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Abstract

This paper addresses fully space-time adaptive magnetic field computations. We de-

scribe an adaptive Whitney finite element method for solving the magnetoquasistatic for-

mulation of Maxwell’s equations on unstructured 3D tetrahedral grids. Spatial mesh re-

finement and coarsening are based on hierarchical error estimators especially designed for

combining tetrahedral H(curl)-conforming edge elements in space with linearly implicit

Rosenbrock methods in time. An embedding technique is applied to get efficiency in

time through variable time steps. Finally, we present numerical results for the magnetic

recording write head benchmark problem proposed by the Storage Research Consortium

in Japan.
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1. Introduction

The magnetoquasistatic approximation (MQS) arises from Maxwell’s equations by dropping
the displacement current. This is reasonable for many electrical machines, generators and
transformers which work in the low-frequency high-conductivity range. Wave propagation can
then be neglected and vanishing tangential traces are used for artificial boundary conditions [18].

In this work we develop a fully adaptive algorithm to solve general three-dimensional non-
linear MQS problems. The local accuracy of the numerical solution is controlled by means of a
posteriori error estimates in space and time. In the past, computational electromagnetics has
mainly focused on efficiency by (i) applying advanced multigrid algorithm with optimal com-
plexity to solve large scale linear systems, e.g., [11, 17, 19, 28, 34], (ii) adapting spatial grids by
means of a posteriori error estimators [8,12,32,37], and to some extent by (iii) optimizing time
grids in accordance with local error control [13, 15, 16, 40]. An interesting alternative approach
is the goal-oriented weighted dual method [10]. Often, in addition, highly parallelized strategies
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are applied. On the other side the reliability question, that is, how accurate is the numerical
solution computed, has received much less attention in MQS simulation.

There is nowadays an increasing emphasis on all aspects of adaptively generating a space-
time grid that evolves with the solution. Equally important is the development of efficient
higher-order one-step integration methods which can handle very stiff differential-algebraic elec-
tromagnetic problems and which allow us to accommodate a grid in each time step without
any specific difficulties. Combined space-time adaptivity is widely used in computational fluid
dynamics and thermodynamics, see, e.g., [39].

Recently, first investigations for space and time adaptive MQS solvers have been made in [42]
where first-order approximations in time and space are considered and in [41] where higher-order
embedded SDIRK-methods are used for first-order spatial discretizations. In [31] a new variable
step-size one-step Rosenbrock methods ROS3PL is coupled with lowest-order edge elements to
solve linear MQS problems. Here, we extent the latter approach to nonlinear material laws.
We wish to adaptively refine space-time grids in order to capture local effects efficiently and
reliably in accordance to imposed temporal and spatial tolerances. We apply the adaptive Rothe
method based on the discretization sequence first in time then in space, in contrast to the usual
Method of Lines approach (see, e.g., [29] and references therein). The spatial discretization
is considered as a perturbation of the time integration process. Implementations have been
done in the KARDOS library [2, 23], which provides a suitable programming environment for
adaptive algorithms to solve nonlinear time-dependent PDEs.

2. Problem Class

Introducing a vector potential A(x, t) for the magnetic induction B = ∇×A, we consider
the equations of magnetoquasistatics for isotropic materials in the form

σ∂tA+∇×
(
µ−1(|∇×A|)∇×A

)
= Js, in Ω× (0, T ],

A× n = 0, on ∂Ω× (0, T ],

A(·, 0) = A0, on Ω (2.1)

where σ is the scalar electric conductivity and Js(x, t) denotes the applied current density
which has to satisfy the consistency condition ∇ · Js = 0. The scalar magnetic permeability
µ is in general nonlinear and is defined by the material relation H = µ−1(|B|)B between the
magnetic field H and the magnetic induction B. Here, | · | stands for the usual Euclidean
vector norm. Due to physical arguments, the continuous function µ−1(s) : R+

0 → R+ satisfies
the following properties [35]:

