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Abstract

In this paper, we investigate a priori error estimates and superconvergence properties
for a model optimal control problem of bilinear type, which includes some parameter es-
timation application. The state and co-state are discretized by piecewise linear functions
and control is approximated by piecewise constant functions. We derive a priori error es-
timates and superconvergence analysis for both the control and the state approximations.
We also give the optimal L?-norm error estimates and the almost optimal L°°-norm es-
timates about the state and co-state. The results can be readily used for constructing a
posteriori error estimators in adaptive finite element approximation of such optimal control
problems.
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1. Introduction

The finite element approximation of optimal control problems has been extensively studied in
the literature. There have been extensive studies in convergence of the standard finite element
approximation of optimal control problems, see, some examples in [2, 3, 9, 10, 18, 20, 23],
although it is impossible to give even a very brief review here. For optimal control problems
governed by linear state equations, a priori error estimates of the finite element approximation
were established long ago; see, e.g., [9, 10]. But it is more difficult to obtain such error estimates
for nonlinear control problems. For some classes of nonlinear optimal control problems, a priori
error estimates were established in [4, 11, 17]. The optimal control problem of bilinear type
considered in this paper includes a useful model problem of parameter estimation, and there
does not seem to exist systematical studies in the literature on its finite element approximation
and error analysis, except [14] where a posteriori error estimates were presented.

Furthermore superconvergence analysis is an important topic for finite element approxima-
tion of PDEs. Due to the lower regularity of the constrained optimal control (normally only
HY(Q) N Wh*(Q)), only a half order of convergence rate can be expected to gain by using
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the standard recovery techniques, see [26]. Very recently Meyer and Rosch in [19] showed that
in fact one order can be gained via using a special projection, which was unique to the linear
optimal control problem they studied. This is a quite interesting result considering the low
regularity of the optimal control. It is useful to establish such a superconvergence property for
our model control problem, which is normally difficult to compute with higher accuracy.

In this paper we firstly study a priori error estimates, superconvergence analysis of the
control problem with a projection and interpolator different from [19].

The plan of the paper is as follows. In Sections 2-3, we describe the control problem and give
the finite element approximation. In Section 4, we derive a priori error estimates. In Section 5,
superconvergence analysis is carried out. Then some applications and super-convergent result
are discussed in Section 6.

2. Optimal Control Problem

In this section, we formulate the bilinear optimal control problem. Let 2 be a bounded
convex polygon in R? with boundary 2. We adopt the standard notation W™4(Q) for Sobolev
spaces on € with the norm || - |[;,¢,0 and the seminorm | - [, 0. We set W) = {w €
Wma(Q) : w|pq = 0} and denote W™2(Q) (W*(Q)) by H™(Q) (HJ(Q)) with the norm
| - llm.o and the seminorm | - |,,, . We shall take the state space V = H}(Q2), the control space
U = L%(), and the observation space Y = L?(£2). Define the control constraint set K C U:

K={veU: v>0}

We are interested in the following optimal control problem of bilinear type :

(2J,Q}a

(b) —div(AVy) +vy=finQ, yloo =0,

.1 2 -
(a) %1£{§||y*yd||o,n+§||”| (2.1)

where « is a positive constant. f € L%(Q) and A(+) = (ai;())2x2 € [Wh*°(2)]>%2 is a symmetric
positive definite matrix. This problem can be interpreted as a model of estimating the true
parameter u via the measured data y, using the least square formulation.

To consider the finite element approximation of the above optimal control problem, we have
to give a weak formula for the state equation. Let

M%w):/YAVw-Vw VywelV,
Q
(v,w) = / vw Vou,wel.
Q
We assume that there are constants ag > 0 and Cy > 0 such that

aollyll¥ < aly,), laly,w)| < Collyllvlwly, VyweV. (2.2)

Then the standard weak formula for the state equation reads as follows: find y(v) € V such
that
a(y(v), w) + (vy(v),w) = (fw)  VweV. (2:3)

Introduce a cost function

1 «
ﬂW:?MW*W%n+?MﬁQ (2.4)
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Then the above control problem can be restated as follows, which we shall label OCP: find
u € K such that

J(u) = i%% J(v), (2.5)
associated with
a(y(v),w) + (vy(v),w) = (f,w), YweV. (2.6)

It is well known (see, for example [16]) that the control problem OCP has at least one
solution (y,u), and that if the pair (y,u) is a solution of OCP then there is a co-state p € V
such that the triplet (y,p,u) satisfies the following optimality conditions, which we shall label
OCP-OPT:

(a) aly,w)+ (uy,w) = (f,w), YweV,
(b) alg,p)+ (up,q) = (v — Ya,q), YqeV, (2.7)
(¢) (au—yp,v—u)>0, VveK.

