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Abstract

We consider an Adaptive Edge Finite Element Method (AEFEM) for the 3D eddy cur-

rents equations with variable coefficients using a residual-type a posteriori error estimator.

Both the components of the estimator and certain oscillation terms, due to the occurrence

of the variable coefficients, have to be controlled properly within the adaptive loop which

is taken care of by appropriate bulk criteria. Convergence of the AEFEM in terms of

reductions of the energy norm of the discretization error and of the oscillations is shown.

Numerical results are given to illustrate the performance of the AEFEM.
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1. Introduction

In this paper, we are concerned with a convergence analysis of adaptive edge element approx-
imations of the semi-discrete eddy current boundary value problem in three space dimensions.

We assume Ω to be a bounded domain in lR3 with polyhedral boundary Γ = ∂Ω. We adopt
standard notation from Lebesgue and Sobolev space theory. In particular, L2(Ω) (resp. L2(Ω))
stands for the Hilbert space of square integrable functions (resp. vector fields) on Ω with norm
‖ · ‖0,Ω, whereas Hm(Ω),m ∈ lN (resp, Hm(Ω)) refer to the Sobolev spaces of functions (resp.
vector fields) on Ω.

We define
H(curl;Ω) :=

{
q ∈ L2(Ω)|curl q ∈ L2(Ω)

}

as the Hilbert space equipped with with the graph norm

‖q‖curl;Ω :=
(‖q‖20,Ω + ‖curl q‖20,Ω

)1/2
.

We further refer to
γΓ(q) := q ∧ nΓ ∈ H−1/2(divΓ; Γ) (1.1)

as the tangential trace and to

πΓ(q) := nΓ ∧ (q ∧ nΓ) ∈ H−1/2(curlΓ; Γ) (1.2)
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as the tangential components trace of q ∈ H(curl; Ω), where nΓ denotes the outward unit nor-
mal on Γ and divΓ, curlΓ stand for the surfacic divergence and surfacic rotational, respectively
(for a proper definition of these mappings and the associated trace spaces cf., e.g., [11–13]).

We further refer to

H(div; Ω) :=
{
q ∈ L2(Ω)|div(q) ∈ L2(Ω)

}

as the Hilbert space with the graph norm

‖q‖div,Ω :=
(‖q‖20,Ω + ‖div(q)‖20,Ω

)1/2

and denote by
νΓ(q) := nΓ · q ∈ H−1/2(Γ)

the normal trace of q ∈ H(div; Ω) on Γ. We note that for a polyhedral subset D ⊆ Ω, the
spaces H(curl;D) and H(div; D) as well as the associated trace mappings γ∂D, π∂D and ν∂D

are defined analogously. In particular,

γ∂D : H(curl; D) → H−1/2(div∂D; ∂D),

π∂D : H(curl;D) → H−1/2(curl∂D; ∂D)

and
ν∂D : H(div; Ω) → H−1/2(∂D)

are surjective and continuous, linear mappings such that

‖γ∂D(q)‖||,−1/2,∂D ≤ C ‖q‖curl;Ω q ∈ H(curl; D), (1.3)

‖π∂D(q)‖⊥,−1/2,∂D ≤ C ‖q‖curl;Ω q ∈ H(curl;D), (1.4)

‖ν∂D(q)‖−1/2,∂D ≤ C ‖q‖div;Ω q ∈ H(div; D), (1.5)

where ‖ · ‖||,−1/2,∂D, ‖ · ‖⊥,−1/2,∂D, ‖ · ‖−1/2,∂D refer to the norms on H−1/2(div∂D; ∂D),
H−1/2(curl∂D; ∂D) and H−1/2(∂D), respectively, and C stands for a positive constant not
necessarily the same at each occurrence (cf., e.g., [13]).

We introduce the subspace

H0(curl; Ω) :=
{
q ∈ H(curl; Ω)|πΓ(q) = 0

}
(1.6)

and define the bilinear form a(·, ·) : H0(curl; Ω)×H0(curl; Ω) → lR according to

a(j,q) :=
∫

Ω

(
χcurlj · curlq + κj · q)

dx, j,q ∈ H0(curl; Ω). (1.7)

We assume χ, κ ∈ L∞(Ω) such that χ1 ≥ χ ≥ χ0 a.e. and κ1 ≥ κ ≥ κ0 a.e. for some χν , κν ∈
lR+, ν ∈ {0, 1}. Hence, the bilinear form a(·, ·) is H0(curl; Ω)-elliptic and defines an equivalent
norm on H0(curl; Ω) according to

|||q|||2 := a(q,q), q ∈ H0(curl; Ω). (1.8)

Moreover, we suppose that f ∈ ∏m
i=1 H(div; Ωi) and χ, κ ∈ ∏m

i=1 W 1,∞(Ωi) with regard to a
partition of Ω into non overlapping subdomains Ωi, 1 ≤ i ≤ m. We consider the following
variational problem: Find j ∈ H0(curl; Ω) such that

a(j,q) =
∫

Ω

f · q dx, q ∈ H0(curl; Ω). (1.9)
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It is well-known that under the given assumptions (1.9) admits a unique solution.

Remark 1.1. We point out that the approach presented in this paper can be extended to the
case of complex-valued semi-discrete eddy current equations caused by a complex-valued κ in
(1.7). We further note that j is not uniquely determined in subregions with vanishing κ. In
such regions, an additional gauge condition is needed to enforce uniqueness (cf. also Remark
2.1 in section 2).

For the edge element discretization of (1.9) we consider a shape regular simplicial tri-
angulation TH of Ω which is consistent with the partition Ω =

∏m
i=1 Ωi in the sense that

each Ωi, 1 ≤ i ≤ m, inherits a shape regular, simplicial triangulation TH(Ωi). We refer to
NH(D), EH(D),FH(D), and TH(D) as the sets of vertices, edges, faces, and elements of the
triangulation in D ⊆ Ω̄. We denote by hT (hF ) the diameter of an element T ∈ TH(Ω) (face
F ∈ FH) and by hE the length of an edge E ∈ EH(Ω). Further, we refer to ωF = T+∪T− as the
union of the triangles T± ∈ TH sharing the common face F ∈ FH(Ω). Throughout the sequel,
for two quantities A and B we will use the notation A . B, if there exists a constant γ > 0,
depending only on the data of the problem and on the shape regularity of the triangulations,
such that A ≤ γB. We will write A ≈ B, if A . B and B . A.