0 < µ−1 ≤ µ−1(s) ≤ µ−1
0 for all s ,

f(s) = sµ−1(s) is strictly monotone and Lipschitz continuous, (2.2)

where µ0 =4π×10−7Hm−1 is the permeability in vacuum.
Since there may be insulating regions with σ = 0, system (2.1) is in general an elliptic-

parabolic initial-boundary value problem. The physically relevant quantities which can be
derived from A are the magnetic induction B =∇×A and the eddy current density JE =
−σ∂tA. The vector potential formulation (2.1) is widely used in electromagnetic computations
since it has no problems with multiple connected conductive domains. However, there are
two essential difficulties: the uniqueness of A in parts of the domain where σ = 0, and the
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consistency of Js which has to be ensured on each spatial mesh. A detailed discussion of the
latter can be found in [36]. For gauging, we use a (small) positive conductivity σε = ε> 0 in
the non-conducting regions. A rigorous justification of this regularization is given in [5]. Using
a strictly positive conductivity in the whole computational domain Ω, unique solvability of the
slightly perturbed problem (2.1) in the space H0(curl) can be assumed.

3. Linearly Implicit Methods in Time

To approximate the vector potential A(·, t) defined in (2.1) by values An ≈ A(·, tn) at a
certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (3.1)

we apply an s-stage linearly implicit one-step method of Rosenbrock type (see [26], formula
IV.7(7.27), or [29], formula V.1(V.12)). This has the form

An+1 = An +
s∑

i=1

miAni, (3.2)

with stage values Ani, i = 1, . . . , s, determined from the linear equations

∇× (T n∇×Ani) +
σ

τnγ
Ani = Rni, in Ω,

Ani × n = 0, on ∂Ω, (3.3)

with the time step τn = tn+1 − tn and γ being the stability constant of the method. The
symmetric matrix T n is derived from a linearization of the nonlinear operator ∇×(µ−1(|∇×
A|)∇× A) with respect to A at time tn

T n = µ−1(|∇×An|) I + (µ−1)′(|∇×A|)|A=An

(∇×An)(∇×An)T

|∇×An|
. (3.4)

Here, I denotes the 3×3-identity matrix and (∇×An)(∇×An)T is a 3×3-matrix of rank 1.
Asymptotic analysis shows T n → µ−1(0) I for |∇×An| → 0 [6]. The right hand side Rni in
(3.3) is defined by

Rni = −∇×
(
µ−1(|∇×Ai|)∇×Ai

)
+ Js(·, ti)

− σ

i−1∑
j=1

cij
τn
Anj + τnγi∂tJs(·, tn), (3.5)

where

Ai = An +
i−1∑
j=1

aijAnj and ti = tn + αiτn.

Observe that the system (3.3) has to be solved successively for i=1, . . . , s. Since T n does not
depend on the stage number i, the stiffness matrix of the linear systems has to be computed
only once for all stage values. It is the fundamental idea of Rosenbrock methods that an
iterative Newton method as known from implicit Runge-Kutta methods is no longer required.
In addition, the stage values Ani can be also used to derive approximations Zn ≈ ∂tA(·, tn)
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of the same order to the first derivative and therefore for the eddy current density JE . We
compute

Zn+1 = Zn +
s∑

i=1

mi

 1
τn

i∑
j=1

(cij − sij)Anj + (di − 1)An

 . (3.6)

The stage number s and the defining formula coefficients mi, cij , γi, aij , di, sij , αi, and γ are
chosen to obtain a desired order of consistency and good stability properties for differential-
algebraic equations [29].