The inequality (2.7)(c) is equivalent to

1
u = max{0, Eyp}. (2.8)

3. Finite Element Approximation

In this section, we study the finite element approximation of the bilinear optimal control
problem OCP. Here we consider only n-simplex elements, as they are among the most widely
used ones. Also we consider only conforming finite elements.

Let Q" be a polygonal approximation to €. Then we know that Q" =  in this paper. Let
T" be a partitioning of Q" into disjoint regular n-simplices 7, such that Q" = U,epn T . Bach
element has at most one face on 9Q", and 7 and 7 have either only one common vertex or a
whole edge or face if 7 and 7/ € T". Associated with T is a finite-dimensional subspace S” of
C(Q"), such that x|, are polynomials of m-order (m > 1) for each x € S"* and 7 € T". Let
VP = Shn HE(Q). Tt is easy to see that V* C V.

Let TI}} be another partitioning of Q" into disjoint regular n-simplices 77, such that Q" =
UTUeT[;]L Tuy. Assume that 7y and 7(; have either only one common vertex or a whole face or are
disjoint if 7y and 7, € Tﬁ. Associated with Tﬁ is another finite-dimensional subspace Wﬁ of
L?(Q), such that x|, are polynomials of order m (m > 0) for each y € W" and 7y € T}:.

In this paper, we will only consider the simplest finite element spaces, i.e., m = 1 for V"
and m = 0 for U". Let h, (h,,) denote the maximum diameter of the element 7 (7y7) in T"
(Th), let h = max,cpn{h,}, hy = max, epn {hr, }-

Then a possible finite element approximation of OCP, which we shall label OCP", is: find
up, € K™ such that

J(up) = Uhnéilr(lh J(vg), (3.1)
associated with
a(Yn, wr) + (VnYn, wr) = (fywy), Y w, € Vh, (3.2)

where K" is a closed convex set in U". This is a finite-dimensional optimization problem and
may be solved by existing mathematical programming methods such as the steepest descent
method, conjugate gradient method, trust domain method, and SQP.
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It follows that the control problem OCP" has at least one solution (yp,us) and that if the
pair (yn,un) € VP x K" is a solution of OCP" then there is a co-state p;, € V" such that the
triplet (ypn,pn,un) € V x VI x K" satisfies the following optimality conditions, which we shall
label OCP — OPT":

(a) a(yh; wh) + (uhy}uwh) = (f7 wh); YV wy, € Vha
() algn,pn) + (unpn, an) = (Yo — ya-qn), Y an € V", (3.3)
(¢) (aun — ynpr,vn —up) >0, Yo, € K",

Introduce an averaging operator 7}, from U onto U" such that

(mhv)] | | / Vr1eTs, (3.4)
T

where |7| is the measure of 7. The inequality (3.3)(c) is equivalent to

1
up, = max{0, Eﬂ'ﬁ(yhph)}. (3.5)

In the next section, we will analyze convergence and convergent rate of the finite element
approximation.

4. Convergence and a Priori Error Estimates

In this section, we are interested in deriving some error estimates for the finite element ap-
proximation of the control problem. To this end, we firstly need to show the strong convergence
of the approximation. We will proceed in two steps: first to show the weak convergence and
then the strong convergence.

4.1. Weak convergence

Theorem 4.1. Let (yn,pn,un) be the solutions of (3.3). Then there exists a subsequence
(Yhy» Phys Uhy, ) Such that (Yn,, Phy, Un,) weakly converge to a solution (y,p,u) of the system
(2.7) in HY(2) x HY(Q) x L%(Q) as k tends to infinity such that hy tends to zero.

Proof. The proof is divided into two steps. In the first step, we prove there exists one
weakly convergent subsequence. In the second step, we prove the limit of the subsequence is a
solution of the problem (2.7).

First step of proof. Taking wj, = yp and ¢, = pp, in (3.3), we have

IVynllez) < Cllifllc2),  I1Verllzz) < Cllyn — yallL2)- (4.1)
These imply that y;, and pj, are bounded in Hg(£2). Furthermore, we see that

lun 220y = /Q P = 3 / fun ?

