretizations of
the weighted bilinear form

a(u, v) = (α∇× u,∇× v) + (β u,v) , (1.1)

where α > 0 and β ≥ 0 are piecewise-constant scalar coefficients describing the magnetic
and electric properties of the medium. Problems involving (1.1) with β > 0 typically arise in
time-domain electromagnetic simulations and are commonly referred to as second-order definite
Maxwell equations. When β is zero in part of the domain, we call the problem semi-definite.
Note that in this case the matrix corresponding to the bilinear form a(·, ·) is singular, and
the right-hand side should satisfy appropriate compatibility conditions. One important semi-
definite application is magnetostatics with a vector potential, where β = 0 in the whole domain.

Motivated by the needs of large multi-physics production codes, we are generally interested
in efficient solvers for complicated systems of partial differential equations (PDEs), and in
particular in the definite and semi-definite Maxwell problems. The target simulation codes
run on parallel machines with tens of thousands of processors and typically lack discretization
flexibility. Our focus is therefore on parallel algebraic methods since they can take advantage
of needed discretization information about the problem only at the highest resolution.

If we restrict (1.1) to gradient fields, the familiar Poisson bilinear form is obtained, i.e.,

(β∇φ,∇ψ) = a(∇φ,∇ψ).
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One very general algebraic approach, which has had a lot of success on Poisson and more
general (scalar and vector) elliptic bilinear forms is the family of Algebraic Multigrid (AMG)
methods. Classical AMG couples a simple relaxation scheme with a hierarchy of algebraically
constructed coarse-grid problems. Parallel implementations of AMG have been under intensive
research and development in the last decade, and several scalable software libraries are currently
available [8,10]. Unlike Poisson problems, however, it is well known that the Maxwell system has
a large near-nullspace of gradients which has to be addressed explicitly by the solver. Therefore,
a straightforward application of AMG (developed for elliptic problems) fails. For a theoretical
explanation of this phenomena, see, e.g., [27].

When a hierarchy of structured meshes is available and proper finite elements are used,
geometric multigrid can be successfully applied to (1.1) based on additional discretization in-
formation [11]. One way to take advantage of this fact is to extend AMG by incorporating
algebraic versions of the Hiptmair smoothers used in the geometric case. This was the approach
taken in [4, 14, 20]. Alternatively, one can try to reduce the original unstructured problem to
a problem for the same bilinear form on a structured mesh, which can then be handled by
geometric multigrid. This idea, known as the auxiliary mesh approach, was explored in [12,15].

Recently, Hiptmair and Xu proposed in [13] an auxiliary space preconditioner for (1.1)
and analyzed it in the case of constant coefficients. This approach is computationally more
attractive since, in contrast to the auxiliary mesh idea, it uses a nodal conforming auxiliary
space on the original mesh. This property significantly simplifies the computations and, more
importantly, allows us to harness the power of AMG for Poisson problems. A related method,
which arrives at the same nodal subspaces based on a compatible discretization principle, was
introduced in [6].

In this paper, we examine the connections between the above algorithms, and their applica-
tion to large definite and semi-definite Maxwell problems. We concentrate on the lowest order
Nédélec finite element discretizations and consider topologically complicated domains, as well
as variable coefficients (including some that lead to a singular matrix).

The remainder of the document is structured as follows: in Section 2, we introduce the
notation and summarize some basic facts concerning Nédélec finite element discretizations.
In Section 3, we show that the methods from [13], [15] and [6] can be derived from a single
decomposition of the Nédélec finite element space by introducing one or several additional
(auxiliary) spaces. The algebraic construction of auxiliary space preconditioners is reviewed in
Section 4, and our parallel implementation of the Hiptmair-Xu (HX) auxiliary (nodal) space
based preconditioner is discussed in Section 5. Next, we present in Section 6 a number of
computational experiments that demonstrate the scalability of this approach. We finish with
some conclusions in the last section.

2. Notation and Preliminaries

We consider definite and semi-definite Maxwell problems based on (1.1) and posed on a fixed
three-dimensional polyhedral domain Ω. Let Th be a tetrahedral or hexahedral meshing of the
domain which is globally quasi-uniform of mesh size h. For generality, we allow internal holes
and tunnels in the geometry, i.e., Ω may have a multiply-connected boundary and need not be
simply connected. Meshes with such features arise naturally in many practical applications.

Let L2(Ω), H1
0(Ω), H0(Ω; curl) and H(Ω; div) be the standard Hilbert spaces corresponding

to our computational domain, with respective norms ‖ · ‖0, ‖ · ‖1, ‖ · ‖curl and ‖ · ‖div. Here,
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and in the rest of the paper, we use boldface notation to denote vector functions and spaces of
vector functions. In particular, H1

0(Ω) = H1
0 (Ω)3. The following characterization of the kernel

of the curl operator can be found in [2]:

{u ∈ H0(Ω; curl) : ∇× u = 0} = ∇H1
0 (Ω)⊕∇KN (Ω) . (2.1)

Here, KN (Ω) ⊂ H1(Ω) is the space of harmonic functions which vanish on the exterior and are
constant in the interior connected components of ∂Ω.

We are interested in solving variational problems based on the bilinear form a(·, ·) posed in
the (first kind) lowest order Nédélec space Vh ⊂ H0(Ω; curl) associated with the triangulation
Th. As it is well-known, the Nédélec edge elements are related to the space of continuous
piecewise linear (or tri-linear) finite elements Sh ⊂ H1

0 (Ω). In particular,

{uh ∈ Vh : ∇× uh = 0} = ∇Sh ⊕∇KN,h , (2.2)

where KN,h is a discrete analog of KN (Ω). These two spaces have the same finite dimension,
which equals the number of internal holes in Ω.