The variational equation (1.9) is discretized by the lowest order edge elements of Nédélec’s
first family

Nd1(T ) :=
{∃α ∈ lR3, ∃β ∈ lR3 ∀x = (x1, x2, x3) ∈ T : q(x) = α + β ∧ x

}
.

The associated curl-conforming edge element space Nd1(Ω; TH(Ω)) ⊂ H(curl; Ω) is given by

Nd1(Ω; TH) := { qH ∈ H(curl; Ω)| qH |T ∈ Nd1(T ), T ∈ TH} ,

and we refer to Nd1,0(Ω; TH(Ω)) as its subspace

Nd1,0(Ω; TH) := {qH ∈ Nd1(Ω; TH)| πΓ(qH) = 0 on Γ} .

Then, the edge element discretization of (1.9) amounts to the computation of jH ∈ Nd1,0(Ω; TH)
such that

a(jH ,qH) =
∫

Ω

f · qH , qH ∈ Nd1,0(Ω; TH). (1.10)

An Adaptive Finite Element Method (AFEM) consists of successive loops of the cycle

SOLVE → ESTIMATE → MARK → REFINE . (1.11)

Here, SOLVE stands for the numerical solution of the finite element discretized problem, ESTI-
MATE requires the a posteriori estimation of the global discretization error in some appropriate
norm or with respect to a goal oriented error functional. The step MARK is devoted to the
selection of elements and edges for refinement, and the final step REFINE takes care of the
technical realization of the refinement process.

The development, analysis and implementation of efficient and reliable a posteriori error
estimators has been the subject of intensive research in the past two decades and has actually
reached some level of maturity (see, e.g., the monographs [1, 4, 5, 18, 26, 31] and the references
therein). On the other hand, a rigorous convergence analysis of (1.11) relying on appropriate
error reduction properties has so far only been done for conforming AFEMs [17, 22, 24] and
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by the first author for mixed and nonconforming finite element methods in [15, 16]. Optimal
convergence rates for conforming AFEMs have been obtained in [9] and [30].

In the framework of a residual-type a posteriori error analysis of adaptive edge element
discretizations of the semi-discrete eddy current equations, we note that efficient and reliable a
posteriori error estimators have been developed and analyzed in [6–8,21,29]. We emphasize that
H0(curl)-elliptic variational problems are more involved than standard H1

0 -elliptic problems
due to the occurrence of a non-trivial kernel of the curl-operator which has to be treated
separately. As far as a convergence analysis by means of a guaranteed error reduction within
the adaptive loop is concerned, so far only the 2D equations have been considered assuming
constant coefficients [14]. Here, we will address the more realistic 3D scenario with variable
coefficients which gives rise to additional oscillations which can be treated following similar
arguments as in the convergence analysis of AFEMs for general linear second order elliptic
PDEs [22].

The paper is organized as follows. Section 2 describes the adaptive loop including the
reliability of the error estimator and states the main convergence result. Section 3 is concerned
with an error reduction result by means of the discrete local efficiency of the estimator, whereas
Section 4 establishes oscillation reduction. Section 5 contains the proof of the main convergence
result which follows from the error and the oscillation reduction properties. Finally, Section 6
contains a documentation of numerical results illustrating the performance of the adaptive edge
element method.

2. Adaptive Loop and Main Convergence Result

The step SOLVE in the adaptive loop (1.11) requires the numerical solution of the edge
element discretized problem (1.10) for which efficient multilevel techniques have been derived
in [3, 19,27] (cf. also [6, 20,23]).

For the following step ESTIMATE, we will provide a residual-type a posteriori error esti-
mator similar to those considered in [7] and [29]. For this purpose, we consider the element
residuals

R
(1)
T (jH) := curl(χcurl(jH)) + κjH − f , T ∈ TH , (2.1)

R
(2)
T (jH) := div(κjH)− div(f), T ∈ TH , (2.2)

and the face residuals associated with interior faces

R
(1)
F (jH) := [χcurl(jH) ∧ nF ]F , F ∈ FH(Ω), (2.3)

R
(2)
F (jH) := [nF · (κjH − f)]F , F ∈ FH(Ω), (2.4)

where [·]F denotes the jump across F .
Since we only want to select faces for refinement in the bulk criterion, for an interior face

F = T+ ∩ T−, T± ∈ TH , we define η
(1)
F as a weighted sum of the L2-norms of the element

residuals R
(ν)
T±(jH), 1 ≤ ν ≤ 2, according to

(η(1)
F )2 :=

h2
T+

m+

(
1

χT+

‖R(1)
T+

(jH)‖20,T+
+

1
κT+

‖R(2)
T+

(jH)‖20,T+

)

+
h2

T−

m−

(
1

χT−
‖R(1)

T−(jH)‖20,T− +
1

κT−
‖R(2)

T−(jH)‖20,T−

)
, (2.5)
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where
χT± := |T±|−1

∫

T±
χ dx, κT± := |T±|−1

∫

T±
κ dx

and
m± := card({F ∈ FH(Ω)|F ∩ FH(T±) 6= ∅}).

Moreover, we define η
(2)
F by means of

(η(2)
F )2 := hF

(
1

χF

‖R(1)
F (jH)‖20,F +

1
κF
‖R(2)

F (jH)‖20,F

)
, (2.6)

where
χF :=

1
2
(χT+

+ χT−), κF :=
1
2
(κT+ + κT−).

We set
η2

H :=
∑

F∈FH(Ω)

η2
H,F , η2

H,F := (η(1)
H,F )2 + (η(2)

H,F )2. (2.7)

The convergence analysis further involves the oscillations

osc2
H :=

∑

F∈FH(Ω)

osc2
H,F , osc2

H,F := (osc(1)
H,F )2 + (osc(2)

H,F )2. (2.8)

Here, osc
(ν)
H,F , 1 ≤ ν ≤ 2, are given by

(osc(1)
H,F )2 :=

h2
T+

m+

(
‖R(1)

T+
(jH)−R

(1)

T+
(jH)‖20,T+

+ ‖R(2)
T+

(jH)−R
(2)

T+
(jH)‖20,T+

)

+
h2

T−

m−

(
‖R(1)

T−(jH)−R
(1)

T−(jH)‖20,T− + ‖R(2)
T−(jH)−R

(2)

T−(jH)‖20,T−

)
, (2.9)

(osc(2)
H,F )2 := hF

(
1

χF

‖R(1)
F (jH)−R

(1)

F (jH)‖20,F +
1

κF
‖R(2)

F (jH)−R
(2)

F (jH)‖20,F

)
, (2.10)

where

R
(ν)

T±(jH) := |T±|−1

∫

T±

R
(ν)
T±(jH) dx , R

(ν)

F (jH) := |F |−1

∫

F

R
(ν)
F (jH) dσ, 1 ≤ ν ≤ 2 .