ETh

<0 Y 0 o <C 3 (L2 ity

TEThH €Th T

el / 2] / Ipn Y2 < Cllgn s o lonl s (4.2)
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where we have used the fact that [|wl|s(q) < Cllw|| g1 () for each w € H (). This means that
uy, is uniformly bounded in L?(€2). It follows from the embedding theorems that there exists
a subsequence (Yn, , Phy, Un, ) such that (yn,,pn,) is weakly convergent in H}(Q) x Hg () and
strongly convergent in H*(Q2) for 0 < s < 1, and uy, is weakly convergent in L?(2). Let the

limit of (yhkaphk ) uhk) be (yapa u)
Second step of proof. We prove (y, p, u) is a solution of (2.7). Let w;, € Vi and q;, € Vj,
be the interpolations of w € V and ¢ € V. Note that

a(y, ) + (uy, w) =(f,w) + a(y — yn,, w) + (WY — Y, ), w)
+ (U= unys (Yny, — Y)w) + (u — up,, yw)
+ a(yn,, w —wr,, ) + (unYny, w — wr,, ) + (f,wr,, —w) (4.3)
and
a(g,p) + (up, @) =(y — ya, ) + alg,p — pn,) + (w(p — pn, ), q)
+ (u = upy, (Phy, — P)q) + (v — un,, pq)
+alq — qn,, - pny) + (Unpny, q — an,, ) + (Y — Ya, a1, — @) (4.4)

By use of weak convergence of (yp,,pn,) in H(2) x H' () and weak convergence of uy, in
L?(2), we have

lim [ a(y — yny, w) +alg,p — pn,,) + (u — un, ), yw) + ((u — un,),pg) ] = 0.

hr—0

By use of strong convergence of (y, ,pn, ) in H*(Q2) for 0 < s < 1, we obtain
Tim [ [(u(y — yn). )] + (1~ . (0 — g )|
k*}

+ [(ulp = pu), @)+ |(w = un,, (p— pr,)g)| | = 0.

Since
A Ml —wr, @ + llg = an, Iz @] =0,
we have
la(yn,, w —wr, )|+ |(f, wr,, —w)
< |Vynllz2@ IV(w —wr, 2@ + | fllz2@)llwn, —wllrz@ — 0, as hpy—0
and
lalg = ar,, Pl + 1y = ya, an,, — )
< IV(q = an, 2@ IVor iz ) + vy = yalle2llar,, — dllz2@) — 0, as hy — 0.

Noting that (un,yn,, w —wr,, ) < Chllun,yn, || z2@) Wl (0) and
lunetne oy = | fon Plom P < (] lona 99720 fun 912
Q Q Q
SYAUNERETD Uy TS

TET{}

< / e [9Y2[R8 S (A4 / e )4 / o [/ /2

TET{?

< i /Q e 12 S | / e[ / o, 4112

TETg T



476 D.P. YANG, Y.Z. CHANG AND W.B. LIU
and using [|v]| a0y < Cllv||gi () for each v € H'(Q), we infer
| (Whi Yy, w — Wiy, )| < Ch=4* —0.

Similarly, we have
|(U’hkphk’q — 41y, )l < Ch'=4* — 0.

Substituting above estimates into (4.3) and (4.4) leads to
(a) aly,w)+ (uy,w) = (f,w), YweV,
(b) alg,p) + (up,q) = (Y —ya,9), VqgeV.
Finally, we see that for each v € K,
(au —yp,v —un,) = ((u = uny) = (YP = Yny Py ) 0 — tny)
+ (auhk — YhpPhy (’U - W}Czkv)) + (auhk - yhkphkvﬂ}czkv - uhk)

> (a(u - U;hk),’U - ’Lthk) - (yp — YhyPhy» UV — uhk)

+ (au’hk ~ YhPhy> (U - ﬂ-}czkv))'

By using the weak convergence of uy, to u in L?(12), the strong convergence of yp, pr, to yp
and the strong convergence of wjv to v, we infer

(cu —yp,v—u) >0, VveK.

We thus have proved that (y,p,u) is a solution of (2.7). The proof of Theorem 4.1 is then
completed. O

4.2. Strong convergence

Next we prove a strong convergence result. To this end, introduce two auxiliary operators:
for each v € U, (y(v),p(v)) € V x V is the solution of the equations:

(@) a(y(v),w) + (vy(v),w) = (f,w), VweV,

) ala.plo) + (ep(e),0) = ((0) ~va0). Va <V, -
and (yn(v),pn(v)) € V? x V! is the solution of the equations:
(@) alyn(v),wn) + (vyn(v),wn) = (f,wn), ¥ wy €V,
) alapn() + ©@pulo), a0) = G(0) ~varai), Y an € V™ o
Lemma 4.1. For each v € U, if there exists a constant ag > 0 such that
a0||w||§{1(9) <a(w,w) + (vw,w), YweV, (4.7

then (4.5) and (4.6) have unique solutions respectively. Moreover, yp(v) and pp(v) strongly
converge to y(v) and p(v) respectively. If the domain § is convex, then there hold a priori error
estimates