Let Sh be the vector counterpart of Sh. Any z ∈ H1
0(Ω) admits a stable component

zh ∈ Sh, that satisfies
h−1‖z − zh‖0 + ‖zh‖1 ≤ C ‖z‖1 . (2.3)

This component can be obtained by the application of an appropriate interpolation operator,
see [7]. Here, and in what follows, C stands for a generic constant, independent of the functions
and parameters involved in the given inequality.

Vector functions can also be approximated using the the Nédélec interpolation operator Πh.
Let Eh be the set of edges in Th, while te is the unit tangent and Φe ∈ Vh is the basis function
associated with the edge e. Then, Πh is defined by

Πhv =
∑

e∈Eh

(∫

e

v · te ds

)
Φe .

Note that we can apply Πh only to sufficiently smooth functions. More specifically, the following
result holds, see [3].

Theorem 2.1. Let z ∈ H1
0(Ω) be such that ∇× z ∈ ∇× Vh. Then

(i) Πhz is well-defined,

(ii) ∇× z = ∇×Πhz,

(iii) ‖z −Πhz‖0 ≤ C h ‖z‖1.

For example, the second item above follows by the commutativity between the curl operator,
Πh, and its Raviart-Thomas counterpart ΠRT

h . More details on the above topics, as well as
further information regarding Nédélec finite elements, can be found in [18].

3. Edge Space Decompositions

The existence of certain stable decomposition of Vh is at the heart of the construction
of all auxiliary space Maxwell solvers. In this section, we give an overview of several such
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decompositions and establish their stability. Even though the following theoretical estimates
have been already essentially presented in [13, 15], we include them here for completeness, as
well as to emphasize the connections between the different approaches.

Our starting point is the following result which was established by Pasciak and Zhao in [19],
see also Lemma IV.2 in [26]. A careful examination of their argument reveals that the conclusion
holds for the general type of domains that we are considering in this paper.

Theorem 3.1. For any u ∈ H0(Ω; curl) there exists a z ∈ H1
0(Ω) such that ∇× z = ∇× u

which is bounded as follows

‖z‖0 ≤ C ‖u‖0 and ‖z‖1 ≤ C ‖∇ × u‖0 .

Proof. Let B be a ball containing Ω and set Ωc = B \ Ω. We can extend u to a function
ũ ∈ H0(B; curl) by setting ũ|Ωc = 0. Consider the Helmholtz decomposition

ũ = z̃ +∇p̃ ,

where p̃ ∈ H1
0 (B) can be defined as the unique solution of the variational problem

(∇p̃,∇q̃)0,B = (ũ,∇q̃)0,B ∀q ∈ H1
0 (B) .

Note that z̃ is divergence-free (by construction) and belongs to H0(B; curl). Since B is convex,
the space H0(B; curl) ∩ H(B; div) is continuously embedded in H1(B), see [9]. Therefore,
z̃ ∈ H1(B) and the following estimates hold:

‖z̃‖0,B ≤ ‖u‖0 , ‖z̃‖1,B ≤ C ‖∇ × u‖0 .

In Ωc, we have ∇p̃ = −z̃ ∈ H1(Ωc), so p̃ ∈ H2(Ωc). If Ωc has multiple connected components,
we can subtract the mean value of p̃ on each of them without changing ∇p̃. Thus, we can
assume without a loss of generality that the following Poincaré inequality holds:

‖p̃‖1,Ωc ≤ C ‖∇p̃‖0,Ωc . (3.1)

Since ∂Ω is Lipschitz, there exists an extension mapping from Ωc to B that is bounded simul-
taneously in ‖ · ‖1 and ‖ · ‖2, see [24]. Let p̃B ∈ H2(B) be the extension of p̃ ∈ H2(Ωc). Then
the function z̃ +∇p̃B is in H1(B) and it vanishes in Ωc. This means that z = (z̃ +∇p̃B)|Ω is
in H1

0(Ω), and clearly ∇× z = ∇× u. To complete the proof, use (3.1) and observe that

‖z‖0,Ω ≤ ‖z̃‖0,B + C ‖p̃‖1,Ωc ≤ ‖z̃‖0,B + C ‖∇p̃‖0,Ωc ≤ C ‖u‖0 ,

while
‖z‖1,Ω ≤ ‖z̃‖1,B + C ‖p̃‖2,Ωc ≤ ‖z̃‖1,B + C ‖∇p̃‖1,Ωc ≤ C ‖∇ × u‖0 . ¤

We apply Theorem 3.1 to a finite element function u = uh ∈ Vh. The corresponding
function z satisfies the requirements of Theorem 2.1 and therefore

∇× uh = ∇×Πhz .

This means that uh−Πhz ∈ Vh has a zero curl, and (2.2) tells us that it should equal ∇ph for
some ph ∈ Sh ⊕KN,h. Thus, we arrive at a decomposition of Vh with properties summarized
in the next proposition.
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Corollary 3.1. Any uh ∈ Vh can be decomposed as follows

uh = Πhz +∇ph ,

where z ∈ H1
0(Ω), ∇ × z = ∇ × uh, and ph ∈ Sh ⊕ KN,h. The following stability estimate

holds:
‖Πhz‖0 + ‖∇ph‖0 ≤ C ‖uh‖0 .

Proof. First, observe that ‖z‖1 ≤ C‖∇ × uh‖0 and the inverse inequality in Vh imply

h‖z‖1 ≤ C‖uh‖0 . (3.2)

Therefore, Theorem 2.1 (iii) shows

‖Πhz‖0 ≤ ‖z‖0 + ‖z −Πhz‖0 ≤ ‖z‖0 + Ch‖z‖1 ≤ C‖uh‖0 .

