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Université Paris-Est, Cermics, Ecole des Ponts, 6 et 8 avenue Blaise Pascal, Champs sur Marne,

77455 Marne la Vallée Cedex 2, France

Email: ern@cermics.enpc.fr

Annette F. Stephansen
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Abstract

We propose and analyze a posteriori energy-norm error estimates for weighted interior

penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations

with heterogeneous and anisotropic diffusion. The weights, which play a key role in the

analysis, depend on the diffusion tensor and are used to formulate the consistency terms

in the discontinuous Galerkin method. The error upper bounds, in which all the constants

are specified, consist of three terms: a residual estimator which depends only on the el-

ementwise fluctuation of the discrete solution residual, a diffusive flux estimator where

the weights used in the method enter explicitly, and a non-conforming estimator which is

nonzero because of the use of discontinuous finite element spaces. The three estimators

can be bounded locally by the approximation error. A particular attention is given to

the dependency on problem parameters of the constants in the local lower error bounds.

For moderate advection, it is shown that full robustness with respect to diffusion hetero-

geneities is achieved owing to the specific design of the weights in the discontinuous Galerkin

method, while diffusion anisotropies remain purely local and impact the constants through

the square root of the condition number of the diffusion tensor. For dominant advection,

it is shown, in the spirit of previous work by Verfürth on continuous finite elements, that

the local lower error bounds can be written with constants involving a cut-off for the ratio

of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the

diffusion tensor.

Mathematics subject classification: 65N30, 65N15, 76R99.
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1. Introduction

In this work, we are interested in a posteriori energy-norm error estimates for a partic-

ular class of discontinuous Galerkin (dG) approximations of the advection-diffusion-reaction
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equation

{
−∇·(K∇u) + β·∇u+ µu = f in Ω,

u = 0 on ∂Ω,
(1.1)

where for simplicity homogeneous Dirichlet boundary conditions are considered. Here, Ω is a

polygonal domain in R
d with boundary ∂Ω, µ ∈ L∞(Ω), β ∈ [L∞(Ω)]d with ∇·β ∈ L∞(Ω),

µ̃ := µ− 1
2∇·β is assumed to be nonnegative, the diffusion tensor K is a symmetric, uniformly

positive definite field in [L∞(Ω)]d,d and f ∈ L2(Ω). Owing to the above assumptions, (1.1) is

well-posed; see, e.g., [1].

DG methods received extensive interest in the past decade, in particular because of the

flexibility they offer in the construction of approximation spaces using non-matching meshes and

variable polynomial degrees. For diffusion problems, various DG methods have been analyzed,

including the Symmetric Interior Penalty method [2, 3], the Nonsymmetric method with [4]

or without [5] penalty, and the Local Discontinuous Galerkin method [6]; see [7] for a unified

analysis. For linear hyperbolic problems (e.g., advection–reaction), one of the most common

approaches is to use upwind fluxes to formulate the DG method [8, 9]. A unified theory of

DG approximations encompassing elliptic and hyperbolic PDEs can be found in [10, 11]. The

approximation of the advection-diffusion-reaction problem (1.1) using DG methods has been

analyzed in [12] and more recently in [1] with a focus on the high Péclet regime with isotropic

and uniform diffusion. The case of high contrasts in the diffusivity poses additional difficulties.

Recently, a (Symmetric) Weighted Interior Penalty method has been proposed and analyzed to

approximate satisfactorily (1.1) in this situation [13]. The key idea is to use weighted averages

(depending on the normal diffusivities at the two mesh elements sharing a given interface) to

formulate the consistency terms and to penalize the jumps of the discrete solution by a factor

proportional to the harmonic mean of the neighboring normal diffusivities; the idea of using

weighted interior penalties in this context can be traced back to [14]; see also [15].

The present paper addresses the a posteriori error analysis of the weighted interior penalty

method. Many significant advances in the a posteriori error analysis of dG methods have been

accomplished in the past few years. For energy-norm estimates, we refer to the pioneering

work of Becker, Hansbo and Larson [16] and that of Karakashian and Pascal [17], while further

developments can be found in the work of Ainsworth [18,19] regarding robustness with respect

to diffusivity and that of Houston, Schötzau and Wihler [20] regarding the hp-analysis; see

also [21,22]. Furthermore, for L2-norm estimates, we mention the work of Becker, Hansbo and

Stenberg [23], that of Rivière and Wheeler [24], and that of Castillo [25]. Broadly speaking, two

approaches can be undertaken to derive a posteriori energy-norm error estimates; in [16,18,21],

a Helmholtz decomposition of the error is used, following a technique introduced in [26, 27],

while the analysis in [17,20] relies more directly on identifying a conforming part in the discrete

solution. The analysis presented herein will be closer to the latter approach. We also mention

recent work relying on the reconstruction of a diffusive flux; see [28, 29].