(@) [ly(®) = yn(@)z2@) + AV @) = ya@)lz2@) < CR* (@),

) (4.8)
(0) llp(v) = pr(V)llz2() + hIV(P(v) — pr (V)| L2(2) < Ch*|p(v)

|r2(0) -
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Proof. Tt is clear that

(@) a(y(v) = yn(v), wn) + (u(y(v) = ya(v),wn) =0, ¥ wy € V",

(8) alan, p(v) — pu()) + (WE) — 1)) an) = W) — gn(@)ya), Y aneVh,
such that
(@) [9(0) — @)l 2 < Cly®) — v 0. )

(0) IV(p(v) = pr()lL2@) < C{llp(v) — 1, (V)| 21 () + [|[¥(v) = yr, (V)| L2(02) }-

These mean that (yp(v), pr(v)) strongly converges to (y(v),p(v)). If Q is convex, then y(v) and
p(v) are in H2(£)). Using the standard analysis of finite element methods, we can obtain the
error estimate (4.8). O

Lemma 4.2. For v,w € U, we have

[V (y(v) = y(w))llL2) + IV(p(v) — p(w))]lL2 () < Cllv — wl|g-1(q), (4.11)
IV (yn(v) = yn(w)l L2) + IV (pr(v) — pr(w))z2) < Cllv — w|g-1(0)- (4.12)

Furthermore, for the domain §2 is convex, then

ly(v) = y(w)l[ (@) + [Ip(v) = p(w)]|L= (@) < Cllv —wllL2(0)- (4.13)

Proof. Tt is clear that for any w, v € V,

(@) aly(o) = y(w).w) + (oy(0) = y(w), ) = (w0 = v.wy(w), -
(b) alg,p(v) = p(w)) + (v(p(v) = p(w)), q) = (y(v) — y(w), q) + (w — v, gp(w)). '
As a result of (4.14), we obtain (4.11) and (4.12). On the other hand, we see that
(@) — din(AV(y(v) — () + oly(v) () = (w — v)y(w), -

(0) —div(AV(p(v) = p(w))) +v(p(v) — p(w)) = (w — v)p(w) + y(v) — y(w).
For a convex domain, we have that y(v) — y(w) € H?(Q) and p(v) — p(w) € H*() such that

(@) lly() —y(w)lla2@) < [lv—wllr2@),

(4.16)
®) [lp(v) = p(w)llE2(0) < lv = wlL2@) + [ly(v) — y(W)[L2(0)

By virtue of the embedding theory, we know that |[v||z=@) < C|lv|g2(q). So the estimate
(4.13) is derived. O

Theorem 4.2. Let (yp, pn,un) be the sequence of solutions of (3.3) weakly converging to a
solution (y,p,u) of the system (2.7) in H'(Q) x HY(Q) x L%(Q). Then (yn,pn,un) strongly
converges to (y,p,u) in HY(Q) x H*(Q) x L*(£).

Proof. Using the embedding theory, we know that (yn, pr) is strongly convergent in H*(Q) x
H?#(Q) for 0 < s < 1. Furthermore, since

o]l L2y < Clol| Ve H:(Q), (4.17)

H3 (Q)

hence (yn,pn) is strongly convergent in L4(2) x L4(€).
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Firstly, we prove that uy, is strongly convergent in L?(Q2). It is clear that

1 1
|lu — up| = | max{o0, ayp} — max{0, awﬁ(yhph)ﬂ

IN

1 1 1, .
| max{0, ayp} — max{0, aﬂicz(yp)H + a|7fﬁ(yp — YnDn)|

IN

1 , 1
Elyp — 5, (yp)| + Elﬂﬁ(yp — ynpn)|.

Hence we have

flu — Uh||L2(Q) < C{llyp - Wﬁ(yp)Hm(Q) + [|7h (yp — yhph)HL2(Q)}'

Similarly to (4.2), we have

I = e < CL[ o =921 lpn =2 =0, as B0 (@9
Hence,
|lu—unlp2) — 0, as h—0.