The desired estimate now follows by the triangle inequality. ¤

The above result (Corollary 3.1) can be viewed as a semi-discrete version of the H0(Ω; curl)
decomposition from [19]. There are several ways to further approximate the non-discrete com-
ponent z, thus ending up with various discrete stable decompositions. Two possible choices
are:

1. Approximate z with a zh ∈ Sh.

2. Approximate both z and ph on a different mesh.

The first choice above leads to the HX decomposition from [13], which we consider in the next
subsection. The second choice corresponds to the auxiliary mesh method and will be analyzed
at the end of this section.

3.1. The HX Decomposition

Although the stable decomposition theory that we consider in the present paper cannot
directly be applied to the definite Maxwell bilinear form (1.1) with variable coefficients, some
insights can nevertheless be gained even if we assume constant coefficients. In what follows, we
set α = 1 and β = τ , where τ is a nonnegative parameter.

Theorem 3.2. Any uh ∈ Vh admits a decomposition

uh = vh + Πhzh +∇ph ,

where vh ∈ Vh, zh ∈ Sh, ph ∈ Sh ⊕KN,h. The following stability estimate holds:

(h−2+ τ)‖vh‖20 + |||zh|||2τ + τ ‖∇ph‖20 ≤ C
(‖∇ × uh‖20 + τ ‖uh‖20

)
.

The above estimate is uniform with respect to the parameter τ ≥ 0. The norm ||| · |||τ stands
for one of the following expressions:

|||zh|||2τ =

{
‖zh‖21 + τ ‖zh‖20 (a)

‖∇ ×Πhzh‖20 + τ ‖Πhzh‖20 (b)
(3.3)
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Proof. Consider the decomposition of uh given by Corollary 3.1, i.e., uh = Πhz +∇ph. Let
zh ∈ Sh be a stable approximation of z in the sense of (2.3). Letting vh = Πh(z − zh), we
have

uh = vh + Πhzh +∇ph .

We first note that for any zh ∈ Sh, we have ∇×zh ∈ ∇×Vh. Since ∇×z = ∇×uh ∈ ∇×Vh,
applying Theorem 2.1 to z − zh gives

‖vh‖0 ≤ ‖(z − zh)− vh‖0 + ‖(z − zh)‖0
= ‖(z − zh)−Πh(z − zh)‖0 + ‖z − zh‖0
≤ C h ‖(z − zh)‖1 + C h ‖z‖1 ≤ C h ‖z‖1 .

Therefore, by Theorem 3.1 and (3.2),

(h−2+ τ)‖vh‖20 ≤ C (1 + τh2) ‖z‖21 ≤ C
(‖∇ × uh‖20 + τ ‖uh‖20

)
.

The estimate of zh in case (a) follows from (2.3) and (3.2). We have

‖zh‖1 ≤ C ‖z‖1 ≤ C ‖∇ × uh‖0 ,

and
‖zh‖0 ≤ ‖z‖0 + ‖z − zh‖0 ≤ C ‖uh‖0 .

On the other hand, for any zh ∈ Sh, recalling that ∇× zh ∈ ∇× Vh, Theorem 2.1 implies

‖∇ ×Πhzh‖0 = ‖∇ × zh‖0 ≤ C ‖zh‖1 ,

while the inverse inequality in Sh yields

‖Πhzh‖0 ≤ ‖zh −Πhzh‖0 + ‖zh‖0 ≤ C ‖zh‖0 .

The bound involving ph was already established in Corollary 3.1. ¤

Remark 3.1. The result of Theorem 3.2 holds for other stable approximations of z. For
example, we can choose zh = zH from a coarse subspace SH of Sh as long as H ' h (i.e. SH

and Sh have comparable mesh sizes).

In magnetostatic applications, it is useful to introduce the factor-space Vh/∇Sh which
contains the equivalence classes of finite element functions that differ by a discrete gradient.
Let [uh] ∈ Vh/∇Sh be the equivalence class containing uh ∈ Vh. By definition

‖∇ × [uh]‖0 = ‖∇ × uh‖0 and ‖[uh]‖0 = inf
ph∈Sh

‖uh −∇ph‖0 .

With this notation, we have the following gradient-free analog of the HX decomposition.

Corollary 3.2. For any [uh] ∈ Vh/∇Sh there are vh ∈ Vh and zh ∈ Sh, such that

[uh] = [vh] + [Πhzh] ,

and the following stability estimate holds:

h−2‖[vh]‖20 + ‖∇ × [Πhzh]‖20 ≤ C ‖∇ × [uh]‖20 .

This result follows from Theorem 3.2 applied to uh and the fact that ‖[vh]‖0 ≤ ‖vh‖0.
It implies that the space [ΠhSh] can be used to approximate the discretely divergence-free
elements of Vh, i.e. if uh is orthogonal to ∇Sh, then

inf
zh∈Sh

‖uh − [Πhzh]‖0 ≤ C h ‖∇ × uh‖0 .
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3.2. A Component-wise (Scalar) HX Decomposition

Let zh = (z1
h, z2

h, z3
h) and introduce

Π 1
h z1

h = Πh(z1
h, 0, 0) , Π 2

h z2
h = Πh(0, z2

h, 0) , Π 3
h z3

h = Πh(0, 0, z3
h) .

By construction then, we have

Πhzh =
3∑

k=1

Π k
h zk

h .

Using this representation in the HX decomposition, we end up with a different version that
utilizes only scalar subspaces. We refer to this decomposition as the “scalar” HX decomposition.
Similarly to 3.3(a), it gives rise to a block-diagonal matrix associated with the subspace Sh. A
magnetostatics result analogous to that of Corollary 3.2 is valid as well.

Theorem 3.3. Any uh ∈ Vh admits the decomposition

uh = vh +
3∑

k=1

Π k
h zk

h +∇ph ,

where vh ∈ Vh, zk
h ∈ Sh, ph ∈ Sh ⊕KN,h, which satisfies the following stability estimate

(h−2+ τ)‖vh‖20 +
3∑

k=1

|||zk
h|||2k,τ + τ ‖∇ph‖20 ≤ C

(‖∇ × uh‖20 + τ ‖uh‖20
)

.