The A-stable Rosenbrock solver ROS3P from [30] was constructed for parabolic problems.
For differential-algebraic equations (as (2.1) with σ= 0 somewhere in computational domain),
we would like to have also L-stability and the property of stiff accuracy [26]. Clearly, these
new features are also valuable for singular perturbed problems, that is when a small σ is used
in the insulation region. The arising system is then very stiff and behaves like a differential-
algebraic equation. For this, we have designed a new third-order Rosenbrock solver ROS3PL.
Special care has to be taken to avoid order reduction - a phenomenon which is not induced
by lack of smoothness of the solution but rather by the presence of powers of differential
operators in the local truncation error. Fortunately, there are conditions which imply also
higher order of convergence (see [29] and [30] for more details). In practical problems, the
nonlinear function µ−1(|∇× A|) is given by a set of measured data points which has to be
interpolated to obtain a continuous B-H-curve. In consequence, only an approximation of the
derivative (µ−1)′(| ∇× A|)|A=An

is available to compute T n from (3.4). Thus, it is worth
satisfying additional conditions, that is conditions for W-methods, to be more robust with
respect to perturbed Jacobians. The original idea of W-methods is to ensure the classical order
for Rosenbrock methods for all approximations of the Jacobian ([26], section IV.7, p. 114).
Here, we ensure third-order accuracy for approximations of the form T̂ n = T n + O(τn). It
turns out that such a method exists with s=4 and three function evaluations only. The set of
coefficients for ROS3PL is given in Tab. A1 in the appendix.

Rosenbrock methods offer a simple way to estimate the local error. A second solution Ân+1

of inferior order, say p̂, can be computed by replacing the original weights mi by m̂i in (3.2).
In order to take into account the scale of the problem, the local error estimator is defined by
the weighted root mean square norm

rn+1 =

(
‖An+1 − Ân+1‖2L2(Ω)

ATOL+RTOL ‖An+1‖2L2(Ω)

)1/2

. (3.7)

The tolerances ATOL and RTOL have to be selected carefully to furnish meaningful input for
the error control. The estimator can be used to propose a new time step by

τn+1 =
τn
τn−1

(
TOLt rn
rn+1 rn+1

)1/(p̂+1)

τn, (3.8)

where TOLt is a desired tolerance prescribed by the user [25]. If rn+1 > TOLt the step is
rejected and redone. Otherwise the step is accepted and we advance in time. The order of the
embedded solution of ROS3PL is p̂=2. Rosenbrock methods have been successfully applied to
linear and to nonlinear magnetic field problems [16,31].
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4. Multilevel Edge Elements in Space

We employ a multilevel finite element method based on Nédélec’s curl-conforming ansatz
functions [4, 33] to solve the s linear systems (3.3) in each time step. This enforces the typical
tangential continuity of the vector potential An across interelement boundaries. Families of
shape-regular tetrahedral meshes are generated by repeated refinement of initial triangulations
T 0

n+1 at tn+1, n = 0, . . . ,M −1. So, the solution space is replaced by sequences of discrete
spaces with successively increasing dimension to improve their approximation property. After
a successful time step we coarsen the mesh in regions where degrees of freedom are no longer
needed. To steer local refinement and coarsening, we compute a posteriori error estimates
based on a hierarchical decomposition. Further, the information about the global accuracy of
the finite element solution is also used to balance the spatial and temporal errors during our
adaptive time stepping procedure.

Adaptive multilevel methods have proven to be a useful tool for drastically reducing the
size of the arising linear algebraic systems and to achieve high and controlled accuracy of the
spatial discretization [21, 29]. For stationary and time-harmonic Maxwell problems, they have
been considered in [6, 7, 9, 38]. In [31], we have extended hierarchical error estimation from [9]
to linear MQS approximations. Due to the linearly implicit nature of Rosenbrock methods, this
approach can be directly carried over to nonlinear MQS.