Remark 2.1. In subregions of vanishing κ and solenoidal right-hand side f , the estimators
η
(ν)
F and the oscillations osc

(ν)
H,F , 1 ≤ ν ≤ 2, have to be modified by dropping the residuals

R
(2)
T , T ∈ TH , and R

(2)
F , F ∈ FH(Ω) (cf. also Example 2 in section 6).

The subsequent step MARK is devoted to the selection of interior faces F ∈ FH(Ω),
F = T+ ∩T−, T± ∈ TH , and adjacent elements from TH for refinement. In particular, given two
universal constants 0 < Θν < 1, 1 ≤ ν ≤ 2, we select subsets M(ν) ⊂ FH(Ω) such that

Θ1

∑

F∈FH(Ω)

η2
H,F ≤

∑

F∈M(1)

η2
H,F , (2.11)

Θ2

∑

F∈FH(Ω)

osc2
H,F ≤

∑

F∈M(2)

osc2
H,F . (2.12)

These so-called bulk criteria (2.11),(2.12) can be realized by a greedy algorithm (cf., e.g., [9,16,
30]).
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In the final step REFINE of the adaptive loop (1.11), for a face F ∈ M(1) ∪M(2), F =
T+∩T−, T± ∈ TH , we refine all elements T ′ ∈ TH with FH(T ′)∩FH(T±) 6= ∅ such that all such
T ′ and all faces F ∈ FH(T ′)∩FH(T±) contain a node in their interior. For a realization of this
so-called interior node property we refer to [24]. Eventually, further refinements are necessary
to guarantee that the resulting refined mesh Th is geometrically conforming such that the edge
element spaces Nd1,0(Ω; TH) and Nd1,0(Ω; Th) are nested.

If we proceed according to the steps SOLVE, ESTIMATE, MARK, and REFINE as specified
above, we can prove the following convergence result:

Theorem 2.1 Let jH and jh be the edge element approximations of the solution j of (1.9) with
respect to the triangulation TH and its refinement Th generated according to the steps MARK
and REFINE of the adaptive loop. Let further ηH and oscH be the residual-type a posteriori
error estimator and the oscillations given by (2.7) and (2.8) respectively. Then, there exist
constants 0 < ρ < 1 and C > 0, depending on the data χ, κ, on the constants Θν , 1 ≤ ν ≤ 2, in
(2.11), (2.12), and on the shape regularity of the triangulations, such that

|||j− jh|||2 + C osc2
h ≤ ρ

(|||j− jH|||2 + C osc2
H

)
. (2.13)

The proof of Theorem 2.1 hinges on the reliability of the estimator ηH and on an error
reduction and an oscillation reduction result. As far as the reliability is concerned, we note that a
residual-type a posteriori error estimator similar to (2.7) has been derived and analyzed in [7]. In
particular, its reliability has been shown by means of a Scott/Zhang-type interpolation operator
which, however, required some additional regularity of the solution, namely j ∈ H0(curl; Ω) ∩
H1(Ω). This result has been significantly improved in [29] relying on a Clément-type commuting
quasi-interpolation operator ΠH : H0(curl; Ω) → Nd1,0(Ω, TH) with the property: For every
q ∈ H0(curl; Ω) there exist ϕ ∈ H1

0 (Ω) and z ∈ H1
0(Ω) such that

q−ΠHq = grad(ϕ) + z, (2.14)

h−1
T ‖ϕ‖0,T + ‖grad(ϕ)‖0,T . ‖q‖0,ω̃T , T ∈ TH , (2.15)

h−1
T ‖z‖0,T + ‖grad(z)‖0,T . ‖curl(q)‖0,ω̃T

, T ∈ TH . (2.16)

Here, the element patch ω̃T is given by

ω̃T := ∪{
T ′ ∈ TH | T ′ ∩ ωT 6= ∅},

where
ωT := ∪{

T ′ ∈ TH | NH(T ′) ∩NH(T ) 6= ∅}

(cf. Theorem 1 in [29]).
Using (2.14)-(2.16), reliability of ηH can be shown:

Theorem 2.2.(cf. Corollary 2 in [29]) For the estimator ηH as given by (2.7) there holds

|||j− jH|||2 . η2
H . (2.17)

Remark 2.2. The proof of the reliability uses standard tools from the residual-type a posteriori
error analysis based on the decomposition (2.14) and the estimates (2.15),(2.16). We note that
the constant in (2.17) depends on the ratios of the upper and lower bounds χν , κν , ν ∈ {0, 1},
of χ, κ and is thus affected by possible discontinuities of the coefficient functions.
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3. Error Reduction

The error reduction property asserts that, up to the oscillations oscH , the energy norm
of the difference between the fine and coarse mesh approximations jh ∈ Nd1,0(Ω, Th) and
jH ∈ Nd1,0(Ω, TH) is bounded from below by the error estimator.

Theorem 3.1. There exists a constant C1 > 0 , depending only on the data χ, κ, the constant
Θ1 in the bulk criterion (2.11), and on the shape regularity of the triangulations such that

η2
H ≤ C1

(|||jh − jH|||2 + osc2
H

)
. (3.1)

The proof of Theorem 3.1 follows from a series of lemmas providing upper bounds for the local
components of the error estimator and thus establishing what is known as the discrete local
efficiency of the error estimator. The estimates rely on the construction of appropriate ’discrete
bubble functions’ which are admissible fine mesh test functions whose support is restricted to
the respective elements in case of the element residuals R

(ν)
T± , 1 ≤ ν ≤ 2 (Lemmas 3.1 and 3.2),

and to appropriate patches of elements in case of the face residuals R
(ν)
F , 1 ≤ ν ≤ 2 (Lemmas

3.3 and 3.4). The first two results deal with η
(1)
F .