Then we prove that (yu,pn) is strongly convergent in H(Q2) x H(Q). It follows from the
Lemma 4.1 that (yp,(u), pr(u)) strongly converges to (y,p) = (y(u), p(u)) in H(2)x H}(Q). On
the other hand, from the Lemma 4.2, we know that (yp — yn(u), pn — pr(u)) strongly converges
to (0,0) in H'(Q2) x H'(9), since ||[u—wup|12(q) tends to zero. We thus have proved that (yn, pr)
strongly converges to (y,p) in H(Q) x HY(Q). O

4.3. A priori error estimates

Now we are in the position of giving a priori error estimates. To this end, we need some
facts as follows. Firstly, it is a matter of calculation to show that

(J' (v),w) = (aw — y(v)p(v),w), Y weU. (4.19)
Similarly, for each vy, € Uy, there holds
(J(vn), wn) = (avn — yn(vn)pn(vn), wn), ¥ wy, € U™ (4.20)
Furthermore we have

Lemma 4.3. Let u be a solution of (2.7). If there exist constants € > 0 and ¢y > 0 such that
Jor all v € L*(Q) and w € L*(Q) satisfying ||v — ul|l2(q) < € and ||w — ul|r2(q) < €, then the
following inequality holds:

eollo = wilagg) < (J'(0) = T (w),v - w). (4.21)

The proof of Lemma 4.3 is referred to [5], [6] and [14]. Now we can derive a priori error
estimates.

Theorem 4.3. (Error Estimate) Let (yn,pr,un) be the sequence of solutions of (3.3) strongly
converging to a solution (y,p,u) of the system (2.7) in HY(Q) x HY(Q) x L*(Q). Then, there
holds the following a priori error estimate:

lu —unllp2) + 1y — ynllL2) + P — PrllL2) < C(B* + hy). (4.22)



A Priori Error Estimate and Superconvergence Analysis for an Optimal Control Problem

479

Proof. Since the domain 2 is convex, hence y € H*(2), p € H*(Q) and u € H*(Q)NL> ().
Note that uy, strongly converges to u in L*(€). It follows from the definition of J(u), Lemma

4.3 that we have
collu = un|lZ2(q) < (J'(w) = J'(un), u — un)
= (o, u —up) — (Qup, u —up) — (yp — y(un)p(un),u — up)
< (yp,u — un) + (Ynpn, un — w) + (Ynpn,u — THU)
+ (aup, mpu —u) — (yp — y(un)p(un), u — up)
= (aun — Yapn, Thu — uw) + (Ynpr — y(up)p(un), un — u)
=L+ 1L+ I3+ 1y,
where
I = (yp — y(un)p(un), Thu — u),
I = (y(un)p(un) — ynpn, Thu — u),
I3 = (ynpn — y(un)p(un), un — u),
Iy = (yp, mu — w) = (yp — 75, (yp), mhu — w).
Now let us to estimate term by term. It is easy to show that

. Co
I < Cllu = mulfag) + 7 lu = unlZzq),

L < Cl llu = mhull a0 + lpn — p(un) 220 + llyn — y(un)lZ2(@) 1,

Co
Is < ZHU - uh||2L2(Q) + Clllpn *p(uh)H%z(Q) + [lyn — Z/(Uh)H%z(Q)]a

N

C CO C
Iy < lu— Wh””%ﬁ(Q) + Z”Z/p* Wh(?/P)HQN(Qy

Thus, by using the estimates above and Lemma 4.1, we have
lu —unllL2) < C[ lpn — p(un)llL2(0) + llyn — y(un)llL2(0)
+ [lu — mhullL2) + lyp — 7 (yp)l 22(0) | < C(h* + hu).
Then, it follows from the Lemma 4.2 that
ly —ynllz2) + llp — prllL2 (o)
< ly(w) = yn(u)llz2(0) + lp(u) — pr(u)||lL2(@)
+ lyn(w) = yn(un)ll2) + llon(u) = pr(un)l L2
< Ch? + ||u — uhHH—l(Q) < C(h2 + hU).
The proof of Theorem 4.3 is completed.

5. Superconvergence Analysis

(4.23)

(4.24)

(4.25)
(4.26)
(4.27)

(4.28)

(4.29)

In this section, we will provide some super-close results. Let us start from the superconver-

gence analysis for the control u. Let
Qp ={x: ux) >0}, Q={x: ulx)=0}
We decompose Q" into three parts:

Q}fr:{'rU: wC QLY Q={m: 7w cQl,
Qr=a"\G", G"=ahuqp.
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5.1. Super-close result for u
In this section, we assume that 02 is piecewise smooth and has a finite length such that
meas(Q) < Chy. (5.1)
We also assume that p,y € H2(Q) W1 (), and then u € WH>(Q). Introduce a function:

mu, in Ty C Gh

0, in 7y C QQ and up = 0; (5.2)

<2
I

alre(yp), in Tp C O} and wup > 0;
and we have the following result.

