
Journal of Computational Mathematics, Vol.26, No.2, 2008, 240–249.

THE RESTRICTIVELY PRECONDITIONED CONJUGATE
GRADIENT METHODS ON NORMAL RESIDUAL FOR BLOCK

TWO-BY-TWO LINEAR SYSTEMS*

Junfeng Yin and Zhongzhi Bai

LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100080, China

Email: yinjf@lsec.cc.ac.cn, bzz@lsec.cc.ac.cn

Abstract

The restrictively preconditioned conjugate gradient (RPCG) method is further devel-

oped to solve large sparse system of linear equations of a block two-by-two structure. The

basic idea of this new approach is that we apply the RPCG method to the normal-residual

equation of the block two-by-two linear system and construct each required approximate

matrix by making use of the incomplete orthogonal factorization of the involved matrix

blocks. Numerical experiments show that the new method, called the restrictively precondi-

tioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than

either the known RPCG method or the standard conjugate gradient on normal residual

(CGNR) method when being used for solving the large sparse saddle point problems.

Mathematics subject classification: 65F10, 65W05.

Key words: Block two-by-two linear system, Saddle point problem, Restrictively precondi-

tioned conjugate gradient method, Normal-residual equation, Incomplete orthogonal fac-

torization.

1. Introduction

Consider an iterative solution of the block two-by-two (BTT) system of linear equations

Ax = b, where A =

[
B E

F C

]
∈ R

n×n and x, b ∈ R
n, (1.1)

with B ∈ R
m×m and C ∈ R

l×l being large, sparse, square and nonsymmetric matrices, E ∈

R
m×l and F ∈ R

l×m being sparse matrices, with m ≥ l, such that A ∈ R
n×n is nonsingular,

where n = m + l. The BTT linear system (1.1) frequently arises in many areas of scientific

computing and engineering applications such as the constrained least-squares problems, the

Navier-Stokes equations in fluid computations, and the Maxwell equations in computational

electromagnetics; see [1, 7, 2] for more details. Obviously, the saddle point problems form a

subset of the BTT linear systems.

When the matrix blocks B is symmetric positive definite, C is symmetric positive semidefi-

nite (e.g., C = 0) and F = ±ET , Bai and Li [4] recently proposed the restrictively preconditioned

conjugate gradient (RPCG) methods for these special forms of the BTT linear system (1.1) and

studied their convergence properties. Numerical results showed that this class of methods are

robust and effective solvers for iteratively computing the solutions of the symmetric positive

definite and the Hamiltonian systems of linear equations. We remark that the RPCG methods

* Received January 20, 2006 / Revised version received April 2, 2007 / Accepted September 19, 2007 /



RPCG on Normal Residual for Block Two-by-Two Linear Systems 241

were also developed to general nonsingular and nonsymmetric linear systems, resulting in a

rather general framework of iterative methods, which not only covers many standard Krylov

subspace methods such as the conjugate gradient [8, 11], the conjugate residual [8, 9], the con-

jugate gradient on normal residual (CGNR) [8, 9, 13] and the conjugate gradient on normal

equation (CGNE) [8, 9, 13], as well as their preconditioned variants, but also yields many new

ones. For details, we refer to [4] and references therein. Latter, Bai and Wang [5] further de-

veloped the RPCG method and obtained an inexact variant for the symmetric positive definite

case of the BTT linear system (1.1), in which both B and C are symmetric positive definite

and F = ET .

In this paper, we use the inexact RPCG method presented in [5] to solve the BTT linear

system (1.1). This new approach first forms the normal-residual equation

Ax ≡ AT Ax = AT b ≡ b, (1.2)

where

A =

[
B E

ET C

]
≡

[
BT B + FT F BT E + FT C

ET B + CT F CT C + ET E

]
(1.3)

is symmetric positive definite, with

B = BT B + FT F, C = CT C + ET E and E = BT E + FT C, (1.4)

and then straightforwardly apply the inexact RPCG method developed in [5] to (1.2)-(1.4), as

now B ∈ R
m×m and C ∈ R

l×l are symmetric positive definite and E ∈ R
m×l is of full column

rank.