Lemma 3.1. Assume that T± ∈ TH are refined triangles. Then, there holds

(m±χT±)−1h2
T±‖R

(1)
T±(jH)‖20,T±

.‖jh − jH‖2curl,T± + m−1
± h2

T±‖R
(1)
T±(jH)−R

(1)

T±(jH)‖20,T± . (3.2)

Proof. The triangle and Cauchy Schwarz inequalities readily give

(m±χT±)−1h2
T±‖R

(1)
T±(jH)‖20,T±

≤2(m±χT±)−1h2
T±

(
‖R(1)

T±(jH)‖20,T± + ‖R(1)
T±(jH)−R

(1)

T±(jH)‖20,T±

)
. (3.3)

We denote by aint
h,T± ∈ Th(int(T±)) an interior nodal point in T± and refer to

Da
h,T± :=

⋃ {
T ′ ∈ Th(T±) | aint

h,T± ∈ Nh(T ′)
}

as the union of all fine mesh elements having aint
h,T± as a common vertex. Moreover, we denote

by Ea
h,ν± ∈ Eh(int(Da

h,T±)), 1 ≤ ν± ≤ νa
±, νa

± ≥ 3, the interior edges in Da
h,T± ⊂ T± and refer to

ϕh,ν± ∈ Nd1,0(Da
h,T± ; Th) as the associated edge basis functions satisfying

|E|−1

∫

E

tE ·ϕh,ν±ds =

{
1, E = Ea

h,ν± ,

0, otherwise.

We choose

qa
h,T± :=

νa
±∑

ν±=1

αν±ϕh,ν±

as a linear combination of the basis functions associated with the interior edges such that

(m±χT±)−1h2
±‖R

(1)

T±(jH)‖20,T±

≈h2
±

(
R

(1)

T±(jH),qa
h,T±)0,T±

=h2
± (R(1)

T±(jH),qa
h,T±)0,T± + h2

± (R
(1)

T±(jH)−R
(1)
T±(jH),qa

h,T±)0,T± , (3.4)
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and

νa
±∑

ν±=1

|αν± | . (m±χT±)−1/2 |R(1)

T±(jH)|. (3.5)

By means of (2.3) and in view of πt(qa
h,T±)|∂Da

h,T±
= 0, Stokes’ theorem gives

h2
T±(R(1)

T±(jH),qa
h,T±)0,T±

=h2
T±(curl(χcurl(jH)) + κjH − f ,qa

h,T±)0,T±

= h2
T±

(
(χcurl(jH), curl(qa

h,T±))0,T± + (κjH − f ,qa
h,T±)0,T±

)
. (3.6)

Further, we take advantage of the fact that qa
h,T± is an admissible test function in (1.10) whence

(χcurl(jh), curl(qa
h,T±))0,T± + (κjh − f ,qa

h,T±)0,T± = 0. (3.7)

Combining (3.6),(3.7) and using (3.5) as well as

‖ϕh,ν±‖0,T± . hT± , ‖curl(ϕh,ν±)‖0,T± . 1 ,

we obtain

h2
T± |(R

(1)
T±(jH),qa

h,T±)0,T± |
= h2

T± |
(
(χcurl(jH − jh), curl(qa

h,T±))0,T± + (κ(jH − jh),qa
h,T±)0,T±

)|
.

(
hT±‖χ‖∞,T±‖curl(jH − jh)‖0,T± + h2

T± ‖κ‖∞,T±‖jH − jh‖0,T±
)‖R(1)

T±(jH)‖0,T±

.‖jH − jh‖curl,T±(m±χT±)−1/2‖R(1)

T±(jH)‖0,T± . (3.8)

Finally, for the second term on the right-hand side in (3.4) we get

h2
T± |(R

(1)

T±(jH)−R
(1)
T±(jH),qa

h,T±)0,T± |
.hT±‖R

(1)

T±(jH)−R
(1)
T±(jH)‖0,T±(m±χT±)−1/2‖R(1)

T±(jH)‖0,T± . (3.9)

The assertion follows readily from (3.3),(3.8) and (3.9). ¤

Lemma 3.2. For refined triangles T± ∈ TH there holds

(m±κ̄T±)−1h2
T±‖R

(2)
T±(jH)‖20,T±

.‖jh − jH‖20,T± + m−1
± h2

T±‖R
(2)
T±(jH)−R

(2)

T±(jH)‖20,T± . (3.10)

Proof. Obviously, we have

(m±κT±)−1h2
T±‖R

(2)
T±(jH)‖20,T±

≤ 2(m±κT±)−1h2
T±

(
‖R(2)

T±(jH)‖20,T± + ‖R(2)
T±(jH)−R

(2)

T±(jH)‖20,T±

)
. (3.11)

In order to derive an upper bound for the first term on the right-hand side in (3.11), let
aint

T± ∈ Nh(T±) be an interior nodal point and T
′
ν± ∈ TT± such that aint

T± ∈ Nh(T
′
ν±), 1 ≤ ν± ≤ νa

±.
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We choose ϕa
h,T± ∈ S1,0(Ω; Th) as a multiple of the P1 conforming nodal basis function with

supporting point aint
T± according to

ϕa
h,T±(aint

T±) =


κT±

νa
±∑

ν±=1

|T ′
ν± |



−1

(
νa
±|T±|

)
R̄

(2)
T±(jH) .

Due to the shape regularity of the triangulations, we have

‖ϕa
h,T±(aint

T±)‖0,T± . (m±κ̄T,±)−1‖R̄(2)
T±‖0,T±(jH), (3.12)

‖grad(ϕa
h,T±(aint

T±))‖0,T± . (m±κ̄T±)−1|T±|−1/2‖R̄(2)
T±(jH)‖0,T± . (3.13)

Due to the definition of ϕa
h,T± we have

(m±κT±)−1h2
±‖R̄(2)

T±(jH)‖20,T± h2
±

(
R

(2)

T±(jH), ϕa
h,T±)0,T±

= h2
±(R(2)

T±(jH), ϕa
h,T±)0,T± + h2

± (R
(2)

T±(jH)−R
(2)
T±(jH), ϕa

h,T±)0,T± . (3.14)

In view of (3.12), we obtain

h2
±|(R

(2)

T±(jH)−R
(2)
T±(jH), ϕa

h,T±)0,T± | (3.15)

≤h2
± ‖R

(2)

T±(jH)−R
(2)
T±(jH)‖0,T± ‖ϕa

h,T±‖0,T±

.(m±κ0)−1/2h± ‖R(2)

T±(jH)−R
(2)
T±(jH)‖0,T± (m±κT±)−1/2h± ‖R(2)

T±(jH)‖0,T± .