The constant C is independent of the parameter τ ≥ 0. The norm |||.|||k,τ is defined by

|||zk
h|||2k,τ = ‖∇ ×Π k

h zk
h‖20 + τ ‖Π k

h zk
h‖20.

Proof. In the proof of Theorem 3.2 we showed that for any zh ∈ Sh

‖∇ ×Πhzh‖20 + τ ‖Πhzh‖20 ≤ C
(‖zh‖21 + τ ‖zh‖20

)
. (3.4)

Therefore,
|||zk

h|||2k,τ ≤ C
(‖zk

h‖21 + τ ‖zk
h‖20

)
.

The desired stability follows from

3∑

k=1

|||zk
h|||2k,τ ≤ C

3∑

k=1

(‖zk
h‖21 + τ ‖zk

h‖20
) ≤ C

(‖zh‖21 + τ ‖zh‖20
)

and the estimates established for 3.3(a). ¤

3.3. The HX Decomposition Involving Discrete Divergence

We first define the discrete divergence operator divh : Vh 7→ Sh as the unique solution to
the problem

(divhΠhzh, qh) = −(Πhzh,∇qh) (3.5)

for all qh ∈ Sh. The following result is readily seen.
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Lemma 3.1. We have
‖divhΠhzh‖0 ≤ C ‖zh‖1 .

Proof. The result follows from the definition of divh, the inverse inequality on Sh and the
approximation properties of Πh. We have

‖divhΠhzh‖20 = −(Πhzh,∇ divhΠhzh)

= (zh −Πhzh,∇ divhΠhzh) + (div zh, divhΠhzh)

≤ C ‖zh‖1‖divhΠhzh‖0 .

This completes the proof of the lemma. ¤

As proposed in [6], the above stability estimate allows us to modify the norm used in the
stability properties of the HX decomposition.

Theorem 3.4. Any uh ∈ Vh admits the decomposition

uh = vh + Πhzh +∇ph ,

where vh ∈ Vh, zh ∈ Sh, ph ∈ Sh ⊕KN,h satisfy the following stability estimates

(h−2+ τ)‖vh‖20 + |||zh|||2div, τ + τ ‖∇ph‖20 ≤ C
(‖∇ × uh‖20 + τ ‖uh‖20

)
.

The constant C is independent of the parameter τ ≥ 0. The norm |||.||div, τ is defined by

|||zh|||2div, τ = ‖∇ ×Πhzh‖20 + ‖divhΠhzh‖20 + τ ‖Πhzh‖20 .

We note that, for domains with no internal holes, the leading term ‖∇×Πhzh‖20+‖divhΠhzh‖20
of |||zh|||2div, τ gives rise to an invertible operator on Range (ΠhSh). However, Πh may have a
nontrivial kernel on Sh.

3.4. Auxiliary Mesh Decompositions

Consider a different mesh, TH , contained in Ω such that H is of comparable size as h, i.e.,
H ' h. Typically, such an auxiliary mesh is the restriction of a uniform grid to the interior
of the domain Ω. Let VH and SH be the Nédélec and piecewise linear finite element spaces
associated with TH . The following result was proved in [15]. It assumes that the domain has
no internal holes or tunnels.

Theorem 3.5. Any uh ∈ Vh admits the decomposition

uh = vh +∇qh + ΠhuH ,

where vh ∈ Vh, qh ∈ Sh, uH ∈ VH satisfy the following stability estimate uniformly in τ ≥ 0,

(h−2+ τ)‖vh‖20 + τ h−2‖qh‖20 + ‖∇ ×ΠhuH‖20 + τ ‖ΠhuH‖20 ≤ C
(‖∇ × uh‖20 + τ ‖uh‖20

)
.

Proof. Due to the assumptions on the auxiliary mesh TH , there is a pH ∈ SH such that

h−1‖ph − pH‖0 + ‖∇pH‖0 ≤ C ‖∇ph‖0 .

Similarly, let zH ∈ SH be an approximation to z such that

‖z − zH‖0 ≤ C h ‖z‖1 .
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Note that Πh is well defined on VH and that ∇ΠS
hpH = Πh∇pH where ΠS

h is the nodal
interpolation operator in Sh. Therefore, letting

vh = Πh(z −ΠHzH), qh = ph −ΠS
hpH , and uH = ΠHzH +∇pH ∈ VH ,

we arrive at the decomposition

uh = vh +∇qh + ΠhuH .

This time, the estimate of vh is more involved and requires manipulations on element level
described in detail in [15]. Applying this technique results in

‖Πh(z −ΠHzH)‖0 ≤ C h ‖z‖1 ,

which establishes the estimates

‖vh‖0 ≤ C h ‖∇ × uh‖0 and ‖vh‖0 ≤ C ‖uh‖0.
For qh, we have

‖qh‖0 ≤ ‖ph − pH‖0 + ‖pH −ΠS
hpH‖0 ≤ C h ‖∇ph‖0 ≤ C h ‖uh‖0 .

Finally, the triangle inequality and inverse estimates imply

‖ΠhuH‖0 = ‖uh − vh −∇qh‖0 ≤ C ‖uh‖0 and ‖∇ ×ΠhuH‖0 ≤ C ‖∇ × uh‖0 . ¤

Remark 3.2. The convergence of a two–level geometric multigrid (with Hiptmair smoothing)
follows as a special case of the above Theorem 3.5. This is the case since in geometric multigrid
the meshes are obtained by refinement of an initial coarse mesh, thus we can set (in Theorem
3.5) the auxiliary mesh TH to be a coarse sub-mesh of Th.

4. The Construction of Auxiliary Space Preconditioners

In this section we review the construction of auxiliary space preconditioners based on given
stable decompositions. We transition from operator to matrix notation, in order to clarify the
practical implementation of the algorithms, as well as to facilitate the implementation discussion
in the following section. Matrices will be typeset using a roman style font.