This paper is organized as follows. §2 presents the discrete setting, including the weighted

interior penalty bilinear form used to formulate the discrete problem. §3 contains the main

results of this work. The starting point is the abstract framework for a posteriori error estimates

presented in §3.1 and which is closely inspired by the work of Vohraĺık for mixed finite element

discretizations [30]. Then, §3.2 addresses the case of pure diffusion with heterogeneous and

possibly anisotropic diffusivity. We derive an upper bound for the error consisting of three

error indicators, i.e. a residual, a diffusive flux and a non-conforming one. This form is similar
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to that obtained in previous work. The key point however is that the diffusive flux error

indicators also provide local lower error bounds that are fully robust with respect to diffusivity

heterogeneities and that depend on the local degree of anisotropy via the elementwise condition

number of the diffusion tensor; see Propositions 3.1 and 3.2. A key ingredient to obtain this

result is the use of weighted averages in writing the consistency term. §3.3 extends the previous

analysis to the advection-diffusion-reaction problem. Here, the focus is set on achieving a

certain degree of robustness in the high Péclet regime, namely that achieved by Verfürth [31]

for a posteriori energy-norm error estimates with conforming finite elements and streamline

diffusion stabilization. Although these estimates are not independent of the Péclet number (see,

e.g., [32] for fully robust estimates with suitable norm modification), their present extension to

dG methods constitutes the first results of this type. Finally, numerical results are presented

in §4.

2. The Discrete Setting

Let {Th}h>0 be a shape-regular family of affine triangulations covering exactly the polygonal

domain Ω. The meshes Th may possess hanging nodes, as long as shape-regularity holds for a

hierarchical refinement of the mesh without hanging nodes. This assumption is needed in the

local lower error bounds when using the approximation properties of the Oswald interpolate

(see (3.23)–(3.24) below) and when working with edge bubble functions (see, e.g., the proof of

Proposition 3.2). A generic element in Th is denoted by T , hT denotes the diameter of T and

nT its outward unit normal. Let an integer p ≥ 1. We consider the usual dG space

Vh = {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pp(T )}, (2.1)

where Pp(T ) is the set of polynomials of degree less than or equal to p on T . The L2-scalar

product and its associated norm on a region R ⊂ Ω are indicated by the subscript 0, R. For

s ≥ 1, a norm (semi-norm) with the subscript s,R designates the usual norm (semi-norm) in

Hs(R). For s ≥ 1, Hs(Th) denotes the usual broken Sobolev space on Th and for v ∈ H1(Th),

∇hv denotes the piecewise gradient of v, that is, ∇hv ∈ [L2(Ω)]d and for all T ∈ Th, (∇hv)|T =

∇(v|T ).

We say that F is an interior face of the mesh if there are T−(F ) and T+(F ) in Th such

that F = T−(F ) ∩ T+(F ). We set T (F ) = {T−(F ), T+(F )} and let nF be the unit normal

vector to F pointing from T−(F ) towards T+(F ). The analysis hereafter does not depend on

the arbitrariness of this choice. Similarly, we say that F is a boundary face of the mesh if there

is T−(F ) ∈ Th such that F = T−(F ) ∩ ∂Ω. We set T (F ) = {T−(F )} and let nF coincide with

the outward normal to ∂Ω. All the interior (resp., boundary) faces of the mesh are collected

into the set F i
h (resp., F∂Ω

h ) and we let Fh = F i
h ∪ F∂Ω

h . For T ∈ Th, FT denotes the set of its

faces and F̃T the set of mesh faces that share at least a vertex with T . Henceforth, we shall

often deal with functions that are double-valued on F i
h and single-valued on F∂Ω

h . This is the

case, for instance, for functions in Vh. On interior faces, when the two branches of the function

in question, say v, are associated with restrictions to the neighboring elements T∓(F ), these

branches are denoted by v∓ and the jump of v across F is defined as

[[v]]F = v− − v+. (2.2)

We set [[v]]F = v|F on boundary faces. On an interior face F ∈ F i
h, we also define the standard

(arithmetic) average as {v}F = 1
2 (v− + v+). The subscript F in the above jumps and averages



A Posteriori Error Estimates for Weighted Interior Penalty Methods 491

is omitted if there is no ambiguity. We define the weighted average of a two-valued function v

on an interior face F ∈ F i
h as

{v}ω = ωT−(F ),F v
− + ωT+(F ),Fv

+, (2.3)

where the weights are defined as

ωT−(F ),F =
δK+

δK+ + δK−
, ωT+(F ),F =

δK−

δK+ + δK−
, (2.4)

with δK∓ = nt
F (K|T∓(F ))nF . We extend the above definitions to boundary faces by formally

letting δK+ = +∞ so that ω− = 1 and ω+ = 0. For the standard average, it is instead more

convenient to set {v}F = 1
2v|F on boundary faces.

The weak formulation of (1.1) consists of finding u ∈ V := H1
0 (Ω) such that

B(u, v) = (f, v)0,Ω, ∀v ∈ V, (2.5)

with the bilinear form

B(v, w) = (K∇hv,∇hw)0,Ω + (β·∇hv, w)0,Ω + (µv,w)0,Ω. (2.6)

Piecewise gradients are used so as to extend the domain of B to functions in V + Vh. The

energy norm is

‖v‖2
B =

∑

T∈Th

‖v‖2
B,T , ‖v‖2

B,T = (K∇hv,∇hv)0,T + (µ̃v, v)0,T . (2.7)

The discrete problem consists of finding uh ∈ Vh such that

Bh(uh, vh) = (f, vh)0,Ω, ∀vh ∈ Vh, (2.8)

with the bilinear form

Bh(v, w) = (K∇hv,∇hw)0,Ω + ((µ−∇·β)v, w)0,Ω − (v, β·∇hw)0,Ω

+
∑

F∈Fh

[
(γF [[v]], [[w]])0,F − (nt

F {K∇hv}ω, [[w]])0,F − θ(nt
F {K∇hw}ω, [[v]])0,F

]

+
∑

F∈Fh

(β·nF {v}, [[w]])0,F . (2.9)

The penalty parameter γF is defined for all F ∈ Fh as γF = σh−1
F γK,F + γβ,F with

γK,F =
δK+δK−

δK+ + δK−
, γβ,F = 1

2 |β·nF |, (2.10)

where σ is a positive parameter (σ can also vary from face to face) to be taken large enough,

the minimal value being independent of the mesh size and of the diffusion tensor; see [13]. Note

that by the above convention, γK,F = δK− on boundary faces. Finally, the parameter θ can

take values in {−1, 0,+1}. The particular value taken by θ plays no role in the subsequent

analysis.