Moreover, observing ϕa
h,T± |∂T± = 0, Green’s formula implies

|T±(R(2)
T±(jH), ϕa

h,T±)0,T± |
= |T±|(div(κjH)− div(f), ϕa

h,T±)0,T± = (κjH − f ,grad(ϕa
h,T±))0,T± . (3.16)

On the other hand, since grad(ϕa
h,T±) is an admissible test function in (1.10), we have

(κjh,grad(ϕa
h,T±))0,T± = (f ,grad(ϕa

h,T±))0,T± . (3.17)

Consequently, combining (3.16) and (3.17) and taking advantage of (3.13), it follows that

|T± |(R(2)
T±(jH), ϕa

h,T±)0,T± | = (κ(jh − jH),grad(ϕa
h,T±))0,T± |

.(m±κT±)−1|T±|1/2 ‖κ‖∞,T± ‖κ(jh − jH)‖0,T± ‖R
(2)

T±(jH)‖0,T±

.κ−1
0 ‖κ‖∞,T± ‖κ(jh − jH)‖0,T± (m±κT±)−1/2|T±|1/2 ‖R(2)

T±(jH)‖0,T± . (3.18)

The estimate (3.10) follows from (3.11),(3.14) and (3.18). ¤

The following two results are concerned with an upper bound for η
(2)
H,F .

Lemma 3.3. For a refined face F ∈ FH there holds

χ−1
F hF ‖R(1)

F (jH)‖20,F . ‖jh − jH‖2curl,ωF

+
∑

T±∈TH(ωF )

h2
T± |R

(1)
T±(jH)‖20,T± + hF ‖R(1)

F (jH)−R
(1)

F (jH)‖20,F . (3.19)
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Proof. We have

χ−1
F hF ‖R(1)

F (jH)‖20,F

≤2χ−1
F hF

(
‖R(1)

F (jH)‖20,F + ‖R(1)
F (jH)−R

(1)

F (jH)‖20,F

)
. (3.20)

Let aint
h,F ∈ Nh(F ) be an interior point and denote by

Da
h,ωF

:=
⋃ {

T ′ ∈ Th(ωF ) | aint
h,F ∈ Nh(T ′)

}

the union of all fine mesh elements sharing aint
h,F as a common vertex. We denote by Eh,ν ∈

Eh(F ), 1 ≤ ν ≤ νa
F , the interior edges in Da

h,ωF
∩ F . Then, we choose qa

h,F :=
∑νa

F
ν=1 ανϕh,ν

as a linear combination of the basis functions ϕh,ν ∈ Nd1,0(Da
h,ωF

, Th) associated with the
interior edges Eh,ν such that

χ−1
F hF ‖R(1)

F (jH)‖20,F ≈ hF (R
(1)

F (jH), πt(qa
h,F))0,F

= hF

(
(R(1)

F (jH),πt(qa
h,F))0,F + (R

(1)

F (jH)−R
(1)
F (jH), πt(qa

h,F))0,F

)
, (3.21)

and
νa

F∑
ν=1

|αν | . χ
−1/2
F |R(1)

F (jH)|. (3.22)

Recalling (2.5) and observing qa
h,F|∂Da

h,ωF
= 0, Stokes’ theorem gives

hF (R(1)
F (jH),πt(qa

h,F))0,F = hF ([χcurl(jH) ∧ nF]F , πt(qa
h,F))0,F

=hF

(
(χcurl(jH), curl(qa

h,F))0,ωF
+ (κjH − f ,qa

h,F)0,ωF

−
∑

T±∈TH(ωF )

(R(1)
T±(jH),qa

h,F)0,T±
)
. (3.23)

Since qa
h,F is an admissible test function in (1.10), we have

(χcurl(jh), curl(qa
h,F))0,ωF + (κjh − f ,qa

h,F)0,ωF = 0. (3.24)

Hence, subtracting (3.24) from (3.23) and using (3.22) as well as

‖ϕh,ν‖0,ωF
. hF , ‖curl(ϕh,ν )‖0,ωF

. 1, 1 ≤ ν ≤ νa
F ,

it follows that

hF |(R(1)
F (jH),πt(qa

h,F))0,F |
.big(‖χ‖∞,ωF ‖curl(jH − jh)‖0,ωF + hF ‖κ‖∞,ωF ‖jH − jh‖0,ωF

+ hF

∑

T±∈TH(ωF )

‖R(1)
T±(jH)‖0,T±

)
χ
−1/2
F h

1/2
F ‖R(1)

F (jH)‖0,F . (3.25)

Using (3.22) and
‖πt(ϕh,ν )‖0,F . h

1/2
F , 1 ≤ ν ≤ νa

F ,

for the second term on the right-hand side in (3.21) we obtain

hF |(R(1)

F (jH)−R
(1)
F (jH), πt(qa

h,F))0,F |
.h

1/2
F ‖R(1)

F (jH)−R
(1)

F (jH)‖0,F χ
−1/2
F h

1/2
F ‖R(1)

F (jH)‖0,F . (3.26)
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We conclude by combining (3.20),(3.25) and (3.26). ¤
Lemma 3.4. Let F ∈ FH be a refined face. Then, there holds

κ−1
F hF ‖R(2)

F (jH)‖20,F . ‖jh − jH‖20,ωF

+
∑

T±∈TH(ωF )

h2
T±‖R

(2)
T±(jH)‖20,T± + hF ‖R(2)

F (jH)−R
(2)

F (jH)‖20,F . (3.27)

Proof. We have

κ−1
F hF ‖R(2)

F (jH)‖20,F

≤2κ−1
F hF

(
‖R(2)

F (jH)‖20,F + ‖R(2)
F (jH)−R

(2)

F (jH)‖20,F

)
. (3.28)

We choose ϕa
h,F ∈ S1,0(Ω; Th) as a multiple of the P1 conforming nodal basis function with

supporting interior nodal point aint
h,F ∈ Nh(F ) such that

ϕa
h,F (aint

h,F ) =


κF

νa
F∑

ν=1

|F ′ν |


−1

(
νa

F |F |
)
R

(2)

F (jH), (3.29)

where F ′ν ∈ Fh(F ), aint
h,F ∈ Nh(F ′ν), 1 ≤ ν ≤ νa

F . Due to (3.29) and the shape regularity of the
triangulations, there holds

‖ϕa
h,F ‖0,F . κ−1

F ‖R(2)

F (jH)‖0,F , (3.30)

‖ϕa
h,F ‖0,T± . κ−1

F h
1/2
F ‖R(2)

F (jH)‖0,F , T± ∈ TH(ωF ), (3.31)

‖grad(ϕa
h,F )‖0,T± . κ−1

F h
−1/2
F ‖R(2)

F (jH)‖0,F , T± ∈ TH(ωF ). (3.32)

Moreover, for the first term on the right-hand side in (3.28) it follows from (3.29) that