Let T 0
n+1 be an admissible initial tetrahedral mesh at time tn+1 with a characteristic mesh

size h> 0 and NDh
q be the associated global H0(curl)-conforming space of edge elements of

order q ∈ N. For any tetrahedron T the local spaces are given by

NDq(T ) = (Πq−1(T ))3 +
{
p ∈ (Πq(T ))3 : xTp(x) = 0 ∀x ∈ T

}
, (4.1)

where Πk(T ) denotes the space of polynomials of degree at most k over T .
Considering the lowest order case q = 1, the Galerkin approximation Ah

ni ∈ ND
h
1 of the

stage values Ani ∈H0(curl), i = 1, . . . , s, satisfies the weak formulation

bn(Ah
ni,V

h) = (Rni,V
h) ∀V h ∈NDh

1 , (4.2)

where the bilinear form bn(·, ·) is defined as

bn(Ah
ni,V

h) = (T n∇×Ah
ni,∇×V

h) +
(

σ

τnγ
Ah

ni,V
h

)
and (·, ·) stands for the usual scalar product in L2(Ω). A local basis of lowest order edge
elements on a tetrahedron T can be explicitly derived from the barycentric coordinate functions
λi, i = 1, . . . , 4, of T [4]:

ND1(T ) = span{φ1, . . . ,φ6}, φk = λi∇λj − λj∇λi, (4.3)

where φk is associated with edge k defined by endpoints i and j. We note that the operator
associated with the bilinear form bn(·, ·) is independent of the stage level i, and thus the calcula-
tion of the corresponding stiffness matrix is required only once within each time step. The linear
systems are efficiently solved by an AMG solver with Hiptmair smoother [28] implemented in
the package ML of the Trilinos library [27].

After computing approximations Ah
ni to all stage values Ani from (4.2), a posteriori error

estimates for the approximate Rosenbrock solution Ah
n+1 ∈ ND

h
1 can be used to give specific
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assessment of the error distribution and to improve the spatial discretization. We want to
estimate the error An+1 −Ah

n+1 caused by the interpolation error of the initial value An and
by the spatial approximation to all stage values Ani ∈H0(curl), i = 1, . . . , s. Here, An has to
be understood as error-controlled finite element approximation on the finest mesh Tn at time
tn.

We define a hierarchical decomposition

NDh
2 =NDh

1 ⊕ ÑD
h

2 (4.4)

where ÑD
h

2 is the surplus space needed to extend the space NDh
1 to higher order. The idea

of a hierarchical error estimator is to bound the spatial error by evaluating its components in

the space ÑD
h

2 only. For this, we define an a posteriori error estimator Eh
n+1 ∈ ÑD

h

2 as

Eh
n+1 = Eh

n0 +
s∑

i=1

miE
h
ni (4.5)

with Eh
n0 approximating the projection error of the initial value, i.e., the distance between An

taken on the finest mesh Tn at time tn and its approximation Ah
n in NDh

1 ,

bn(Eh
n0,Φ) = bn(An −Ah

n,Φ), ∀Φ ∈ ÑD
h

2 (4.6)

and Eh
ni estimating the spatial error of the stage value Ah

ni

bn(Eh
ni,Φ) = (Rh

ni,Φ)− bn(Ah
ni,Φ), ∀Φ ∈ ÑD

h

2 (4.7)

where
Rh

ni =Rni(Ah
n1 +Eh

n1, . . . ,A
h
ni−1 +Eh

ni−1).

Solving (4.6)-(4.7) still encounters a sequence of s+1 large linear problems in the space of
hierarchical surpluses. From many practical computations, we have experienced that using the
approximate error estimator

Eh
n+1 ≈ Ẽ

h

n+1 = Eh
n0 +

1
γ
Eh

n1 , (4.8)

that is an error estimator for the embedded, locally second order linearly implicit Euler solution

Ah,euler
n+1 = Ah

n +Ah
n1/γ,

is quite efficient. This yields the following simplified error equation for Ẽ
h

n+1 ∈ ÑD
h

2

bn(Ẽ
h

n+1,Φ) = bn(An −Ah,euler
n+1 ,Φ) +

1
γ

(Rh
n1,Φ), ∀Φ ∈ ÑD

h

2 . (4.9)

Rh
n1 can be computed from (3.5) as

Rh
n1 = −∇×

(
µ−1(|∇×Ah

n|)∇×A
h
n

)
+ Js(·, tn) + τnγ1∂tJs(·, tn) .