For the saddle point problems of the form

Ax = b, where A =

[
B E

ET 0

]
∈ R

n×n and x, b ∈ R
n, (1.5)

with B ∈ R
m×m being a positive definite matrix, E ∈ R

m×l being a matrix of full column

rank and m ≥ l, we give a practical way for constructing approximations to the submatrices B

and S = C − ETB−1E by utilizing the incomplete orthogonal factorization technique in [3]; see

also [12, 6]. The resulting method, called RPCG on normal residual (RPCGNR), is algorith-

mically described in detail. Numerical examples are used to show that the RPCGNR method

outperforms the preconditioned CGNR (PCGNR) method [8] when they are employed to solve

the large sparse saddle point problem (1.5). Moreover, RPCGNR also shows better numerical

behaviour than both RPCG [4] and PCGNR when the matrix block B is symmetric positive

definite and when RPCG is directly applied to the saddle point problem (1.5).

The organization of this paper is as follows. After establishing the RPCGNR method for

solving the BTT linear system (1.1) and its special case (1.5) in Section 2, we present practical

choices for approximating matrix blocks involved in the saddle point problem (1.5) in Section 3.

In Section 4, numerical results are used to show the feasibility and effectiveness of our new

method. Finally, in Section 5, we end this paper with a brief conclusion.

2. The RPCGNR Method

To establish the RPCGNR method for solving the BTT linear system (1.1), according to

[5] we first decompose the block two-by-two matrix A ∈ R
n×n in (1.3) as A = PHQ, where



242 J.F. YIN and Z.Z. BAI

P ,Q ∈ R
n×n are two nonsingular matrices, and H ∈ R

n×n is a symmetric positive definite

matrix. We then construct a restrictive preconditioner M = PWQ for the matrix A, where

W ∈ R
n×n is a symmetric positive definite matrix approximating the matrix H. See also

[1, 2, 4].

It follows from the symmetric positive definiteness of the matrix A ∈ R
n×n that both sub-

matrices B ∈ R
m×m and C ∈ R

l×l are symmetric positive definite. By direct computations, we

know that A ∈ R
n×n adopts the block triangular factorization

A =

[
I 0

ETB−1 I

]

︸ ︷︷ ︸
P

[
B 0

0 S

]

︸ ︷︷ ︸
H

[
I B−1E

0 I

]

︸ ︷︷ ︸
Q

≡ PHQ, (2.1)

where I is the identity matrix and

S = C − ETB−1E (2.2)

is the Schur complement. Evidently, S ∈ R
l×l is a symmetric positive definite matrix, too.

Denote by K = Q−1PT . Then, it holds that

K = Q−1PT =

[
I −B−1E

0 I

] [
I B−1E

0 I

]
= I. (2.3)

Let B̂ ∈ R
m×m and Ŝ ∈ R

l×l be symmetric positive definite matrices approximating the ma-

trices B and S, respectively. Then we can choose the matrix W involved in the preconditioning

matrix M to be the block diagonal matrix W = Diag(B̂, Ŝ).

Based on the above investigation, we can algorithmically describe the inexact RPCG method

in [5] with respect to the symmetric positive definite BTT linear system (1.2)-(1.4) as follows.

Method 2.1. (The RPCGNR Method for the BTT Linear System (1.2)-(1.4))

1. Choose x0 ∈ R
n, r0 = AT (b − Ax0)

2. Let r0 := (r
(1)T

0 , r
(2)T

0 )T and z0 := (z
(1)T

0 , z
(2)T

0 )T

3. Solve B̂t(1) = r
(1)
0

4. Solve Ŝz
(2)
0 = r

(2)
0 − ET t(1)

5. Solve B̂t̃(1) = Ez
(2)
0

6. Compute z
(1)
0 = t(1) − t̃(1)

7. Set p0 := z0

8. For k = 0, 1, 2, · · ·

9. qk = Apk

10. αk = zT

k
rk/qT

k
qk

11. xk+1 = xk + αkpk

12. rk+1 = rk − αkAT qk

13. Let rk+1 := (r
(1)T

k+1 , r
(2)T

k+1 )T and zk+1 = (z
(1)T

k+1 , z
(2)T

k+1 )T

14. Solve B̂t(1) = r
(1)
k+1

15. Solve Ŝz
(2)
k+1 = r

(2)
k+1 − ET t(1)



RPCG on Normal Residual for Block Two-by-Two Linear Systems 243

16. Solve B̂t̃(1) = Ez
(2)
k+1

17. Compute z
(1)
k+1 = t(1) − t̃(1)

18. βk = zT

k+1rk+1/zT

k
rk

19. pk+1 = zk+1 + βkpk

In particular, when F = ET and C = 0, Method 2.1 automatically results in the RPCGNR

method for solving the saddle point problem (1.5), which is precisely described as follows.