Theorem 5.1. Assume the condition (5.1) holds. Let u be the solution of (2.7) and uy be the
solution of (3.3) strongly converging to u. Then,

[un, — il L2y < Ch. (5.3)
To prove Theorem 5.1, we need to prove two lemmas.
Lemma 5.1. Let u and up, be the solutions of (2.7) and (3.3), respectively. Then,
(et —yp, & —up) <0 (5.4)

and
(cup — ynpn,up — ) < 0. (5.5)

Proof. 1t is clear that
atyp yp >0,
u =
0 yp<O0;

so that 7% (u) = a7 (yp) in O and 7§ (u) = 0 in Qf. We have

T (yp) (@ —up) in Q;

(
0 < 7 (yp)(@ — up) in Qb (yp <0, @ =0)
7w (yp) (G —up) in Qp and up > 0;
0=mf(yp)(@—up) in QF and up = 0;
or equivalently,
(att, & —up) < (77 (yp), & — un).
Noting (at — yp, @ — up) = (a@ — 7}, (yp), & — up), we thus have derived (5.4).
Similarly, noting that
a~ ' (ynpn) 75 (ynpn) > 0;
Up = )
0 7 (ynpn) < 0;

and u > 0 if up, = 0, we have

75 (ynpn)(un — @) 5 (yrpn) > 0;
0 <y, (yp)(un — @) 75 (ynpn) < 0; (up = 0)

aup(up, — @) = {
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or equivalently,
(aun,un — @) < (w0, (ynpn), un — @)

This leads to (5.5). O
Lemma 5.2. Assume the condition (5.1) holds. Then,

lyn (@) — yn(w)|| m10) + lpa(@) — pr(w)|| o) < Chi. (5.6)

Proof. Tt follows from the definition of yp,(u) and yp, (@) that for each wy, € Vj,

a(yn(u), wn) + (uyn(u), wn) = (f, wn)
and
a(yn (@), wn) + (dyn (@), wn) = (f, ws).
Thus
a(yn (@) — yn(u), wn) + (u(yn(@) — yn(u)), wn)
=(u — 1, (yn(@) — y(@))wn) + (v — @, y(@)ws). (5.7)

Taking wy, = yp (@) — yn(uw) in (5.7), we have

lyn (@) = yn (W) () < Clu — @,y (@) (yn(@) — ya(w))|

<O (u = u, y(@)(yn(@) — yn () — 4 (y(@) (yn (@) — yn(w))))en
+ [ (u = @, y(@) (yn (@) — yn(u)))ar| |
Clhiyllull e o lyn(@) — yn (W)l @) + (@ — @,y (@) (ya(@) — yn(u)ap| 1- (5-8)

By using the trace theory of Sobolev space [[v]|11(a90,) < C||v]|#1(q), and noting that

|(w = @, y(@)(yn (@) — yn(u)))an|
<[(u = @, y(@)(yn (@) — yn(u)) — Qy(@)(yn (@) — yn(u))))on

+ |(u =@, Qy(u) (yn (@) — ya(u))))anl
<Ch[ullwr @[ I1y(@) (yn (@) = ya (@)l o)

+ 10y (@) (yn (@) — yn(w)ll L1 @0
<Chi |[ullwr.oe @) lyn (@) = yn ()| g1 (@), (5.9)

where Q is an orthogonal projection from H! (') onto L(92;), we have
lyn (@) = yn(w)llzr () < Chi. (5.10)
From the definition of pj(u) and pp (%), we have that for each wy € Vj,,

a(qn, pn(w)) + (upn(u), qn) = (Yn(u) = yd, qn)

and
a(gqn, pr(@)) + (Upn (@), qn) = (Yn(@) — ya, qn)-
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So that for each ¢, € V4,
a(gn, pr(@) = pn(u)) + (u(pn(@) = pu(u); an)
=(u— 1, (pa (@) — p(@))an) + (u — @, p(@)qn) + (ya (@) — yn(w), qn)- (5.11)
Taking gp, = pr(@) — pp(u) in (5.11), we have
lpn(@) = pr (w7 ()
(u — @, p() (pr (@) — pa(w))] + [(yn (@) — yn(u), pr(@) — pa(u))] ]

<C[|(u = a,p(@)(pn(@) — pr(u)) — m; (p(@) (pr(a) — ( M)an|

+ [ (u =@, p(@) (pa(@) — pa(w))ap | + [lyn(@) — yn(w)|1 220 ]
<O |lull () pn(@) = pr (W)l 1 () + llyn(@) = ya ()| 72

+ |(u = @, p(@) (pr(@) — pa(w)))an ! |- (5.12)

By using (5.10) and bounding the last term on the right-hand side of (5.12), similarly to (5.9),
we also can show that

I (@) — pu(w)ll () < Chi. (5.13)
Thus (5.6) is derived. This ends the proof of Lemma 5.2. O
Now we are in the position of proving Theorem 5.1.