Although we have reduced the number of error equations considerably, we still face a fully

coupled system over the surplus space ÑD
h

2 in (4.9). Following the approach given in [9], we
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take further advantage of a localization strategy. The idea is to replace the bilinear form bn(·, ·)
on the left hand side in (4.9) by a spectrally equivalent preconditioner cn(·, ·) in the surplus
space. This is described next.

Defining on each triangle T with barycentric coordinate functions λi, i = 1, . . . , 4, the basis
functions

φ̃ij = λi∇λj + λj∇λi, 1 ≤ i < j ≤ 4

φ̃
(1)

ijk = λkλi∇λj + λkλj∇λi, 1 ≤ i < j < k ≤ 4

φ̃
(2)

ijk = λkλi∇λj + λiλj∇λk, 1 ≤ i < j < k ≤ 4

a suitable global basis of ÑD
h

2 reads as

ÑD
h

2 = span
{
φ̃e, φ̃

(1)

f , φ̃
(2)

f : e = (ij) edge of Th, f = (ijk) face of Th

}
. (4.10)

This defines a direct decomposition of the hierarchical surplus space

ÑD
h

2 =
∑

edge e

ÑD
h

2 (e)⊕
∑

face f

ÑD
h

2 (f) (4.11)

with
ÑD

h

2 (e) = span{φ̃e} and ÑD
h

2 (f) = span{φ̃
(1)

f , φ̃
(2)

f }.

We note that ∇×φ̃e = 0 for all edges e. Let

q̃ =
∑

e

qeφ̃e +
∑

f

(q(1)
f φ̃

(1)

f + q
(2)
f φ̃

(2)

f ), p̃ =
∑

e

peφ̃e +
∑

f

(p(1)
f φ̃

(1)

f + p
(2)
f φ̃

(2)

f ).

Setting

cn(q̃, p̃) =
∑

edge e

qepebn(φ̃e, φ̃e) +
∑

face f

bn(q(1)
f φ̃

(1)

f + q
(2)
f φ̃

(2)

f , p
(1)
f φ̃

(1)

f + p
(2)
f φ̃

(2)

f ), (4.12)

we have
c1 cn(q̃, q̃) ≤ bn(q̃, q̃) ≤ c2 cn(q̃, q̃) on ÑD

h

2

with c1 and c2 independent of the mesh size h [9]. Thus, bn(·, ·) and cn(·, ·) are spectrally
equivalent and we can replace the error equation (4.9) by

cn(Ẽ
h,loc

n+1 ,Φ) = bn(An −Ah,euler
n+1 ,Φ) +

1
γ

(Rh
n1,Φ), ∀Φ ∈ ÑD

h

2 . (4.13)

Let
Ẽ

h,loc

n+1 =
∑

e

Eeφ̃e +
∑

f

(Ef1φ̃
(1)

f + Ef2φ̃
(2)

f )

be a representation of the new approximate error. Then the coefficients can be computed from
small local problems, that is from a scalar equation for each edge e and a 2× 2 linear equation
for each face f . Using Φ = φ̃e in (4.13) and introducing

rn(Φ) = bn(An −Ah,euler
n+1 ,Φ) + (Rh

n1,Φ)/γ,
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we get

Ee =
rn(φ̃e)

bn(φ̃e, φ̃e)
. (4.14)

Observe that cn(φ̃
(i)

f , φ̃e) = 0 for i = 1, 2. Further, Φ = φ̃
(i)

f , i = 1, 2, yields bn(φ̃
(1)

f , φ̃
(1)

f ) bn(φ̃
(2)

f , φ̃
(1)

f )

bn(φ̃
(1)

f , φ̃
(2)

f ) bn(φ̃
(2)

f , φ̃
(2)

f )

( Ef1

Ef2

)
=

 rn(φ̃
(1)

f )

rn(φ̃
(2)

f )

 . (4.15)

Since bn(φ̃e, φ̃e) = O(ε) with ε being the (small) regularization parameter in the non-conducting
region, we simply set Ee = 0 there.