Method 2.2. (The RPCGNR Method for the Saddle Point Problem (1.5))

1. Choose x0 ∈ R
n and r0 = AT (b − Ax0)

2. Let r0 = (r
(1)T

0 , r
(2)T

0 )T and z0 = (z
(1)T

0 , z
(2)T

0 )T

3. Solve B̂t(1) = r
(1)
0

4. Solve Ŝz
(2)
0 = r

(2)
0 − ET Bt(1)

5. Solve B̂t̃(1) = BT Ez
(2)
0

6. Compute z
(1)
0 = t(1) − t̃(1)

7. Set p0 := z0

8. For k = 0, 1, 2, · · ·

9. qk = Apk

10. αk = zT

k
rk/qT

k
qk

11. xk+1 = xk + αkpk

12. rk+1 = rk − αkAT qk

13. Let rk+1 = (r
(1)T

k+1 , r
(2)T

k+1 )T and zk+1 = (z
(1)T

k+1 , z
(2)T

k+1 )T

14. Solve B̂t(1) = r
(1)
k+1

15. Solve Ŝz
(2)
k+1 = r

(2)
k+1 − ET Bt(1)

16. Solve B̂t̃(1) = BT Ez
(2)
k+1

17. Compute z
(1)
k+1 = t(1) − t̃(1)

18. βk = zT

k+1rk+1/zT

k
rk

19. pk+1 = zk+1 + βkpk

The advantages of Method 2.2 over the RPCG method [5] is that it may be feasible and

effective even for the saddle point problem with nonsymmetric or indefinite (1, 1) block, and

over the CGNR method [8] is that it uses a structured preconditioner rather than a general

one. In fact, good approximations B̂ and Ŝ to the matrices B and S are very crucial for the

effectiveness of Method 2.2. Some typical choices of these two approximate matrices will be

discussed in detail in the next section.



244 J.F. YIN and Z.Z. BAI

3. Choices of Approximating Matrix Blocks

We now construct practical and accurate approximations to the matrix blocks B and S. To

this end, we note that

B = BT B + EET = [BT E]

[
B

ET

]
.

If we decompose the matrix

[
B

ET

]
into an incomplete orthogonal-triangular form, i.e.,

[
B

ET

]
= QBRB,

where QB is an incomplete orthogonal matrix and RB is an incomplete upper triangular matrix,

then B can be approximated by the matrix

B̂ = RT

BRB. (3.1)

The incomplete orthogonal-triangular factors can be obtained by the incomplete modified Gram-

Schmidt process [14] or the incomplete Givens orthogonalization process [3].

Analogously, by noticing that

S = C − ETB−1E

≈ ET E − ET BB̂−1BT E

≈ ET (I − BR−1
B R−T

B BT )E

= ET (I − B̃B̃T )E, where B̃ = BR−1
B ,

we may take the approximation Ŝ of S to be

Ŝ = RT

SRS ,

where RS is the Cholesky factor in the incomplete Cholesky factorization of the matrix ET (I −

B)E, with B ≈ B̃B̃T , e.g., B is the diagonal or the block diagonal matrix of B̃B̃T .

4. Numerical Results

Consider the Oseen equation

{
−ν ∆um+1 + (um · ∇)um+1 + ∇pm+1 = f,

div um+1 = 0,

which is obtained when the steady-state Navier-Stokes equation is linearized by the Picard

iteration. Here ν is the viscosity. Many discretization schemes applied to the Oseen equation

can lead to saddle point problems of the form (1.5); see, for instance, [10] and references

therein. Now, the (1, 1)-block B of the coefficient matrix corresponds to the discretization of

the convection-diffusion term, and it is nonsymmetric but positive real for the conservative

discretization.

We generated the test problems (leaky-lid driven cavity) with the IFISS software written

by Elman, Ramage, Silvester and Wathen, implemented the numerical experiments for the

following two problems:



RPCG on Normal Residual for Block Two-by-Two Linear Systems 245

Table 4.1: IT and CPU for Problem (P1) when 0 < ν < 1.

ν 0.001 0.005 0.01 0.05 0.1

IT 65 25 20 23 34
RPCGNR(a)

CPU 0.54 0.21 0.17 0.20 0.28

IT 71 29 22 26 46
RPCGNR(b)

CPU 0.60 0.23 0.18 0.22 0.39

IT 130 50 40 48 66
PCGNR(a)

CPU 0.66 0.25 0.20 0.25 0.33

IT 134 52 43 49 77
PCGNR(b)

CPU 0.67 0.27 0.21 0.25 0.38

Table 4.2: IT and CPU for Problem (P1) when ν ≥ 1.