κ−1
F hF ‖R(2)

F (jH)‖20,F ≈ hF (R
(2)

F (jH), ϕa
h,F )0,F

= hF (R(2)
F (jH), ϕa

h,F )0,F + hF (R
(2)

F (jH)−R
(2)
F (jH), ϕa

h,F )0,F . (3.33)

In view of (2.4) and taking ϕa
h,F |∂ωF into account, by partial integration we find

hF (R(2)
F (jH), ϕa

h,F )0,F = hF ([nF · (κjH − f)]F , ϕa
h,F )0,F

= hF

∑

T±∈TH(ωF )

(
(div(κjH)− div(f), ϕa

h,F )0,T± + (κjH − f ,grad(ϕa
h,F ))0,T±

)
. (3.34)

Since grad(ϕa
h,F ) is an admissible test function in (1.10), we have

(κjh,grad(ϕa
h,F ))0,ωF

= (f ,grad(ϕa
h,F ))0,ωF

. (3.35)

Hence, inserting (3.34) into (3.33) and using (3.30), (3.31) yields

hF |(R(2)
F (jH), ϕa

h,F )0,F | ≤ hF |(κ(jH − jh),grad(ϕa
h,F ))0,ωF

|
+ hF

∑

T±∈TH(ωF )

|(div(κjH)− div(f), ϕa
h,F )0,T± |

.hF ‖κ‖∞,ωF
‖jh − jH‖0,ωF

‖grad(ϕa
h,F )‖0,ωF

+ hF

∑

T±∈TH(ωF )

‖div(κjH)− div(f)‖0,T±‖ϕa
h,F ‖0,T± . (3.36)
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The estimate (3.27) is a direct consequence of (3.28),(3.33) and (3.36). ¤

Proof of Theorem 3.1. Combining the estimates provided by Lemmas 3.1 - 3.4 and summing
up over all F ∈M(1) readily gives (3.1). ¤

4. Oscillation Reduction

Besides the reliability (2.17) of the error estimator and the error reduction property (4.1),
another important tool to establish the main convergence result is an oscillation reduction
property. For standard finite element approximations of second order elliptic boundary value
problems, such an oscillation reduction has been established in [22]. Here, we have to cope
with two types of oscillations stemming from the residuals R

(1)
T± and R

(1)
F (cf. (2.1) and (2.3))

associated with the strong form of the semi-discrete eddy current equations and arising from
the residuals R

(2)
T± and R

(2)
F as given by (2.2) and (2.4), respectively. The oscillation property

is as follows:

Theorem 4.1. There exist constants 0 < ξ < 1 and C2 > 0 , depending only on the data χ, κ,
the constant Θ2 in the bulk criterion (2.12) and on the shape regularity of the triangulations,
such that

osc2
h ≤ ξ osc2

H + C2|||jh − jH|||2. (4.1)

Proof. We set δH := jh − jH. Then, for T ′ ∈ TH and T ∈ Th(T ′) we define S
(ν)
T (δH), 1 ≤

ν ≤ 2, by means of

S
(1)
T (δH) := curl(χcurl(δH)) + κδH, S

(2)
T (δH) := div(κδH). (4.2)

In much the same way, for F ′ ∈ FH(Ω) and F ∈ Fh(F ′) we define S
(ν)
F (δH), 1 ≤ ν ≤ 2,

according to
S

(1)
F (δH) := [χcurl(δH) ∧ nF ]F , S

(2)
F (δH) := [nF · κδH]F . (4.3)

It follows readily from (4.2) and (4.3) that for 1 ≤ ν ≤ 2,

R
(ν)
T (jH) := lR(ν)

T (jh)− S
(ν)
T (δH), R

(ν)
F (jH) := R

(ν)
F (jh)− S

(ν)
F (δH). (4.4)

We set
S

(ν)

T (δH) := |T |−1

∫

T

S
(1)
T (δH)dx, S

(1)

F (δH) := |F |−1

∫

F

S
(1)
F (δH)dσ.

Observing (2.9) and (2.10), for F ∈ Fh(F ′), ωF = T+ ∪T−, T± ∈ Th, Young’s inequality implies
that for some ε > 0

(osc(1)
h,F )2 (4.5)

≤h2
T+

m+

(
(1 + ε)‖R(1)

T+
(jH)−R

(1)

T+
(jH)‖20,T+

+ (1 + ε−1)‖S(1)
T+

(δH)− S
(1)

T+
(δH)‖20,T+

)

+
h2

T+

m+

(
(1 + ε)‖R(2)

T+
(jH)−R

(2)

T+
(jH)‖20,T+

+ (1 + ε−1)‖S(2)
T+

(δH)− S
(2)

T+
(δH)‖20,T+

)

+
h2

T−

m−

(
(1 + ε)‖R(1)

T−(jH)−R
(1)

T−(jH)‖20,T− + (1 + ε−1)‖S(1)
T− (δH)− S

(1)

T−(δH)‖20,T−

)

+
h2

T−

m−

(
(1 + ε)‖R(2)

T−(jH)−R
(2)

T−(jH)‖20,T− + (1 + ε−1)‖S(2)
T− (δH)− S

(2)

T−(δH)‖20,T−

)
,
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and

(osc(2)
h,F )2 (4.6)

≤ hF

(
(1 + ε)‖R(1)

F (jH)−R
(1)

F (jH)‖20,F + (1 + ε−1)‖S(1)
F (δH)− S

(1)

F (δH)‖20,F

)

+ hF

(
(1 + ε)‖R(2)

F (jH)−R
(2)

F (jH)‖20,F + (1 + ε−1)‖S(2)
F (δH)− S

(2)

F (δH)‖20,F

)
.