To avoid technicalities, the diffusion tensor K is assumed to be piecewise constant on Th

and its restriction to an element T ∈ Th is denoted by KT . We will indicate by cK,T and CK,T

respectively the minimum and the maximum eigenvalue of K on T . The degree of diffusion

anisotropy on an element T is evaluated by the condition number of KT , namely ∆T =
CK,T

cK,T
.

Furthermore, the minimum value of µ̃ on T is indicated by µ̃m,T . We assume that if µ̃m,T = 0,

then ‖µ‖L∞(T ) = ‖∇·β‖L∞(T ) = 0.
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3. A Posteriori Error Analysis

3.1. Abstract setting

In this section we present the basic abstract framework for our a posteriori error estimates.

The following result is directly inspired from the abstract framework introduced by Vohraĺık [30].

Lemma 3.1. Let Z and Zh be two vector spaces. Let A be a bilinear form defined on Z+ ×Z+

with Z+ := Z+Zh. Assume that A can be decomposed into the form A = AS +ASS where AS is

symmetric and nonnegative on Z+ and where ASS is skew-symmetric on Z (but not necessarily

on Z+). Then, defining the semi-norm | · |∗ := AS(·, ·)1/2, the following holds for all u, s ∈ Z

and uh ∈ Zh,

|u− uh|∗ ≤ |s− uh|∗ + sup
φ∈Z,|φ|∗=1

|A(u − uh, φ) +ASS(uh − s, φ)|. (3.1)

Proof. Let u, s ∈ Z and uh ∈ Zh. Observe that if u = s, (3.1) obviously holds so that we

may now suppose u 6= s. Suppose first that |u− s|∗ ≤ |u− uh|∗. Then,

|u− uh|
2
∗ = A(u− uh, u− uh) −ASS(u − uh, u− uh)

= A(u− uh, u− s) +A(u − uh, s− uh) −ASS(u − uh, u− uh)

= A(u− uh, u− s) +AS(u− uh, s− uh)

+ASS(u− uh, s− uh) −ASS(u− uh, u− uh)

= A(u− uh, u− s) +AS(u− uh, s− uh) +ASS(u− uh, s− u)

= A(u− uh, u− s) +AS(u− uh, s− uh) +ASS(uh − s, u− s),

where we have used ASS(u− s, u− s) = 0 since (u− s) ∈ Z. Introducing φs = (u− s)/|u− s|∗
and using the fact that for all v, w ∈ Z+, AS(v, w) ≤ |v|∗|w|∗ since AS is symmetric and

nonnegative on Z+ yields

|u− uh|
2
∗ ≤ |u− s|∗A(u − uh, φs) + |u− uh|∗|s− uh|∗ + |u− s|∗ASS(uh − s, φs). (3.2)

Having hypothesized that |u− s|∗ ≤ |u− uh|∗, we infer

|u− uh|∗ ≤ |s− uh|∗ + |A(u − uh, φs) +ASS(uh − s, φs)|, (3.3)

whence (3.1) follows. Consider now the case |u− uh|∗ ≤ |u− s|∗. Since ASS(u− s, u− s) = 0,

|u− s|2∗ = A(u − s, u− s) = A(u − uh, u− s) +AS(uh − s, u− s) +ASS(uh − s, u− s)

≤ |u− s|∗A(u − uh, φs) + |uh − s|∗|u− s|∗ + |u− s|∗ASS(uh − s, φs).

Thus,

|u− uh|∗ ≤ |u− s|∗ ≤ A(u− uh, φs) + |s− uh|∗ +ASS(uh − s, φs). (3.4)

Combining the results we obtain (3.1). 2
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3.2. Pure diffusion

Let β = 0 and µ = 0 in (1.1), i.e., we consider a diffusion problem with anisotropic and

heterogeneous diffusivity:

{
−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω.
(3.5)

The bilinear form B defined by (2.6) becomes

B(v, w) = (K∇hv,∇hw)0,Ω, (3.6)

while the definition of the (semi-)norm ‖·‖B involves only the diffusive contribution, i.e.,

‖v‖2
B,T = (K∇hv,∇hv)0,T . The discrete problem is still (2.8) with the bilinear form Bh defined

by

Bh(v, w) = (K∇hv,∇hw)0,Ω +
∑

F∈Fh

[σh−1
F (γK,F [[v]], [[w]])0,F

− (nt
F {K∇hv}ω, [[w]])0,F − θ(nt

F {K∇hw}ω, [[v]])0,F ]. (3.7)

Lemma 3.1 can be applied by letting Z := V , Zh := Vh, A = AS := B and ASS := 0. The

semi-norm | · |∗ coincides with ‖·‖B. This yields

‖u− uh‖B ≤ inf
s∈V

‖uh − s‖B + sup
φ∈V,‖φ‖B=1

|B(u− uh, φ)|. (3.8)

We now proceed to estimate the second term in the right-hand side of (3.8). Let Πh denote

the L2-orthogonal projection onto the vector space of piecewise constant functions on Th. It is

well-known that for v ∈ L2(Ω), Πhv coincides on each mesh element with the mean value of

v on that element. The projector Πh satisfies the following approximation properties: For all