We conclude that the error estimator Eh
n+1 defined in (4.5) can be efficiently approximated

by just a few calculations using (i) lower order in time, that is, Eh
n+1 ≈ Ẽ

h

n+1 (4.9), and (ii)

localization in space, that is, Eh
n+1 ≈ Ẽ

h,loc

n+1 (4.13). A crucial point in the analysis of hierarchical
error estimators is the saturation assumption. In its simplest form it asserts that the quadratic
finite element solution in NDh

2 is better than the linear solution in NDh
1 . This is in general

satisfied if the solution is smooth enough. However, in the case of e.g. discontinuities of the
conductivity σ we get singularities and therefore lower regularity, see [9] for a more detailed
discussion. More recently, a sufficient condition for the validity of the saturation assumption
in terms of small data oscillation has been given in [22]. A modified saturation assumption is
used in [3] to show robustness of the hierarchical estimator.

The local spatial error for a finite element T ∈ Th can be estimated by computing the norm
of Ẽ

h,loc

n+1 over T . For the overall spatial error, we define in line with the local temporal error in
(3.7)

|‖Ẽh,loc

n+1 ‖| =

 ‖Ẽh,loc

n+1 ‖2L2(Ω)

ATOL+RTOL ‖Ah
n+1‖2L2(Ω)

1/2

. (4.16)

Based on this error estimation, we can control the spatial accuracy of the solution numerically
computed to an imposed tolerance level TOLx. An iterative process estimate-refine-solve within
a time step is continued until |‖Ẽh,loc

n+1 ‖| < TOLx. Obviously, temporal and spatial errors have
to be well balanced. We have also to take into account mesh coarsening to gain efficiency. Our
entire control strategy will be described in the next chapter.

5. The Control Strategy

Our aim is to estimate and to control the accuracy of the solution numerically computed to
the imposed tolerance levels TOLt and TOLx. The entire control strategy is taken from [29].
For the sake of completeness we shall give a short summary of the implementation used.

In the spirit of the adaptive Rothe method the spatial discretization is considered as a
perturbation of the time integration, hence has to be controlled before estimating the temporal
error. Suppose we are given an approximate solution Ah

n−1 on the finest, already accepted mesh
Tn−1 at time tn−1. Applying the estimation process described in the previous chapter and grid
refinement afterwards, we construct a sequence of improved spatial meshes for the new solution
Ah

n

T 0
n ⊂ T 1

n ⊂ . . . T mn
n , (5.1)
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T mn
n

...

T 1
n

T 0
n

�
�
�
�
��

?T mn+1
n+1

...

T 1
n+1

T 0
n+1

re
fin

e

· · · · · ·
co

ar
sen

Fig. 5.1. Refinement and coarsening. A sequence of improved spatial meshes T 0
n ⊂ T 1

n ⊂
. . . T mn

n is constructed until TOLx is reached at level mn. If the time step is accepted, a

new initial mesh T 0
n+1 is constructed through removing elements with sufficiently small error

estimators. Then the process of estimate and refine starts again.

which also generates a nested sequence of H0(curl)-conforming FE-spaces. Note that we
do not use coarsening here. The refinement process (5.1) is guided by the local quantities
ηT = |‖Ẽi,loc

n ‖|T , T ∈ T i
n , that is the a posteriori error estimator for the finite element T

at refinement level i. New grid points should be placed in regions of insufficient accuracy.
Therefore all elements with ηT > 0.8 maxT ηT =: ηbar are refined. We use the regular red-green
refinement strategy for tetrahedral elements (see e.g. [29] and references therein). The multilevel
process is stopped if for a certain number mn the approximate global error |‖Ẽmn,loc

n ‖| is less
than TOLx.