Now, for 1 ≤ ν ≤ 2, we have

‖S(ν)
T± (δH)− S

(ν)

T±(δH)‖0,T± ≤ ‖S(ν)
T± (δH)‖0,T± , (4.7)

‖S(ν)
F (δH)− S

(ν)

F (δH)‖0,F ≤ ‖S(ν)
F (δH)‖0,F . (4.8)

In order to obtain an upper bound for ‖S(ν)
T± (δH)‖0,T± , 1 ≤ ν ≤ 2, in view of

curl(χcurl(δH)) = χcurl(curl(δH)) + grad(χ) ∧ curl(δH)

and curl(curl(δH)) = 0 on T ∈ Th, we find

‖S(1)
T (δH)‖20,T ≤ max

(‖grad(χ)‖∞,T , ‖κ‖∞,T

)‖δH‖2curl,T . (4.9)

Likewise, observing

div(κδH) = κdiv(δH) + grad(κ) · δH

and div(δH) = 0 on T ∈ Th, we obtain

‖S(2)
T (δH)‖20,T ≤ ‖grad(κ)‖∞,T ‖δH‖20,T . (4.10)

On the other hand, to derive an upper bound for ‖S(ν)
F (δH)‖0,F , 1 ≤ ν ≤ 2, we have

‖S(1)
F (δH)‖20,F . h−1

F ‖χδH‖2curl,ωF
, ‖S(2)

F (δH)‖20,F . h−1
F ‖κδH‖2div,ωF

. (4.11)

Hence, summarizing (4.9),(4.10) and (4.11), there exists a constant CD > 0, depending on the
data χ and κ, such that for 1 ≤ ν ≤ 2

h2
T±‖S

(ν)
T± (δH)‖20,T± ≤ CD|||δH|||2, hF ‖S(ν)

F (δH)‖20,F ≤ CD|||δH|||2. (4.12)

Moreover, due to the refinement strategy in MARK, for F ′ ∈ FH(Ω) such that F ′ = T ′+ ∩
T ′−, T ′± ∈ TH , and F ∈ Fh(F ′), F = T+ ∩ T−, T± ∈ Th(T ′±), we have

hF ≤ τF ′ hF ′ , hT± ≤ τT ′±hT ′± , (4.13)

where τF ′ , τT ′± ≤ τ0, if F ′ ∈ M(2), and τF ′ = τT ′± = 1, otherwise. Consequently, in view of
(4.5),(4.6) and (4.12),(4.13) we obtain

osc2
h,F ′ =

∑

F∈Fh(F ′)

osc2
h,F

≤(1 + ε)max(τF ′ , τ
2
T ′±

)osc2
H,F ′ + (1 + ε−1)CD|||δH|||2ωF ′

. (4.14)
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Summing up over all F ′ ∈ FH(Ω), the bulk criterion (2.12) yields
∑

F ′∈FH(Ω)

max(τF ′ , τ
2
T ′±

)osc2
H,F ′

≤τ0

∑

F ′∈M(2)

osc2
H,F ′ +

∑

F ′∈FH(Ω)\M(2)

osc2
H,F ′

≤(1− (1− τ0)Θ2)osc2
H .

Hence, by means of (4.14)

osc2
h ≤ (1 + ε) (1− (1− τ0)Θ2) osc2

H + (1 + ε−1) γ CD |||δH|||2 ,

where γ > 0 is a constant, depending only on the shape regularity of the triangulations, which
accounts for the finite overlap of the ωF ′ , F

′ ∈ FH(Ω). Finally, if we choose

ε < (1− τ0)Θ2/(1− (1− τ0)Θ2),

the assertion follows with ξ := (1 + ε)(1− (1− τ0)Θ2) and C2 := (1 + ε−1)γCD. ¤

5. Proof of Theorem 2.1

The main convergence result as stated in Theorem 2.1 can be shown by means of the
reliability of the estimator, the error reduction and the oscillation reduction properties as well
as the Galerkin orthogonality following the lines of proof as in the case of standard elliptic
boundary value problems [22]. In particular, the reliability (2.17) and the error reduction (3.1)
imply

|||jh − jH|||2 ≥ C−1
1 |||j− jH|||2 − osc2

H . (5.1)

On the other hand, the orthogonality property a(j− jh,qh) = 0,qh ∈ Nd1,0(Ω, Th) gives

|||jh − jH|||2 = |||j− jH|||2 − |||j− jh|||2,

and hence, for some 0 < ε < 1 we get

|||j− jh|||2 = |||j− jH|||2 − ε|||jh − jH|||2 − (1− ε)|||jh − jH|||2. (5.2)

Using (5.1) in (5.2) yields

|||j− jh|||2 ≤ (1− εC−1
1 )|||j− jH|||2 + εosc2

H − (1− ε)|||jh − jH|||2.

Incorporating the oscillation reduction property (4.1) results in

|||j− jh|||2 + Cosc2
h ≤ ρ1|||j− jH|||2 + (ε + (1− ε)C−1

2 ξ)osc2
H ,

where ρ1 := 1 − εC−1
1 < 1 and C := (1 − ε)C−1

2 . If 0 < ρ2 < 1 is such that ξ < ρ2 and if we
choose ε according to

ε =
C−1

2 (ρ2 − ξ)
1 + C−1

2 (ρ2 − ξ)
,

the assertion follows with ρ := max(ρ1, ρ2). ¤
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6. Numerical Results

The performance of the adaptive scheme is illustrated by some representative numerical ex-
amples. The discretized problems have been solved by multigrid featuring Hiptmair’s smoother
(cf. [19]) with respect to the adaptively generated hierarchy of triangulations. For the evaluation
of the matrix entries and the oscillations we have used standard Gaussian quadrature.

Example 1 deals with an edge singularity occurring on the L-shaped domain

Ω := (−1, +1)3 \ [0, 1]2 × [−1, +1].

The coefficients χ, κ are given by χ = κ = 1 and the source term is chosen such that

j = grad
(
r2/3sin(2φ/3)

)
(in cylindrical coordinates).

Fig. 6.1. Example 1: Adaptively generated grid after 5 (left) and 7 (right) refinement steps (Θi =

0.4, 1 ≤ i ≤ 2, in the bulk criteria)
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Experiment 1: Theta = 0.4
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Fig. 6.2. Example 1: True error (straight line), error estimator (dashed line) and data oscillations

(dotted line) for Θi = 0.4, 1 ≤ i ≤ 2 (left), adaptive refinement (dashed line) versus uniform refinement