T ∈ Th and for all φ ∈ H1(T ),

‖φ− Πhφ‖0,T ≤ C
1
2
p hT ‖∇φ‖0,T ≤ C

1
2
p hT c

−
1
2

K,T ‖φ‖B,T , (3.9)

‖φ− Πhφ‖0,∂T ≤ C
1
2
T h

1
2
T ‖∇φ‖0,T ≤ C

1
2
T h

1
2
T c

−
1
2

K,T ‖φ‖B,T . (3.10)

The constant Cp in the Poincaré-type inequality (3.9) can be bounded for each convex T by

π−2, see [33,34], while it follows from [35] that the constant CT in the trace inequality (3.10) is

given by CT = 3dρT with ρT = hT |∂T |/|T | where |∂T | denotes the (d−1)-measure of ∂T and

|T | the d-measure of T ; note that ρT is uniformly bounded owing to the shape-regularity of the

mesh family. For all T ∈ Th, define on T the volumetric residual

R(uh) = f + ∇h·(K∇huh), (3.11)

and on ∂T the boundary residual such that for F ⊂ ∂T ,

JK(uh)|F = ω̄T,Fn
t
T [[K∇huh]] + σh−1

F γK,F [[uh]], (3.12)

where

ω̄T,F = 1 − ωT,F , (3.13)

with F ∈ FT . Note that ω̄T,F = 0 on boundary faces.
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Lemma 3.2. The following holds:

sup
φ∈V,‖φ‖B=1

|B(u − uh, φ)| ≤

(
∑

T∈Th

(ηT + ζT )2

) 1
2

, (3.14)

where the residual error indicator ηT is

ηT = C
1
2
p hT c

−
1
2

K,T ‖(I − Πh)R(uh)‖0,T , (3.15)

and the diffusive flux error indicator is

ζT = C
1
2
T h

1
2
T c

−
1
2

K,T ‖JK(uh)‖0,∂T . (3.16)

Proof. Let φ ∈ V such that ‖φ‖B = 1. Using B(u, φ) = (f, φ)0,Ω and integrating by parts

we obtain

B(u − uh, φ) =
∑

T∈Th

(f + ∇h·(K∇huh), φ)0,T −
∑

F∈Fi
h

(nt
F [[K∇huh]], φ)0,F

since φ ∈ V = H1
0 (Ω). Testing the discrete equations with Πhφ yields
∑

F∈Fh

(σh−1
F γK,F [[uh]] − nt

F {K∇huh}ω, [[Πhφ]])0,F = (f,Πhφ)0,Ω.

On interior faces F ∈ F i
h, define the conjugate weighted average

{v}ω̄ = ωT+(F ),F v
− + ωT−(F ),Fv

+,

so that [[vw]] = {v}ω[[w]]+{w}ω̄ [[v]] for any functions v and w which are (possibly) double-valued

on F . Using this identity yields
∑

T∈Th

(∇h·(K∇huh),Πhφ)0,T

=
∑

F∈Fh

(nt
F {K∇huh}ω, [[Πhφ]])0,F +

∑

F∈Fi
h

(nt
F [[K∇huh]], {Πhφ}ω̄)0,F .

Combining the above equations and using [[φ]] = 0 leads to

B(u− uh, φ) =
∑

T∈Th

(f + ∇h·(K∇huh), φ− Πhφ)0,T −
∑

F∈Fh

(σh−1
F γK,F [[uh]], [[φ− Πhφ]])0,F

−
∑

F∈Fi
h

(nt
F [[K∇huh]], {φ− Πhφ}ω̄)0,F

=
∑

T∈Th

(R(uh), φ− Πhφ)0,T −
∑

T∈Th

∑

F⊂∂T

nT ·nF (JK(uh), φ− Πhφ|T )0,F .

The conclusion is straightforward using (3.9)–(3.10) and the fact that Πh(R(uh)) and (φ−Πhφ)

are L2-orthogonal on each T ∈ Th. 2

Remark 3.1. Taking off the mean value of R(uh) in the residual error estimator is possi-

ble because the discrete space contains piecewise constant functions. This is a feature of dG

approximations, but not, for instance, of continuous finite element approximations.
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Theorem 3.1. Pick any sh ∈ V and define the non-conforming error indicator ιT as

ιT = ‖uh − sh‖B,T . (3.17)

Then, the following holds

‖u− uh‖B ≤

(
∑

T∈Th

(ηT + ζT )2

)1
2

+

(
∑

T∈Th

ι2T

) 1
2

. (3.18)

Proof. Direct consequence of Lemma 3.2 and of (3.8). 2

We now investigate the local efficiency of the above error indicators ηT , ζT and ιT . More

precisely, we derive a local upper bound for these indicators in terms of the approximation

error u − uh, this time measured in the full dG energy-norm, that is the energy semi-norm

augmented by a term with jumps. Recall that the dG method converges optimally in this

norm, as established in [13]. Furthermore, x . y indicates the inequality x ≤ cy with positive

c independent of the mesh and of the diffusion tensor. To simplify, the data f is assumed to be

a polynomial; otherwise, the usual data oscillation term has to be added to the estimates. The

following two propositions establish that the error indicators ηT and ζT are fully robust with

respect to heterogeneities in the diffusion tensor, while the dependency on anisotropies remains

local, i.e., only the square root of the diffusion condition numbers on T and neighboring elements

appears in the local lower bounds, but not the ratios of two diffusion tensor eigenvalues from

different elements.