After successful improvement of the spatial grid the local temporal error is estimated on
the finest grid by rn defined in (3.7). If rn ≥ TOLt the step is not accepted and redone with a
reduced value of τn determined from (3.8). Additionally, all meshes T i

n , i > 0 are also removed.
If rn < TOLt we set Tn = T mn

n and advance in time with the new initial solution Ah
n computed

on Tn. It remains to choose an initial mesh at tn+1, see Fig. 5.1.
Clearly, the mesh T 0

n+1 should be an approximation of the final mesh Tn obtained in the
previous step. To be efficient, elements have to be removed in regions of small errors. They
can be detected by their η-values. Assuming an asymptotic behaviour η ∼ ch2 for the weighted
L2-norm, a prediction of the η-values after coarsening will be ηpredict ∼ 4 η. We remove an
element T ∈ Tn if the predicted value does not exceed the local error barrier ηbar. One point
ought to be mentioned: Modern adaptive codes which allow refinement and coarsening employ
sophisticated tree structures based on so-called father-son relations. Usually, elements (the
sons) that were obtained from refining a coarser element (the father) can be removed only
simultaneously.

In Fig. 5.2 we show a flow chart for the entire space-time coupled adaptive approach as
implemented in the KARDOS software package [2]. First, in an inner loop the spatial accuracy
is controlled. Then the temporal error is checked and it is decided whether the time step is
accepted.

6. Numerical Results

To demonstrate the performance of the local error estimators and the control strategy, we
consider the magnetic recording write head problem [24]. We set ATOL=0.01 and RTOL=1.0
in (3.7) and (4.16) for an appropriate error control. The results are computed with the PDE-
software package KARDOS [2] and are visualized with AMIRA [1].
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Fig. 5.2. Flow chart for the time-space adaptive solver KARDOS. First, approximate so-

lutions Aj
n+1 to A(x, tn+1) are computed on a sequence of triangulations T 0

n+1 ⊂ T 1
n+1 ⊂

. . . ⊂ T j
n+1 until TOLx is reached. Then the local error in time |‖rh,n+1‖| is checked. If it

is smaller than TOLt the step is accepted and we advance in time. Otherwise, the step is

rejected and redone. In this case all refinements made are removed and the original initial

mesh T 0
n+1 is reconstructed.

The thin film magnetic recording write head problem has been proposed by the Storage
Research Consortium (SRC) in Japan as a benchmark for computational electro-magnetics. A
detailed description of the nonlinear transient eddy current benchmark model for a 2 Gb/in2

harddisc read write head design is given in [24]. The applied magnetomotive force (mmf)
is a part of trapezoidal waveform of 25 MHz including higher harmonics, Fig. 6.1(a). Even
though switching times for the exciting currents range in the nanosecond region (qualifying
the device as a high frequency device), a careful frequency analysis shows the validity of the
magnetoquasistatic assumptions [14]. The yoke material is permalloy having a conductivity
σ=5× 106 S/m and a magnetic permeability modelled by the B-H curve in Fig. 6.1(b).

Extensive numerical simulations employing uniform temporal and spatial discretizations
have been performed to verify the vertical magnetic flux Bz(t) near the pole tip of the mag-
netic head, which could be measured by a stroboscopic electron beam tomography [24]. Good
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Fig. 6.1. (a) The applied magnetomotive force (mmf) taken from [24]. (b) B-H curve of the

permalloy material with initial relative permeability µs =1000 and saturation magnetization

Ms =1 T.

Fig. 6.2. (a) Tetrahedral mesh used for the initial discretization of the write head geometry

consisting of permalloy yoke, upper and lower copper coil, and permalloy plate (16 708 nodes).