Proof of Theorem 5.1. Note that u;, and @ strongly converge to u in L2(2). It follows from
Lemma 4.3 and Lemma 5.1 that

collun — l|72(qy < (Jp(un) = Jj, (@), un — @)
=a(up — U, up — ) — (Ynpr — yn(@)pp (@), up — )
<(ynpn,un — ) — (yp, un — @) — (YnPr — Yn(W)pn (@), up — )
=(yn(@W)pn (@) — yp,up, — ) = R1 + Ro, (5.14)

where
Ry = (yn(u)pn(u) — yp, un — 1),
Ry = (yn(@)pn (@) — yn(w)pn(u), un — @).
Then it gives
|R1| < |((yn(u) = y)p, un — @)ul + [(yn(uw)(pr(u) — p), un — )]
<% un = @32y + Cllyn(w) = vll3z(q) + Ion(w) = pl3z)
SCZOHWL - ﬂ||%2(9) + Ch4(||y||%r2(9) + ||p||§{2(9)) (5.15)
and
|Ra| < [(yn(u)(pn (@) — pn(w)), un — @)| + [((yn(@) — yn(w))pn(u), un — )]
< = 132y + (@ — () By + 1o (@) — () s ) (5.16)
Thus, we have
lun — @l 20y < Cllyn(@) — yn (W)l mr () + l[pa(@) — pr(w) || a1 (0))- (5.17)
Applying Lemma 5.2 to (5.17) leads to (5.3). This ends the proof of Theorem 5.1. O
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5.2. Super-close results for y and p

Theorem 5.2. Assume that all the conditions in Theorem 5.1 are valid. Let yn, pn be the
solutions of (3.3). Then,

lyn =y (W)l @) + [pn — pr(w) || a1 @) < C(B* + hiy). (5.18)
Proof. Noting that
aollyn — yh(“)”%ﬂ(ﬂ)
<a(yn — yn(u), yn — yn(w)) + (w(yn — yn(w)), yn — yn(u)) = I1 + Ir + I3, (5.19)
where
I = ((un — @Wyn, yn — yn(u)),
Iy = — (& — w, yn(yn — yn(u)))an, (5.20)
Iz = —( = w,yn(yn — yn(u)) — 7, (n(yn — yn(u))))gn-
Now we have
(2| < |(u— @ yn(yn — yn(w) — Qyn(yn — yn(w))))ar|
+ [(u =i, Qyn(yn — yn(w))))ap (5.21)
=: Isy + Is9,

where I5; and sy satisfy

Iy < Ch%JH“HWLOO(Q’;])Hyh - yh(U)HHl(Q;;), (5.22)
Iy < Ch ||ullwre )| Qwn(yn — yn(w)) || L1 60 )-

Consequently,
I < OWJullw oyl — v () 1120 (5.23)
Using standard techniques, it is easy to estimate I; + Is where we omit the details. It gives
lyn — yn(u)ll g1 (@) < C(hE + h?).
Noting that
ao||pn *ph(U)H%rl(Q) < al(pn — pr(w),pr — pn(u)) + (uw(pr — pr(uw)), pr — pr(w))
= (yn — yn(u);pn — pr(u)) — ((un — w)pn, pr. — pr(u)), (5.24)
and similarly to estimate ||y — yn(u)|| g1 (q), We also have
o — pu(u) || 51 (@) < C(hE; + B7).
The proof of Theorem 5.2 is completed. g
In the next section we will discuss a superconvergence result for « and some applications.
6. Superconvergence Result for © and Some Applications

As a consequence of super-close results in the section 5, we can derive the following optimal
a priori error estimates in L?-norm.
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6.1. L?-norm and L®-norm error estimates

Theorem 6.1. Assume that all the conditions in Theorem 5.1 and 5.2 are valid. Then there
holds the following a priori error estimate:

Iy = ynllL2) + Ip = prllz2@) < C(h{ + h®). (6.1)
Proof. Tt follows from results in Theorem 5.2 that

ly = ynllL2c) + llp — prllL2 o)
<y = yn(w)llz2() + I — pr(w)llz2() + lyn(w) = ynllL2@) + llpr(w) — pallz2@)
< C(h¥ + h?).