(solid line) (right)
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Table 6.1: Example 1: True error |||j − jH|||, error estimator ηH, oscillations oscH , and percentages

of faces refined according to the bulk criteria (Θi = 0.4, 1 ≤ i ≤ 2)

l Ndof |||j − jH ||| ηH oscH Mη Mosc

0 81 4.56e-01 8.97e-01 6.02e-01 15.71 18.57

1 488 3.46e-01 5.20e-01 2.11e-01 6.48 4.97

2 1829 2.72e-01 3.98e-01 1.03e-01 4.30 4.94

3 5707 2.02e-01 3.07e-01 4.69e-02 4.18 2.87

4 16526 1.48e-01 2.33e-01 2.26e-02 3.94 4.50

5 44958 1.11e-01 1.73e-01 1.07e-02 4.04 4.13

6 11379 8.10e-02 1.29e-01 5.80e-03 4.37 4.87

7 327303 5.87e-02 9.49e-02 3.05e-03 3.95 1.72

Table 6.2: Example 2: True error |||j − jH|||, error estimator ηH, oscillations oscH , and percentages

of faces refined according to the bulk criteria (Θi = 0.4, 1 ≤ i ≤ 2)

l Ndof |||j − jH ||| ηH oscH Mη Mosc

0 279 7.84e-01 5.18e+00 7.73e-01 8.89 15.93

1 1634 5.13e-01 2.99e+00 3.24e-01 8.32 6.02

2 4980 3.17e-01 1.93e+00 1.71e-01 5.75 4.51

3 13529 2.16e-01 1.35e+00 8.10e-02 7.74 5.79

4 37810 1.48e-01 9.08e-01 4.54e-02 8.49 4.36

5 90668 1.05e-01 6.67e-01 2.29e-02 8.71 2.54

6 247681 7.59e-02 4.77e-01 1.28e-02 6.71 4.14

is the exact solution of the problem. Homogeneous Neumann boundary conditions are given on

ΓN := {0} × [0, 1]× [−1, +1] ∪ [0, 1]× {0} × [−1,+1] ∪ {x ∈ Ω|x3 = ±1},

whereas inhomogeneous Dirichlet boundary conditions (according to the exact solution) are
imposed elsewhere on Γ.

An initial triangulation with 81 degrees of freedom has been created by the grid generator
NETGEN (cf. [28]). Figure 6.1 displays the adaptively refined grid after 5 (left) and 7 (right)
refinement steps where the universal constants Θi, 1 ≤ i ≤ 2, in the bulk criteria (2.11),(2.12)
have been chosen according to Θ1 = Θ2 = 0.4. We observe a pronounced refinement in a small
vicinity of the edge singularity.

Figure 6.2 (left) shows the history of the refinement process in terms of the true error, the
error estimator ηH and the oscillations oscH , whereas Figure 6.2 (right) reflects the benefits
of adaptive versus uniform refinement. More detailed information is given in Table 6.1. In
particular, the last two columns contain the percentages Mη and Mosc of faces marked for
refinement in the step MARK of the adaptive loop according to the bulk criterion (2.11) and
(2.12), respectively.

Example 2 illustrates the adaptive refinement process in the case of discontinuous coeffi-
cients. The computational domain is Ω = (−1, +1)3 and the coefficients χ, κ are given by

χ = 1, κ =
{

1, max(|x1|, |x2|, |x3|) ≤ 1/2,

0, elsewhere.

The right-hand side f and the boundary conditions have been chosen such that j = (0, 0, sin(πx1))
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is the exact solution. The initial grid with 279 degrees of freedom has been generated by NET-
GEN.

This example deals with the case of locally vanishing κ which is not covered by the theory
(cf. Remark 2.1). Figure 6.3 shows the (x1, x2)-cross section at x3 = 0 of the adaptively refined
grid after 6 refinement steps with a proper resolution of the material interface on the left and
the history of the refinement process on the right. Again, more detailed information is provided
in Table 6.2.

We expect a higher impact of the data oscillations on the adaptive refinement process
in case of strongly varying coefficients. Therefore, Example 3 and Example 4 deal with
the case of oscillating coefficients. The computational domain is Ω := (−1, +1)3, and χ =
1.5 + sin(2πx1)sin(2πx2)sin(2πx3), κ = 1 in Example 2, whereas in Example 3 the roles of the
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Fig. 6.3. Example 2: Cross section ((x1, x2)-plane) of the adaptively generated grid (left) after 7

refinement steps (Θi = 0.4, 1 ≤ i ≤ 2, in the bulk criteria) and history of the refinement process (right)

[true error (solid line), error estimator (dashed line) and data oscillations (dotted line)]
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Fig. 6.4. Examples 3 and 4: History of the refinement process for Example 3 (left) and Example 4

(right) (Θi = 0.6, 1 ≤ i ≤ 2, in the bulk criteria) [true error (solid line), error estimator (dashed line)

and data oscillations (dotted line)]



674 R.H.W. HOPPE AND J. SCHÖBERL

Table 6.3: Example 3: True error |||j − jH|||, error estimator ηH, oscillations oscH , and percentages

of faces refined according to the bulk criteria (Θi = 0.6, 1 ≤ i ≤ 2)

l Ndof |||j − jH ||| ηH oscH Mη Mosc

0 19 8.23e+00 1.05e+02 9.20e+01 66.67 66.67

1 98 6.41e+00 5.08e+01 3.12e+01 48.61 50.00

2 667 3.03e+00 2.21e+01 8.85e+00 38.27 41.96

3 4651 1.59e+00 1.11e+01 2.77e+00 30.04 27.99

4 33561 8.63e-01 5.83e+00 9.45e-01 26.59 12.76

5 159482 5.35e-01 3.47e+00 4.50e-01 25.97 4.82

6 684546 3.37e-01 2.23e+00 1.58e-01 12.56 9.28

Table 6.4: Example 4: True error |||j − jH|||, error estimator ηH, oscillations oscH , and percentages

of faces refined according to the bulk criteria (Θi = 0.6, 1 ≤ i ≤ 2)

l Ndof |||j − jH ||| ηH oscH Mη Mosc

0 279 6.94e+00 7.34e+01 6.04e+01 66.67 66.67

1 98 5.57e+00 3.75e+01 1.60e+01 50.00 51.39

2 640 2.63e+00 1.77e+01 5.98e+00 41.17 41.71

3 4424 1.37e+00 8.99e+00 1.73e+00 32.95 32.88

4 33010 7.16e-01 4.63e+00 4.98e-01 28.87 25.73

5 263283 3.90e-01 2.49e+00 1.58e-01 24.54 7.41

coefficients are reversed, i.e.,

χ = 1, κ = 1.5 + sin(2πx1)sin(2πx2)sin(2πx3).

In both examples, the right-hand side f and the boundary conditions have been chosen such
that j = (0, 0, sin(πx1)) is the exact solution. For both examples, a coarse initial grid has been
created by using NETGEN resulting in 19 degrees of freedom.

Figure 6.4 displays the history of the refinement process for Example 3 (left) resp. Example
4 (right), and Tables 6.3 and 6.4 provide detailed information including the percentages of faces
marked for refinement. It can be clearly seen that at the beginning of the adaptive process the
oscillation terms significantly contribute to the refinement, whereas at a later stage (when the
data oscillations have been resolved) the process is dominated by the error estimator.
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