Let Ah be the stiffness matrix corresponding to a(·, ·) on Vh. The matrix representation of
the mapping

ϕ ∈ Sh 7→ ∇ϕ ∈ Vh

is commonly called the discrete gradient matrix further denoted by Gh. This matrix is usually
readily available since it simply describes the edges of Th in terms of its vertices: if e is an edge
with vertices v1 and v2, then the only two non-zero entries of Gh in the row corresponding to
e are

(Gh)e,v1 = −(Gh)e,v2 = 1 .

The interpolation operator Πh induces different matrices depending on which auxiliary
discrete space it is acting from. If {Ψj} spans a specific auxiliary space, the entries of the
corresponding matrix are computed by evaluating the Nédélec space degrees of freedom:

(Πh)ij =
∫

ei

Ψj · tei ds .
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For example, Gh is the matrix representation of the mapping Πh : ∇Sh 7→ Vh, with spanning
set {∇ϕj}, where {ϕj} is the nodal basis of Sh.

Suppose that we have a small number of auxiliary spaces {Vk,h} with certain norms ‖·‖Vk,h

such that {Πk,hVk,h} provide a stable decomposition of Vh for some operators Πk,h : Vk,h 7→
Vh. That is, for any uh ∈ Vh there are uk,h ∈ Vk,h such that

uh =
∑

k

Πk,huk,h and
∑

k

‖uk,h‖2Vk,h
≤ C ‖uh‖2Vh

. (4.1)

Let Πk,h and Ak,h be the matrices corresponding to the mapping Πh : Πk,hVk,h 7→ Vh and
the bilinear form that defines the norm ‖·‖Vk,h

, respectively. The auxiliary space preconditioner
based on (4.1) can be viewed as a Schwarz method with non-traditional subspaces involving
the above matrices, see [25]. For ease of presentation, in what follows, we concentrate on its
additive form. It is defined simply as

Bh =
∑

k

Πk,hBk,hΠT
k,h ,

where {Bk,h} are efficient preconditioners for {Ak,h}.
The following well-known result, see e.g. [13], states that if the auxiliary space operators Ak,h

bound the variationally defined ones (ΠT
k,hAhΠk,h), then (4.1) ensures that Bh is an optimal

preconditioner for the original matrix Ah.

Theorem 4.1. Assume (4.1) and let the following estimates hold

‖Πk,huk,h‖Vh
≤ C ‖uk,h‖Vk,h

. (4.2)

Also, let Bk,h be spectrally equivalent to A−1
k,h. Then, Bh is spectrally equivalent to A−1

h .

To illustrate the construction, consider the HX decomposition (3.3)a

(h−2+ τ)‖vh‖20 + ‖zh‖21 + τ ‖zh‖20 + τ ‖∇ph‖20 ≤ C ‖uh‖2Vh
,

where ‖uh‖2Vh
= a(uh, uh) with α = 1, β = τ . In this case the auxiliary spaces are V1,h = Vh,

V2,h = Sh and V3,h = Sh equipped with the following norms:

‖vh‖2V1,h
= (h−2+ τ)‖vh‖20 , ‖zh‖2V2,h

= ‖zh‖21 + τ ‖zh‖20 and ‖ph‖2V3,h
= τ‖∇ph‖20 .

The mappings {Πk,h} are defined accordingly as Π1,h = I, Π2,h = Πh and Π3,h = ∇ (i.e., the
gradient operator). These choices are justified, not only because of the above stability estimate,
but also because they satisfy (4.2). Indeed,

‖Π1,hvh‖Vh
= ‖vh‖Vh

≤ C ‖vh‖V1,h

follows by inverse inequality, and ‖Πhzh‖Vh
≤ C ‖zh‖V2,h

is the same as (3.4). Finally,

‖Π3,hph‖2Vh
= τ ‖∇ph‖2Vh

= ‖ph‖2V3,h
.

The last prerequisite of Theorem 4.1 is that the auxiliary space solvers Bk,h are spectrally
equivalent to A−1

k,h. This is satisfied if B1,h corresponds to a smoothing based on Ah (since A1,h

is a scaled mass matrix spectrally equivalent to the diagonal of Ah), while B2,h and B3,h are
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efficient (AMG) preconditioners for the parameter dependent vector Poisson–like matrix A2,h

and the scalar Poisson matrix A3,h, respectively.
Similar considerations can be applied to all decompositions presented in the previous section,

and below we list several of the resulting additive auxiliary space preconditioners. In all cases
Rh denotes a point smoother for Ah (such as Gauss-Seidel). Note that we define the methods
for general coefficients, even though the stability of the decompositions, and therefore Theorem
4.1, was established only for constant α and β.

(A) HX decomposition (3.3)a with Poisson auxiliary matrices:

Bh = Rh + GhBv,hGT
h + ΠhBv,hΠT

h ,

where Bv,h and Bv,h correspond to AMG V-cycles for the Poisson problems (β∇u,∇v)
and (α∇u,∇v) + (βu,v) discretized on Sh and Sh, respectively.

(B) HX decomposition (3.3)b with variational auxiliary matrices:

Bh = Rh + GhBv,hGT
h + ΠhBv,hΠT

h ,

where Bv,h, Bv,h correspond to AMG V-cycles for GT
h AhGh and ΠT

h AhΠh, respec-
tively. The magnetostatics form reads (cf. Corollary 3.2)

Bh = Rh + ΠhBv,hΠT
h .

(C) Scalar HX decomposition from Theorem 3.3:

Bh = Rh + GhBv,hGT
h +

3∑

k=1

Πk
h Bk

v,h (Πk
h)T ,

where Bk
v,h correspond to AMG V-cycles for (Πk

h)T Ah Πk
h.