The device length is 148µm. The seven upper and eight lower coil strands are lumped to

two single coils. (b) A typical adapted mesh created by the refinement approach proposed

(56 472 nodes). The surrounding mesh for the air region is not shown.

agreement is achieved if the numerically calculated Bz-curve reflects accurately the dynamic
behaviour of the applied magnetomotive force. In Fig. 6.3, we present results for time adap-
tive runs using two Rosenbrock methods, the two-stage second-order ROS2 [20, 29] and the
newly designed four-stage third-order ROS3PL. We use the coarse grid shown in Fig. 6.2(a), set
TOLt =2× 10−5 and start all computations with the initial step τ0 =5× 10−8. The results are
compared with a fully space-time adaptive ROS3PL-run, where we also apply mesh adaptation
to reach the local spatial tolerance TOLx = 1.0 × 10−5. It can be nicely seen that the quality
of solution delivered by the fully adaptive ROS3PL is quite satisfactory, especially in regions of
fast increase and decrease of the applied magnetomotive force. Moreover, an improved spatial
mesh leads also to a drastic reduction of the number of variable time steps chosen by ROS3PL
to keep the local temporal error below the imposed tolerance TOLt. Without spatial adapta-
tion we count 156 steps, while only 67 steps are required when automatic mesh improvement
is considered.

In Fig. 6.4 we depict the evolution of time steps and degrees of freedom (dofs) for the time-
space adaptive simulation. The time steps lie between 3.1× 10−10 and 1.0× 10−9, seven steps
are rejected. At the beginning the initial spatial mesh having 109 495 dofs is rapidly refined to
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Fig. 6.3. Comparison of Bz(t) computed near the pole tip of the magnetic head with the

two-stage second-order ROS2 method [20] and the newly designed four-stage third-order

ROS3PL. Notably good agreement is achieved for the fully time-space adaptive ROS3PL,

especially in regions of fast increase and decrease of the applied magnetomotive force.

Fig. 6.4. Evolution of variable time steps and degrees of freedom chosen by the fully adaptive

ROS3PL to reach TOLt =2.0× 10−5 and TOLx =1.0× 10−5.

357 173 dofs to reflect the solution’s dynamics properly. Later on, after successive coarsening,
around 250 000 dofs are quite efficient. The maximum refinement depth equals three. That
means, a comparable uniform approach would be forced to use approximately 56 mio. dofs,
wasting tremendous resources of computing time.

7. Conclusion

We have combined variable step size one-step methods of Rosenbrock type and adaptive
H(curl)-conforming Whitney finite elements to solve nonlinear three-dimensional magneto-
quasistatics problems. On the basis of numerical investigations for the thin film magnetic
recording write head problem and the TEAM7 benchmark problem already discussed in [31] we
have come to the following conclusions. (i) Automatic control of discretization errors is quite
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attractive from a practical point of view. Time consuming validation of numerical solutions
usually done through parameter tuning in repeated calculations is no longer needed. (ii) Well
designed linearly implicit Rosenbrock methods as e.g. ROS3PL work remarkably reliable. Al-
though they are nearly as simple as explicit integrators (only an appropriate Jacobian has to
be provided), they are unconditionally stable with excellent stability properties for systems of
differential-algebraic equations. Moreover, one-step methods allow fast step size changes and
the handling of well fitted individual spatial meshes at different time points without any specific
difficulties. (iii) Hierarchical error estimators based on approximate dynamics and suitable spa-
tial surplus spaces give efficient and reliable estimates for local error distributions. Taking into
account interpolation errors and error transport over the entire time interval is essential. Fi-
nally, well-balanced dynamic spatial meshes can improve the performance of the time integrator
significantly.

8. Appendix

We give the set of coefficients for ROS3PL with double-precision accuracy.

Table. A1: Set of coefficients for ROS3PL - a third-order accurate Rosenbrock method constructed

along the design criteria: (i) L-stable and stiffly accurate, (ii) no order reduction when applied to

parabolic PDEs, and (iii) third-order accurate W-method for Jacobians perturbed by O(τ)-terms.
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