Proposition 3.1. For all T ∈ Th,

ηT . ∆
1
2
T ‖u− uh‖B,T . (3.19)

Proof. Since ‖(I − Πh)R(uh)‖0,T ≤ ‖R(uh)‖0,T , we simply bound ‖R(uh)‖0,T . To this

purpose, we use the technique of element bubble functions introduced by Verfürth [36, 37]; the

arguments, which are fairly standard, are only briefly sketched. Let T ∈ Th, let bT be a suitable

local bubble function in T vanishing on ∂T and set νT = bTR(uh). Then,

‖R(uh)‖2
0,T . (R(uh), νT )0,T = (K∇h(u− uh),∇νT )0,T

. C
1
2
K,Th

−1
T ‖u− uh‖B,T ‖R(uh)‖0,T .

Hence,

ηT . hT c
−

1
2

K,T ‖R(uh)‖0,T . hT c
−

1
2

K,TC
1
2
K,Th

−1
T ‖u− uh‖B,T ,

whence (3.19) follows. 2

Proposition 3.2. For all v ∈ H1(Th), define

‖v‖2
B,∗,F =

∑

F∈F

‖γ
1
2

F [[v]]‖2
0,F , (3.20)

where F is a subset of Fh. Then, for all T ∈ Th,

ζT . ∆
1
2
T



‖u− uh‖B,∗,FT
+
∑

T̃∈NT

∆
1
2
T̃
‖u− uh‖B,T̃



 , (3.21)

where NT is the set of elements sharing at least a face with the element T .
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Proof. Let T ∈ Th. Observe that

|ζT | . c
−

1
2

K,T

∑

F∈FT

γK,Fh
−

1
2

F ‖[[uh]]‖0,F + c
−

1
2

K,Th
1
2
T

∑

F∈FT

ω̄T,F ‖n
t
F [[K∇huh]]‖0,F

≡ X + Y,

and let us bound X and Y .

(i) Bound on X . It is clear that

X . ∆
1
2
T ‖u− uh‖B,∗,FT

,

since γK,F ≤ nt
FKTnF ≤ CK,T .

(ii) Bound on Y . Let F ∈ FT . Using the technique of edge bubble functions introduced by

Verfürth [36, 37], it is shown that

h
1
2
F ‖nt

F [[K∇huh]]‖0,F .
∑

T ′∈T (F )

C
1
2
K,T ′‖u− uh‖B,T ′ .

Hence,

Y . c
−

1
2

K,T

∑

F∈FT

ω̄T,F

∑

T ′∈T (F )

C
1
2
K,T ′‖u− uh‖B,T ′

. ∆
1
2
T

∑

F∈FT

∑

T ′∈T (F )

(C
−

1
2

K,T c
1
2
K,T ′ ω̄T,F )∆

1
2
T ′‖u− uh‖B,T ′

. ∆
1
2
T

∑

F∈FT

∑

T ′∈T (F )

∆
1
2
T ′‖u− uh‖B,T ′ ,

since

C
−

1
2

K,T c
1
2
K,T ′ω̄T,F ≤

(nFKTnF )
1
2 (nFKT ′nF )

1
2

(nFKTnF ) + (nFKT ′nF )
≤

1

2
.

The proof is complete. 2

Remark 3.2. The local efficiency stated in Proposition 3.2 holds for the energy semi-norm

augmented by the natural DG jump semi-norm. Owing to a recent result of Ainsworth [38],

global efficiency of ζT in the energy semi-norm ‖·‖B holds for sufficiently large stabilization

parameters σ in the case d = 2, p = 1, isotropic diffusion, and θ = 1.

To analyze the local efficiency of the non-conforming error indicator ιT , a particular choice

must be made for sh ∈ V . Presently, one of the state-of-the-art approaches consists of con-

sidering the so-called Oswald interpolate of the discrete solution uh. For vh ∈ Vh, its Oswald

interpolate IOs(vh) ∈ Vh ∩ V is defined by prescribing its values at the usual Lagrange interpo-

lation nodes on each mesh element by taking the average of the values of vh at the node,

IOs(vh)(s) =
1

|Ts|

∑

T∈Ts

vh|T (s), (3.22)

where Ts is the set of mesh elements that contain the node s and where |Ts| denotes the cardinal

of that set. On boundary nodes, IOs(vh)(s) is set to zero. The Oswald interpolation operator
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IOs yields the following local approximation properties [17, 39]: For all vh ∈ Vh and for all

T ∈ Th,

‖vh − IOs(vh)‖2
0,T ≤ C

∑

F∈F̃T

hF ‖[[vh]]‖2
0,F , (3.23)

‖∇h(vh − IOs(vh))‖2
0,T ≤ C

∑

F∈F̃T

h−1
F ‖[[vh]]‖2

0,F , (3.24)

where the constant C depends on the space dimension, the polynomial degree p, and the shape-

regularity parameter associated with the mesh Th; the dependency of the constant C on p has

been recently explored in [40]. If the mesh possesses hanging nodes, a hierarchical refinement

of the mesh without hanging nodes is constructed first. Setting sh := IOs(uh) to evaluate ιT ,

it is inferred using (3.24) that

ιT .

(
CK,T

cK,RT

)1
2
‖u− uh‖B,∗,F̃T

, (3.25)

where

cK,RT
= min

T ′∈RT

cK,T ′ , RT = {T ′ ∈ Th;T ∩ T ′ 6= ∅}.