(D) HX decomposition with discrete divergence from Theorem 3.4:

Bh = Rh + GhBv,hGT
h + ΠhBv,hΠT

h ,

where Bv,h, Bv,h correspond to AMG V-cycles for GT
h AhGh and ΠT

h ÂhΠh respectively.
Here, the matrix Âh is obtained by discretizing a(uh,vh) + (divhuh, divhvh) in Vh

with possible lumping of the mass matrix inverse (see (3.5)).

(E) Auxiliary mesh decomposition:

Bh = Rh + GhRv,hGT
h + ΠhBHΠT

h

where Rv,h is a point smoother for GT
h AhGh, and BH corresponds to a structured

mesh geometric multigrid on VH .

The above list offers a variety of preconditioners for the definite and semi-definite Maxwell
problems which are optimal, at least in the case of constant coefficients. In our experience, the
nodal auxiliary space approaches (B) and (C) offer the best combination of robust performance
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and low requirements for additional discretization information.

5. Parallel Implementation

We recently developed a new parallel auxiliary space Maxwell solver (AMS) in the hypre
library [1]. AMS is based on the HX decomposition methods (A), (B) and (C) from the previous
section and employs hypre’s scalable algebraic multigrid solver BoomerAMG [10].

To solve a definite Maxwell problem, the user provides the linear system, the discrete gra-
dient matrix and the vertex coordinates, as described in the following code segment:

HYPRE_Solver solver;

HYPRE_AMSCreate(&solver);

/* Set discrete gradient matrix */

HYPRE_AMSSetDiscreteGradient(solver, G);

/* Set vertex coordinates */

HYPRE_AMSSetCoordinateVectors(solver, x, y, z);

HYPRE_AMSSetup(solver, A, b, x);

HYPRE_AMSSolve(solver, A, b, x);

The interpolation matrices and coarse grid operators are then constructed automatically. The
Poisson matrices on Sh and Sh can be utilized when available. A simplified magnetostatic
mode corresponding to Corollary 3.2 is also supported.

The construction of Πh in AMS uses only Gh and the coordinate vectors x, y and z. Specif-
ically, if zh = (z1, z2, z3) is a vector of linear functions and e is the edge with vertices v1 and
v2, then ∫

e

zh · te ds =
zh(v1) + zh(v2)

2
· (v2 − v1) .

If zh is the x-basis function at v1 or v2, we get
∫

e
zh · te ds = 1

2 (Ghx)e. Therefore,

Πh =
[
Π1

h, Π2
h, Π3

h

]

where each block has the same sparsity structure as Gh and entries

(Π1
h)e,v1= (Π1

h)e,v2=
(Ghx)e

2
, (Π2

h)e,v1= (Π2
h)e,v2=

(Ghy)e

2
, (Π3

h)e,v1= (Π3
h)e,v2=

(Ghz)e

2
.

The behavior of the algorithm can be influenced by a number of tuning parameters. In
their default settings, AMS is a multiplicative solver based on decomposition (B), which uses a
convergent parallel hybrid smoother and single BoomerAMG V-cycles (with aggressive HMIS
coarsening) for the algebraic problems in Sh and Sh. We note that these parameters were
optimized with respect to the total time to solution. Different choices are available, which give
methods with better convergence properties (but slower in practice).

6. Numerical Experiments

6.1. Constant Coefficients

This section is devoted to assessing the numerical performance and parallel scalability of our
implementation on a variety of definite and semi-definite Maxwell problems. Sequential results
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Fig. 6.1. Initial mesh and time to solution for the constant coefficients problem on the unit cube: AMS

versus a Jacobi preconditioner (DS-CG).

Fig. 6.2. The unit cube split into two symmetrical regions. Shown are the initial tetrahedral meshes.

with an earlier version of the method can be found in [17]. In all experiments we use AMS as a
preconditioner in a conjugate-gradient (CG) iteration. The convergence tolerance corresponds
to reduction in the preconditioned residual norm, which is typically set to 10−6.

We tried to keep the problem size per processor in our scaling tests approximately the same,
while increasing the number of processors. The unstructured nature of the problems, however,
led to somewhat varying load balance. The following notation was used to record the results:
np denotes the number of processors in the run, N is the total problem size, nit is the number
of AMS-CG iterations, while tsetup, tsolve and t denote the average times (in seconds) needed
for setup, solve, and time to solution (setup plus solve) respectively. The code was executed on
a machine with 2.4GHz Xeon processors. In these settings, an algorithm with perfect (weak)
scalability will require the same time to run, regardless of how many processors are used.

We first consider a simple problem with α = β = 1. The domain is the unit cube meshed with
an unstructured tetrahedral mesh. The initial coarse mesh, before serial or parallel refinement
is shown in Figure 6.1. The input matrices and vectors for this, and following similar tests,
were constructed in parallel using the scalable finite element package aFEM.

In Table 6.1 we report scalability results and compare the AMS preconditioner with the
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Table 6.1: Numerical results for the problem with constant coefficients (α = β = 1) on a cube.