ν 1 10 50 100 500

IT 76 37 25 20 12
RPCGNR(a)

CPU 0.68 0.32 0.21 0.17 0.11

IT 101 48 32 27 15
RPCGNR(b)

CPU 0.87 0.42 0.28 0.23 0.12

IT 237 113 69 51 30
PCGNR(a)

CPU 1.23 0.58 0.36 0.27 0.16

IT – 282 207 167 101
PCGNR(b)

CPU – 1.45 1.08 0.85 0.52

(P1) On a 16× 16 grid, and the first two rows of E are dropped to avoid its rank deficiency so

that the resulted E is a full-rank matrix. Hence, the saddle point problem (1.5) is of size

m = 578 and l = 254;

(P2) On a 32× 32 grid, and the first two rows of E are dropped to avoid its rank deficiency so

that the resulted E is a full-rank matrix. Hence, the saddle point problem (1.5) is of size

m = 2178 and l = 1020.

In our implementations, all programs are coded with C++ and run on an SGI Origin 3800.

The right-hand-side vector b ∈ R
n is generated such that the exact solution x∗ of the saddle

point problem (1.5) has all components being equal to one. This allows us to easily check the

accuracy of the obtained approximate solution by the residual norm ‖Axk − b‖2 and the error

norm ‖xk − x∗‖2. The initial guess for each iteration is x0 = 0, and the iteration process is

terminated once the current iterate satisfies either ‖b−Axk‖2 ≤ 10−5‖b−Ax0‖2 or the number

of iteration steps is over 300. All the incomplete factorization are computed by using a drop

tolerance τ = 0.01.

Because the (1, 1)-block B in the coefficient matrix A of (1.5) is nonsymmetric for both

problems (P1) and (P2), the RPCG-type methods proposed in [4, 5] can not be directly applied

to solve the saddle point problem (1.5). However, the new RPCGNR method and the PCGNR

method [13, 9] can be applied to solve these two problems. We can show that the former is

numerically more efficient and more robust than the latter.

In our computations, we take B̂ as given in (3.1) and Ŝ = RT

SRS , where RS is the incomplete

Cholesky factor of the matrix S̃ defined by either of the following two cases:

(a) S̃ = ET E;

(b) S̃ = ET (I − Diag(B̃B̃T ))E, with B̃ = BR−1
B ,



246 J.F. YIN and Z.Z. BAI

Table 4.3: IT and CPU for Problem (P2) when 0 < ν < 1.

ν 0.001 0.005 0.01 0.05 0.1

IT 55 33 34 47 67
RPCGNR(a)

CPU 7.09 4.23 4.36 6.17 8.62

IT 65 36 37 63 92
RPCGNR(b)

CPU 8.39 4.64 4.75 8.17 11.79

IT 111 67 69 80 104
PCGNR(a)

CPU 8.05 4.91 5.05 5.78 7.55

IT 117 68 70 97 141
PCGNR(b)

CPU 8.52 4.95 5.08 7.06 10.22

Table 4.4: IT and CPU for Problem (P2) when ν ≥ 1.

ν 1 10 50 100 500

IT 93 48 30 25 10
RPCGNR(a)

CPU 12.03 6.21 3.86 3.25 1.27

IT 127 68 43 31 12
RPCGNR(b)

CPU 16.46 8.81 5.61 4.01 1.56

IT – 206 113 49 28
PCGNR(a)

CPU – 15.09 8.28 3.58 2.02

IT – – 259 173 104
PCGNR(b)

CPU – – 18.89 12.61 7.56

where Diag(·) denotes the block diagonal matrix of the corresponding matrix.

The RPCGNR methods corresponding to the two choices (a) and (b) of S̃ are denoted as

RPCGNR(a) and RPCGNR(b), respectively.

For the PCGNR method, we use the block-diagonal preconditioner

P =

(
B̂ 0

0 Ŝ

)
, (4.1)

where B̂ is given in (3.1) and Ŝ = RT

SRS is computed through the incomplete Cholesky fac-

torization of the matrix S̃ defined above. Analogously, the PCGNR methods corresponding to

the two choices (a) and (b) of S̃ are denoted as PCGNR(a) and PCGNR(b), respectively.