Clearly, the above estimate is not robust with respect to heterogeneities and/or anisotropies in

the diffusion tensor. In the isotropic case, the result can be improved by using weighted averages

in (3.22) to define the nodal values of the Oswald interpolate. The weights depend on the

diffusivity and a robust bound can be inferred on ιT when evaluated with this modified Oswald

interpolate provided a monotonicity property of the diffusivity around vertices is assumed to

hold; see [18, 41, 42]. To the authors’ knowledge, no fully satisfactory result on a modified

Oswald interpolation operator is yet available in the case of anisotropic diffusivity. We will not

explore this issue further here. Finally, we point out that the error indicator ιT can be readily

sharpened by increasing the computational effort. Indeed, since any reconstructed function

sh ∈ V can be chosen to evaluate it and since

inf
sh∈V

‖uh − sh‖B,T ≤ ‖uh − u‖B,T , (3.26)

the local efficiency of ιT can be improved simply by solving more detailed local problems, and

full robustness with respect to the diffusion tensor can eventually be achieved.

Remark 3.3. Using a triangle inequality, the flux error indicator ζT can be split into two

contributions, one associated with the jump of the diffusive flux and the other associated with

the jump of the discrete solution itself, and the latter can be regrouped with the non-conforming

error indicator ιT . By proceeding this way, the error upper bound is somewhat less sharp

because a triangle inequality has been used, but the final form of the a posteriori error estimate

takes a more familiar form.

3.3. Advection-diffusion-reaction

In this section we turn to the general case of an advection-diffusion-reaction problem. Our

purpose is to extend the a posteriori error indicators derived in Lemma 3.2 and in Theorem 3.1
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to this situation, with a particular emphasis on the robustness of the estimates in the high-

Péclet regime in the sense of Verfürth [31]. The starting point is again the abstract estimate

derived in Lemma 3.1 which is now applied with Z := V , Zh := Vh,

AS(v, w) = (K∇hv,∇hw)0,Ω + (µ̃v, w)0,Ω, (3.27)

ASS(v, w) = (β·∇hv, w)0,Ω + 1
2 ((∇·β)v, w)0,Ω, (3.28)

and A = AS + ASS = B as defined by (2.6). Observe that AS is symmetric and nonnegative

on Z + Zh, that | · |∗ coincides with ‖·‖B defined by (2.7), and that ASS is skew-symmetric on

Z (but not on Z + Zh). As a first step, we rewrite the quantity B(u− uh, φ) +ASS(uh − s, φ)

in a more convenient form.

Lemma 3.3. Let s ∈ V . For all T ∈ Th, define on T the volumetric residual

R(uh) = f + ∇h·(K∇huh) − β·∇huh − µuh, (3.29)

let JK(uh) be defined on ∂T by (3.12), and let Jβ(uh − s) be defined such that for F ∈ FT ,

Jβ(uh − s)|F = 〈γβ,F [[uh − s]] + β·nF {uh − s}〉F , (3.30)

where 〈·〉F denotes the mean value over F . Then, for all φ ∈ V ,

B(u− uh, φ) +ASS(uh − s, φ) = X1 +X2 +X3, (3.31)

with

X1 =
∑

T∈Th

((I − Πh)R(uh), φ− Πhφ)0,T , (3.32)

X2 = −
∑

T∈Th

∑

F∈FT

nT ·nF (JK(uh), φ− Πhφ|T )0,F , (3.33)

X3 =
∑

T∈Th

[
((I − Πh)(β·∇h(uh − s)), φ− Πhφ)0,T + 1

2 ((∇·β)(uh − s), φ− 2Πhφ)0,T

]

+
∑

F∈Fh

(Jβ(uh − s), [[Πhφ]])0,F . (3.34)

Proof. Let φ ∈ V . Using B(u, φ) = (f, φ)0,Ω and integrating by parts, we infer

B(u − uh, φ) =
∑

T∈Th

(R(uh), φ)0,T −
∑

F∈Fi
h

(nt
F [[K∇huh]], φ)0,F .

Testing the discrete equations with Πhφ yields

∑

F∈Fh

(γF [[uh]] − nt
F {K∇huh}ω + β·nF {uh}, [[Πhφ]])0,F + ((µ−∇·β)uh,Πhφ)0,Ω

= (f,Πhφ)0,Ω.

Combining the two above equations and proceeding as in the proof of Lemma 3.2 for the diffusive

term leads to

B(u− uh, φ) = X1 +X2 +
∑

F∈Fh

(γβ,F [[uh]], [[Πhφ]])0,F −
∑

F∈Fh

(β·nF [[uh]], {Πhφ})0,F .
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Using the relation

−
∑

T∈Th

((∇·β)(uh − s),Πhφ)0,T −
∑

T∈Th

(β·∇h(uh − s),Πhφ)0,T

+
∑

F∈Fh

(β·nF [[uh]], {Πhφ})0,F +
∑

F∈Fh

(β·nF {uh − s}, [[Πhφ]])0,F = 0,

and adding ASS(uh − s, φ) as evaluated from (3.28), (3.31) is inferred. Note that the upwind

related term Jβ(uh − s) can be evaluated as a mean value over each face because it is tested

against a piecewise constant function and that the mean value of β·∇h(uh − s) can be taken off

on each element because it is tested against φ− Πhφ. 2

Remark 3.4. The idea of evaluating the upwind related term as a mean value over each face

has been proposed by Vohraĺık [43]. Since for any function ψ ∈ L2(F ), ‖〈ψ〉F ‖0,F ≤ ‖ψ‖0,F ,

this modification can only sharpen the a posteriori error estimate.