AMS AMG

np N nit tsetup tsolve N nit tsetup tsolve

default solver parameters

1 105,877 11 2.5s 4.9s 17,478 13 0.1s 0.3s

2 184,820 12 3.5s 8.4s 29,059 14 0.2s 0.5s

4 293,224 13 2.9s 6.9s 43,881 15 0.1s 0.4s

8 697,618 14 4.2s 9.7s 110,745 18 0.2s 0.7s

16 1,414,371 16 4.6s 11.0s 225,102 18 0.3s 0.8s

32 2,305,232 16 3.9s 9.7s 337,105 20 0.4s 0.9s

64 5,040,829 18 5.2s 12.8s 779,539 22 0.5s 1.4s

128 10,383,148 19 6.5s 15.9s 1,682,661 23 0.8s 1.8s

256 18,280,864 21 7.3s 17.0s 2,642,337 25 1.1s 2.1s

512 38,367,625 23 9.0s 22.0s 5,845,443 28 1.7s 2.8s

1024 78,909,936 25 17.9s 33.2s 12,923,121 30 4.0s 4.8s

alternative solver parameters

1 105,877 4 5.5s 8.8s 17,478 6 0.4s 0.4s

2 184,820 4 9.8s 13.5s 29,059 7 0.7s 0.7s

4 293,224 4 10.5s 10.8s 43,881 7 1.2s 0.8s

8 697,618 5 21.2s 18.3s 110,745 7 2.1s 1.1s

16 1,414,371 5 38.0s 20.5s 225,102 7 3.9s 1.3s

32 2,305,232 5 53.8s 19.4s 337,105 8 7.3s 1.9s

64 5,040,829 6 79.3s 25.3s 779,539 8 10.7s 2.5s

BoomerAMG preconditioner in hypre applied to a Laplace problem discretized with linear finite
elements on the same mesh. The data shows that the behavior of AMS is qualitatively similar
to that of BoomerAMG. This trend is often observed in our experiments, and implies that
any future improvements in (standard, i.e., designed for elliptic problems) AMG technology
will lead to further improvements in AMS. In our view, this is a main advantage of the HX
decomposition approach compared with the alternatives discussed earlier.

Since the problem has constant coefficients, we can apply Theorem 4.1 and conclude that the
preconditioner should be optimal. With the default parameters, the number of AMS iterations
increases slightly, but the total run time grows slowly and remains less than a minute. On
the other hand, we can use an alternative set of parameters, see [16], which does indeed give
constant number of iterations, but also leads to (almost linearly) increasing setup time.

While not perfect, the scalability of the AMS preconditioner is enough to significantly out-
perform traditional solvers. This is clearly demonstrated in Figure 6.1, where we compare AMS
with the commonly used diagonally-scaled CG (or DS-CG) method. We only include results
up to 256 processors, since on 512 processors (around 38M unknowns) DS-CG did not converge
in 100, 000 iterations.
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Table 6.2: Number of iterations for the problem on a cube with α and β having different values in the

regions shown in Figure 6.2.

np N p t

−8 −4 −2 −1 0 1 2 4 8

α = 1, β ∈ {1, 10p}
1 83,278 9 9 9 9 9 9 10 11 11 5s

2 161,056 10 10 10 10 10 10 10 11 11 9s

4 296,032 11 12 12 12 11 11 12 13 13 9s

8 622,030 13 13 13 12 12 12 13 15 14 12s

16 1,249,272 13 13 13 13 13 13 13 15 14 13s

32 2,330,816 15 15 15 15 15 15 15 16 15 14s

64 4,810,140 16 16 16 16 16 15 16 18 17 17s

128 9,710,856 16 16 16 16 16 16 16 17 17 23s

256 18,497,920 19 19 19 19 19 19 19 21 20 27s

512 37,864,880 21 20 20 20 20 20 20 23 22 32s

1024 76,343,920 20 20 20 20 20 20 20 21 21 56s

β = 1, α ∈ {1, 10p}
1 83,278 10 10 11 10 9 11 12 13 13 6s

2 161,056 10 10 11 10 10 11 12 12 12 10s

4 296,032 11 11 13 12 11 13 14 15 15 11s

8 622,030 13 13 15 14 12 14 16 16 16 14s

16 1,249,272 13 13 14 14 13 14 15 16 16 15s

32 2,330,816 14 15 16 16 15 17 17 18 18 16s

64 4,810,140 16 17 18 17 16 18 19 19 20 20s

128 9,710,856 14 17 17 17 16 18 18 18 19 26s

256 18,497,920 17 19 20 20 19 21 21 22 22 29s

512 37,864,880 19 20 22 22 20 23 24 24 25 36s

1024 76,343,920 17 20 21 21 20 22 23 22 23 76s

6.2. Definite Problems with Discontinuous Coefficients

In this subsection we explore several definite Maxwell problems, where the coefficients are
discontinuous and have large jumps. We consider both model problems and real applications.

In the first experiment, we choose α and β to have different values in two regions of the
unit cube. The geometry and the numerical results are presented in Figure 6.2 and Table 6.2.
We chose this particular test problem, because it was reported to be problematic for geometric
multigrid [11].

The iteration counts in Table 6.2 are comparable to the constant coefficient case in Table
6.1. Furthermore, the sensitivity to the magnitude of the jumps in the coefficients appears to
be very mild. We can conclude that even though the existing theory does not cover variable
coefficients, the actual performance of AMS does not degrade in this particular case.

The solution times in Table 6.2 also compare favorably to the previous experiment, and
hint that AMS may enable the fast solution of very challenging problems. For example, we
solved a problem with more than 76 million unknowns and 8 orders of magnitude jumps in the
coefficients in less than a minute.

Next, we report results from a simulation of electromagnetic diffusion of a copper wire in
air using the MHD package described in [22]. In this problem, β corresponds to the electric
conductivity, which has a jump: βair = 10−6βcopper, while α ≡ 1. The geometry, and the
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Fig. 6.3. Initial mesh and time to solution for the copper wire model.
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time needed for the Maxwell solves at each time step during the simulation (right).

initial mesh are presented in Figure 6.3, where the copper region is colored in red. Unlike the
previous problems, here we deal with hexahedral elements as well as mixed natural and essential
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Table 6.3: Numerical results for the semi-definite problem on a cube with α = 1 and β = 0.