In Table 4.1, we list the iteration numbers (denoted by IT) and the CPU times in seconds

(denoted by CPU) of the above-mentioned methods for Problem (P1) when 0 < ν < 1. From

the numerical results we observe that the iteration numbers of RPCGNR(#) are evidently

much less than those of PCGNR(#). However, the CPU times of RPCGNR(#) are only a little

less than those of PCGNR(#); the reason is that preconditioning RPCGNR(#) needs three

more matrix-vector multiplications and two more vector-vector additions than preconditioning

PCGNR(#).

In Table 4.2, we list the iteration numbers and the CPU times of these tested methods for

Problem (P1) when ν > 1. Obviously, RPCGNR(a) is the best among all of the four methods

in the sense of both iteration number and CPU time, and RPCGNR(b) is also a competitive

one, in particular, for a larger ν. We note that when ν = 1 PCGNR(b) can not achieve the

convergence criterion within the given maximum number of iteration steps. Clearly, when ν is

increasing, the iteration number is decreasing. It is also evident that the error reduction rate of



RPCG on Normal Residual for Block Two-by-Two Linear Systems 247

Table 4.5: IT and CPU for Problem (P3).

ν 0.001 0.005 0.01 0.05 0.1

IT 88 81 75 75 55
RPCG(a)

CPU 0.56 0.52 0.46 0.46 0.34

IT 37 37 36 35 31
RPCG(b)

CPU 0.25 0.24 0.24 0.23 0.20

IT 3 5 8 23 40
RPCGNR(a)

CPU 0.03 0.05 0.06 0.18 0.35

IT 3 6 8 30 52
RPCGNR(b)

CPU 0.03 0.05 0.06 0.26 0.44

IT 6 11 15 46 79
PCGNR(a)

CPU 0.05 0.07 0.09 0.25 0.39

IT 6 11 15 48 84
PCGNR(b)

CPU 0.05 0.07 0.09 0.25 0.42

ν 1 10 50 100 500

IT 69 38 31 30 26
RPCG(a)

CPU 0.42 0.23 0.20 0.19 0.15

IT 28 27 27 27 27
RPCG(b)

CPU 0.19 0.17 0.17 0.17 0.17

IT 63 36 23 20 12
RPCGNR(a)

CPU 0.54 0.31 0.18 0.17 0.11

IT 89 48 31 26 15
RPCGNR(b)

CPU 0.76 0.40 0.26 0.21 0.13

IT 151 73 47 41 30
PCGNR(a)

CPU 0.76 0.36 0.24 0.22 0.16

IT 269 192 153 131 101
PCGNR(b)

CPU 1.39 0.98 0.76 0.66 0.52

RPCGNR(#) is much more rapid than that of PCGNR(#), and RPCGNR(#) is numerically

more stable than PCGNR(#).

For Problem (P2), when 0 < ν < 1 and ν ≥ 1, we respectively list the iteration numbers

and the CPU times in Tables 4.3 and 4.4. These numerical results further examine and confirm

the superiority of RPCGNR(#) to PCGNR(#) shown by those of Problem (P1).

We now compare the numerical behaviours of the RPCGNR methods with those of the

RPCG methods in [4] and the PCGNR methods in [13, 9]. As the RPCG methods require that

the considered saddle point problem is of a symmetric positive definite (1, 1)-block B, we replace

the nonsymmetric (1, 1)-blocks of the coefficient matrices in Problems (P1) and (P2) by their

symmetric parts, and, correspondingly, obtain two classes of saddle point problems, denoted

respectively as Problem (P3) and (P4), whose (1, 1)-blocks are symmetric positive definite.

According to the approximation matrices B̂ and Ŝ to the matrices B and S := ET B−1E,

respectively, involved in the RPCG method, we take B̂ = RT

B
RB, with RB the incomplete

Cholesky factor [13, 9] of B, and

(a) Ŝ = I, or (b) Ŝ = ET Diag(B)−1E.

The RPCG methods corresponding to the two choices (a) and (b) of Ŝ are denoted as RPCG(a)

and RPCG(b), respectively.

In Table 4.5, we list the iteration numbers and the CPU times in seconds of the testing



248 J.F. YIN and Z.Z. BAI

Table 4.6: IT and CPU for Problem (P4).