This completes the proof of Theorem 6.1. g

Furthermore, we can have the following almost optimal a priori error estimates in L°°-norm.

Theorem 6.2. Assume that all the conditions in Theorems 5.1 and 5.2 are valid. If y,p €
W222(Q), then there hold the following a priori error estimates:

Iy = ynll (@) + 1P = pull o) < C(h3 + h%)|Inh|? (6.2)

and

[u—unlz=@) < C(h+hu). (6.3)
Proof. In the 2-d case, it follows from the known result
[ wn | ey < Clnh|2[|Vwn | L2y ¥ wh € Vi,
and results in Theorem 5.2 that we have

ly = ynllL=) + lp — PrllL= (o)
<y = yn(Wllze@) + [Ip — pr(u) L= (@)

+ O h 2] [V (yn(w) — )l 2 + |V @n(u) = pa)l 22 ]
< C|Inh|? (h? + h3).

This is (6.2). On the other hand, by using the inverse property of finite element spaces,
[onll o) < Chgtllvnllzz@) ¥ vn € U"
and the results in Theorem 5.1, we have

lu = unl[L=(@) < lu—allr=(@) + 1% — unll (o)
<l = l| os () + Chy '@ — un L2
< C(h+ hy).

This is (6.3). The proof of Theorem 6.2 is then completed. |
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6.2. Superconvergence result for v and a posteriori error estimators

As a consequence of the optimal L?-norm estimation for y,pn, we have the following su-
perconvergence result for u.

Theorem 6.3. Assume that all the conditions in Theorems 5.1 and 5.2 hold. Let
N 1
Uy, = max(0, Eyhph)-
There holds a superconvergence error estimate:
Hu—ahH[}(Q) < C(h%] +h2). (6.4)

Proof. Since max is Lipschitz continuous, hence
~ 1 1
|u — up| = | max{0, ayp} — max{0, ayhph}|
1
§E|y]0 —ynpn| < Clp —pul + |y —yul |-

By using Theorem 6.1, we derive (6.4). |

As another application of the results in Theorems 5.1 and 5.2, we derive super-convergence
for the states y,p and the optimal control u. To this end, let us adopt the same recovery
operator Gpv = (Rpvg, Rpvy) as in [26], where Rj, is the recovery operator defined for the
recovery of w in [26], v, = dv/Ox and v, = Ov/dy. It should be noted that G}, is same as the
Z-7 gradient recovery (see, e.g., [28, 29]) in our piecewise linear case. Then we have:

Theorem 6.4. Suppose that all the conditions in Theorems 5.1 and 5.2 are valid. Moreover,
we assume that y,p € H>(Q). Then,

1Ghyn — VyllL2 (@) + |1Grpn — Vbl 2() < C(h* + ). (6.5)
Proof. First note that
1Gryn — Vylrz) < 1Gryn — Gryn(w)L2) + [|Gryn(u) — Vyl L2 ) (6.6)
It follows from Theorem 5.2 that
IGhyn — Gryn(W) 20y < ClIV (yn — yn(w)ll 20y < C(h* + hi). (6.7)

It has been proved in [27] (Remark 3.2 and Theorem 3.2) that Gpvy = Vo on 7 if v is a
quadratic function on the neighborhood of 7y (Uz/nz9{7’}). Then, it follows from the standard
interpolation error estimate technique (see, e.g., [7]) that

1Gryn(w) — Vyllr2) < [IGryn(u) — Gryrllzz) + 1Gryr — VyllL2(o)
<Ch*(lyls,a + lyll2.0)- (6.8)

Here yr is the linear interpolation of y. Therefore, it follows from (6.6)-(6.8) that
IGhyn — VyllL2) < C(R* + hiy). (6.9)
Similarly, it can be proved that

Grpn — Vbl 2y < C(h* + hi). (6.10)
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Therefore, (6.5) follows from (6.9) and (6.10). O

Using the above two results, we can easily construct a posteriori error estimators for the
control problem as follows:

Ney = lun = Unllz2(r0), & = IVyn — Grynlleery, G = VPR — GrpnllL2(r)- (6.11)

They can be used as error indicators of finite element approximation with adaptive meshes.
It is clear that such estimators are asymptotically exact on uniform meshes, see [26] for more
details.
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