The next step is to control φ − Πhφ for φ ∈ V in terms of the energy norm ‖φ‖B. To

obtain bounds that behave satisfactorily when the Péclet number is large, a sharper version of

inequalities (3.9)–(3.10) needs to be used. Observing that on all T ∈ Th, ‖φ−Πhφ‖0,T ≤ ‖φ‖0,T

and letting

mT = min

(
C

1
2
p hT c

−
1
2

K,T , µ̃
−

1
2

m,T

)
, (3.35)

the bound (3.9) can be sharpened as follows:

‖φ− Πhφ‖0,T ≤ mT ‖φ‖B,T . (3.36)

Furthermore, owing to the trace inequality [44, §3.6] (see also [45, 46])

∀v ∈ H1(T ), ‖v‖0,∂T ≤ ρ
1
2
T [h

−
1
2

T ‖v‖0,T + ‖v‖
1
2
0,T‖∇v‖

1
2
0,T ], (3.37)

where we recall that ρT = hT |∂T |/|T |, (3.10) can be sharpened as follows:

‖φ− Πhφ‖0,∂T ≤ ρ
1
2
T

[
h
−

1
2

T mT + c
−

1
4

K,Tm
1
2
T

]
‖φ‖B,T

≤ C̃
1
2
T c

−
1
4

K,Tm
1
2
T ‖φ‖B,T , (3.38)

where we have set

C̃
1
2
T = ρ

1
2
T (1 + C

1
4
p ). (3.39)

Furthermore, we define for all F ∈ Fh,

m̃2
F = min

(
max

T ′∈T (F )
(CT ′hT ′c−1

K,T ′), max
T ′∈T (F )

(ρT ′h−1
T ′ µ̃

−1
m,T ′)

)
, (3.40)

recalling that CT ′ = 3dρT ′ . Finally, let κµ,β,T = 1
2‖∇·β‖L∞(T )µ̃

−
1
2

m,T . If µ̃m,T = 0, κµ,β,T should

be evaluated as zero (recall that we have assumed ‖∇·β‖L∞(T ) = 0 in this case). To simplify

the notation, we will use the convention 0/0 = 0 in the sequel.
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Lemma 3.4. Let s ∈ V . The following holds

sup
φ∈V,‖φ‖B=1

|B(u − uh, φ) +ASS(uh − s, φ)| ≤

(
∑

T∈Th

(ηT + ζT + ι′T )2

)1
2

, (3.41)

where the residual error indicator ηT is

ηT = mT ‖(I − Πh)R(uh)‖0,T , (3.42)

the diffusive flux error indicator ζT is

ζT = C̃
1
2
T c

−
1
4

K,Tm
1
2
T ‖JK(uh)‖0,∂T , (3.43)

and the non-conforming error indicator ι′T is

ι′T = mT ‖(I − Πh)(β·∇h(uh − s))‖0,T + κµ,β,T‖uh − s‖0,T

+
∑

F∈FT

m̃F ‖Jβ(uh − s)‖0,F . (3.44)

Proof. Let φ ∈ V such that ‖φ‖B = 1. We bound the three terms X1, X2 and X3 introduced

in Lemma 3.3. Owing to (3.36) and (3.38), it is clear that

|X1 +X2| ≤
∑

T∈Th

(ηT + ζT )‖φ‖B,T .

Decompose X3 into X3 = X3,1+X3,2 where X3,1 denotes the sum over elements and where X3,2

denotes the sum over faces. Observing that ‖φ − 2Πhφ‖0,T = ‖φ‖0,T and using again (3.36),

we obtain

|X3,1| ≤
∑

T∈Th

(mT ‖(I − Πh)(β·∇h(uh − s))‖0,T + κµ,β,T‖uh − s‖0,T )‖φ‖B,T .

To bound X3,2, let F ∈ Fh. On the one hand, owing to (3.10),

|(Jβ(uh − s), [[Πhφ]])0,F | = |(Jβ(uh − s), [[Πhφ− φ]])0,F |

≤
∑

T ′∈T (F )

|(Jβ(uh − s),Πhφ|T ′ − φ)0,F |

≤ ‖Jβ(uh − s)‖0,F max
T ′∈T (F )

(C
1
2
T ′h

1
2
T ′c

−
1
2

K,T ′)
∑

T ′∈T (F )

‖φ‖B,T ′ .

On the other hand, owing to (3.37) and since Πhφ is piecewise constant,

|(Jβ(uh − s), [[Πhφ]])0,F | ≤
∑

T ′∈T (F )

|(Jβ(uh − s),Πhφ|T ′)0,F |

≤ ‖Jβ(uh − s)‖0,F max
T ′∈T (F )

(ρ
1
2
T ′h

−
1
2

T ′ µ̃
−

1
2

m,T ′)
∑

T ′∈T (F )

‖φ‖B,T ′ .

Hence,

|(Jβ(uh − s), [[Πhφ]])0,F | ≤ m̃F ‖Jβ(uh − s)‖0,F

∑

T ′∈T (F )

‖φ‖B,T ′ ,
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and therefore,

|X3,2| ≤
∑

T∈Th

(
∑

F∈FT

m̃F ‖Jβ(uh − s)‖0,F

)
‖φ‖B,T .