ν 0.001 0.005 0.01 0.05 0.1

IT 185 174 176 114 101
RPCG(a)

CPU 14.56 13.47 13.66 8.81 7.83

IT 71 69 68 66 66
RPCG(b)

CPU 5.30 5.09 5.08 4.86 4.86

IT 5 12 20 42 59
RPCGNR(a)

CPU 0.65 1.55 2.62 5.44 7.65

IT 5 13 22 57 76
RPCGNR(b)

CPU 0.65 1.70 2.85 7.42 9.81

IT 10 24 39 69 119
PCGNR(a)

CPU 0.73 1.77 2.86 5.09 8.70

IT 10 24 40 78 117
PCGNR(b)

CPU 0.73 1.77 2.96 5.70 8.56

ν 1 10 50 100 500

IT 78 44 32 34 23
RPCG(a)

CPU 6.03 3.41 2.49 2.63 1.78

IT 65 64 65 67 65
RPCG(b)

CPU 4.75 4.73 4.78 4.91 4.80

IT 87 49 31 25 11
RPCGNR(a)

CPU 11.37 6.32 4.02 3.26 1.42

IT 115 67 41 31 12
RPCGNR(b)

CPU 14.89 8.73 5.31 4.03 1.54

IT 213 138 101 77 30
PCGNR(a)

CPU 15.58 10.16 7.39 5.61 3.67

IT – – – 227 104
PCGNR(b)

CPU – – – 16.50 7.68

methods RPCG(#), RPCGNR(#) and PCGNR(#) for Problem (P3). The corresponding

numerical results for Problem (P4) are given in Table 4.6. Roughly speaking, RPCGNR(#)

always outperform both RPCG(#) and PCGNR(#) and, for ν ≥ 1, its iteration number and

CPU time decrease much faster than the latter two methods when ν is increasing. Also, the

total CPU time of RPCGNR(#) is competitive with that of either RPCG(#) or PCGNR(#),

although its cost at each step is the most expensive. Evidently, the error reduction rate of

RPCGNR(#) is much more rapid than that of RPCG(#) or PCGNR(#), and the former is

numerically more stable than the latter two.

5. Conclusions

We have established a class of RPCG-based iterative methods for solving large sparse block

two-by-two system of linear equations, including the saddle point problem as its special case.

The new methods can avoid exact solutions of the linear sub-systems with respect to the involved

matrix blocks or the Schur complement of the original coefficient matrix and, therefore, can

result in practical and effective solvers for this class of problems. Numerical results have shown

that our new methods outperform the existing approaches such as PCGNR for solving large

sparse system of linear equations of a block two-by-two structure.



RPCG on Normal Residual for Block Two-by-Two Linear Systems 249

Acknowledgments. This work is supported by the National Basic Research Program (No.

2005CB321702), the China NNSF Outstanding Young Scientist Foundation (No. 10525102),

and the National Natural Science Foundation (No. 10471146), P.R. China. The authors are

very much indebted to the referees for their constructive comments and helpful suggestions,

which greatly improved the original manuscript of this paper.

References

[1] Z.-Z. Bai, Construction and analysis of structured preconditioners for block two-by-two matrices,

J. Shanghai Univ., (English Edition), 8 (2004), 397-405.

[2] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures,

Math. Comput., 75 (2006), 791-815.

[3] Z.-Z. Bai, I.S. Duff and A.J. Wathen, A class of incomplete orthogonal factorization methods. I:

methods and theories, BIT Numer. Math., 41 (2001), 53-70.

[4] Z.-Z. Bai and G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems of

linear equations, IMA J. Numer. Anal., 23 (2003), 561-580.

[5] Z.-Z. Bai and Z.-Q. Wang, Restrictive preconditioners for conjugate gradient methods for sym-

metric positive definite linear systems, J. Comput. Appl. Math., 187 (2006), 202-226.

[6] Z.-Z. Bai, J.-F. Yin and Y.-F. Su, A shift-splitting preconditioner for non-Hermitian positive

definite matrices, J. Comput. Math., 24 (2006), 539-552.

[7] H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers: with

Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University

Press, Baltimore and London, 1996.

[9] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.

[10] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-

Verlag, Berlin, 1986.

[11] M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.

Research National Bureau Standards, Section B, 49 (1952), 409-435.

[12] A.T. Papadopoulos, I.S. Duff and A.J. Wathen, A class of incomplete orthogonal factorization

methods. II. implementation and results, BIT Numer. Math., 45 (2005), 159-179.

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

[14] X. Wang, K.A. Gallivan and R. Bramley, CIMGS: An incomplete orthogonalization preconditioner,

SIAM J. Sci. Comput., 18 (1997), 516-536.