np N nit tsetup tsolve

1 105,877 11 2.0s 3.7s

2 184,820 12 2.8s 6.1s

4 293,224 13 2.3s 5.1s

8 697,618 15 3.3s 7.3s

16 1,414,371 16 3.8s 7.9s

32 2,305,232 17 3.3s 7.0s

64 5,040,829 19 4.5s 9.2s

128 10,383,148 20 5.4s 11.1s

256 18,280,864 23 5.9s 13.1s

512 38,367,625 24 10.4s 14.9s

1024 78,909,936 26 10.8s 21.6s

Table 6.4: Initial mesh and numerical results for the problem on a cube with α = 1 and β equal to 1

inside and 0 outside the interior cube.

np N nit tsetup tsolve

1 90,496 11 2.0s 4.7s

2 146,055 12 2.7s 7.3s

4 226,984 13 2.3s 6.3s

8 569,578 15 3.7s 9.3s

16 1,100,033 16 3.9s 10.8s

32 1,806,160 17 3.4s 9.1s

64 4,049,344 19 5.1s 12.8s

128 8,123,586 20 6.7s 15.8s

256 14,411,424 22 6.5s 17.2s

512 30,685,829 25 9.5s 22.6s

1024 61,933,284 24 19.5s 44.8s

boundary conditions. The convergence tolerance for this test was lowered to 10−9.
To investigate the scalability of AMS, we discretized the problem in parallel, keeping ap-

proximately 70K edges per processor. The plot in Figure 6.3 shows that the auxiliary space
preconditioner scales well, and can be more than 25 times faster than DS-CG when a large
number of processors are used. Note that this problem arises in the context of time discretiza-
tion, and the performance of DS-CG will degrade further for larger time-steps. In contrast,
AMS is not sensitive to the size of the time step and allows larger jumps in the conductivity.
In fact, it allows setting βair = 0, as shown later in Section 6.3.

We remark that switching from the default options to the version of AMS corresponding
to decomposition (C) from Section 4 in a large run of this problem (N = 73M, np = 1024)
resulted in 38% improvement in the run time.

Another application in the same simulation settings is shown in Figure 6.4. Here, the mesh
is locally refined and several materials are present. The coefficient β varies in a scale spanning
seven orders of magnitude. The convergence tolerance is set to 10−8, and the problem size
is 372, 644 on 12 processors. The traditionally used DS-CG solver needed 409 seconds and
performed 16,062 iterations to converge. AMS solved the problem 18.6 seconds (27 iterations).
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Fig. 6.6. Streamlines of the magnetic fields generated by interactions between two magnetic orbs.

In addition, the steady convergence rate shown on the plot in Figure 6.4 allowed setting the
convergence tolerance even lower, which was important to the users in this case.

Our final example involves the simulation of a magnetically-driven compression generator,
where the definite Maxwell problem is coupled with hydrodynamics on each time step. For
more details we refer to [22,23]. In this calculation, the mesh deforms in time, which produces
hexahedral elements with bad aspect ratios as shown in Figure 6.5. A number of different
materials occupy portions of the domain, which results in large jumps in β and small variations
in α. The magnitude of these jumps changes throughout the course of the calculation.

The full simulation run of this model can take hours of execution time. Therefore, we
considered a coarse discretization having approximately 165K edges on 8 processors. This
problem required around 1500 time steps, and took more than 9 hours using DS-CG. As plotted
in Figure 6.5, the performance of AMS was much more stable, which reduced the total simulation
time to less than 4 hours.

6.3. Semi-definite Problems

In this subsection we report results for problems where β is identically zero in the domain
(Table 6.3) or in part of it (Table 6.4). In both cases we set α = 1.

The iteration counts in Table 6.3 are very similar to those in Table 6.1. Since β = 0 we
employ the magnetostatic version of decomposition (B) from Section 4.

Table 6.5: Initial mesh and numerical results corresponding to vertical attraction between two orbs.

np N nit tsetup tsolve

2 397,726 10 4.71s 22.00s

16 2,007,616 12 5.34s 17.41s

128 13,143,442 13 5.57s 16.88s

1024 95,727,110 14 9.39s 19.68s
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This results in significant reduction in the setup and solution times compared to Table 6.1,
while the overall scalability remains very good.

When β is zero only in part of the domain, we cannot use the magnetostatic version of
decomposition (B). The results in Table 6.4 are nevertheless very good and comparable to the
experiments with constant coefficients.

Finally, as a more realistic magnetostatic test case, we consider the modeling of the inter-
action between two magnetic orbs, see Figure 6.6. These are just magnets with poles on the
sides which, for simplicity, are modeled by current loops. This means that we are solving a
semi-definite problem with α = 1, β = 0 and right-hand side which traces the ellipsoidal geom-
etry of each orb. To insure that this right-hand side is compatible, we first remove its gradient
components using a Poisson solve.

We illustrate the behavior of the solver on these types of problems by simulating the vertical
attraction between the orbs corresponding to the last configuration in Figure 6.6. Here we used
the version of AMS based on the “scalar” HX decomposition (C) from Section 4. Table 6.5
shows the initial locally refined mesh and reports the convergence results. They are another
confirmation of the scalable behavior of AMS on large-scale magnetostatic problems.

7. Conclusions

The auxiliary space AMG based on the recent Hiptmair-Xu decomposition from [13] provides
a number of scalable algebraic preconditioners for a variety of unstructured definite and semi-
definite Maxwell problems.

Our AMS implementation in the hypre library requires some additional user input besides
the problem matrix and r.h.s; namely, the discrete gradient matrix and the coordinates of
the vertices of the mesh. It can handle both variable coefficients and problems with zero
conductivity. In model simulations the performance on such problems is very similar to that on
problems with α = β = 1. In MHD applications, AMS-CG can be orders of magnitude faster
than DS-CG.

The behavior of AMS on Maxwell problems is qualitatively similar to that of AMG on (scalar
and vector) elliptic problems discretized on the same mesh. Thus, any further improvements
in AMG, will likely lead to additional improvements in AMS.

Acknowledgments. This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
UCRL-JRNL-237306.
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