The conclusion is straightforward. 2

Theorem 3.2. Pick any sh ∈ V and define the non-conforming error indicator ι′′T as

ι′′T = ‖uh − sh‖B,T , (3.45)

and let ι′T be evaluated from (3.44) using sh. Then,

‖u− uh‖B ≤

(
∑

T∈Th

(ηT + ζT + ι′T )2

) 1
2

+

(
∑

T∈Th

(ι′′T )2

) 1
2

. (3.46)

Proof. Applying Lemmas 3.1 and 3.4 yields the desired results. 2

Remark 3.5. The non-conforming error indicators ι′T and ι′′T can be regrouped into a single

non-conforming error indicator ιT by setting

ι2T = 4(ι′T )2 + 2(ι′′T )2. (3.47)

Then, (3.46) becomes

‖u− uh‖B ≤

(
2
∑

T∈Th

(ηT + ζT )2

) 1
2

+

(
∑

T∈Th

ι2T

) 1
2

, (3.48)

which is less sharp but has a more familiar form.

We now investigate the local efficiency of the above error indicators ηT , ζT and ιT . Here,

x . y indicates the inequality x ≤ cy with positive c independent of the mesh and of the

parameters K, β, and µ. Again, the data f is assumed to be a polynomial; otherwise, the usual

data oscillation term has to be added to the estimates. As in the pure diffusion case, we will

not take advantage of the presence of the operator (I −Πh) in ηT and in the first term of ι′T to

derive the bounds below.

Proposition 3.3. For all T ∈ Th,

ηT . mT [C
1
2
K,Th

−1
T + min(α1,T , α2,T )]‖u− uh‖B,T , (3.49)

where

α1,T = ‖µ‖L∞(T )µ̃
−

1
2

m,T + ‖β‖L∞(T )c
−

1
2

K,T ,

α2,T = (‖µ−∇·β‖L∞(T ) + ‖β‖L∞(T )h
−1
T )µ̃

−
1
2

m,T .
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Proof. Let T ∈ Th, let bT be a suitable local bubble function in T vanishing on ∂T and set

νT = bTR(uh). Then,

‖R(uh)‖2
0,T . (R(uh), νT )0,T = B(u− uh, νT )

= (K∇h(u− uh),∇hνT )0,T + (µ(u− uh), νT )0,T + (β·∇h(u− uh), νT )0,T

. [C
1
2
K,Th

−1
T + min(α1,T , α2,T )]‖u− uh‖B,T‖R(uh)‖0,T ,

where the min is obtained by integrating by parts or not the advective derivative. The conclusion

is straightforward. 2

Proposition 3.4. For all T ∈ Th,

ζT . ∆
1
2
T ‖u− uh‖B,∗,FT

+ ∆
1
2
T c

1
4
K,Tm

1
2
T

∑

T̃∈NT

m
−

1
2

T̃
c
−

1
4

K,T̃
(∆

1
2
T̃

+mT̃α1,T̃ )‖u− uh‖B,T̃ . (3.50)

Proof. Let T ∈ Th. Observe that

|ζT | . c
−

1
4

K,Tm
1
2
T

∑

F∈FT

γK,Fh
−1
F ‖[[uh]]‖0,F + c

−
1
4

K,Tm
1
2
T

∑

F∈FT

ω̄T,F ‖n
t
F [[K∇huh]]‖0,F

≡ X + Y,

and let us bound X and Y by the right-hand side of (3.50).

(i) Bound on X . Since γK,F ≤ CK,T ,

X . c
−

1
4

K,Tm
1
2
T h

−
1
2

T C
1
2
K,T

∑

F∈FT

γ
1
2
K,Fh

−
1
2

F ‖[[uh]]‖0,F

. ∆
1
2
T c

1
4
K,Tm

1
2
T h

−
1
2

T ‖u− uh‖B,∗,FT
.

Owing to the obvious bound h
−

1
2

T . m
−

1
2

T c
−

1
4

K,T , it is inferred that X is bounded by the first

term on the right-hand side of (3.50).

(ii) Bound on Y . Let F ∈ FT . Following the ideas of Verfürth [31], let bF be a suitable bubble

function with support in F and let ℓF be the lifting of (nt
F [[K∇huh]])bF in T (F ) with cut-off

parameter

θT ′ = mT ′C
−

1
2

p h−1
T ′ c

1
2
K,T ′ ≤ 1,

on each T ′ ∈ T (F ). Then,

‖nt
F [[K∇huh]]‖2

0,F . (nt
F [[K∇huh]], ℓF )0,F ,

‖ℓF‖0,T ′ . h
1
2
T ′θ

1
2
T ′‖nt

F [[K∇huh]]‖0,F . m
1
2
T ′c

1
4
K,T ′‖nt

F [[K∇huh]]‖0,F ,

‖∇ℓF‖0,T ′ . h
−

1
2

T ′ θ
−

1
2

T ′ ‖nt
F [[K∇huh]]‖0,F . m

−
1
2

T ′ c
−

1
4

K,T ′‖nt
F [[K∇huh]]‖0,F .

Observe that

B(u − uh, ℓF ) = (R(uh), ℓF )0,T (F) + (nt
F [[K∇huh]], ℓF )0,F ,
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and that

|B(u − uh, ℓF )|

.
∑

T ′∈T (F )

(C
1
2
K,T ′m

−
1
2

T ′ c
−

1
4

K,T ′ +m
1
2
T ′c

1
4
K,T ′α1,T ′)‖u− uh‖B,T ′‖nt

F [[K∇huh]]‖0,F .

Furthermore, since

|(R(uh), ℓF )0,T (F)| ≤
∑

T ′∈T (F )

‖R(uh)‖0,T ′‖ℓF‖0,T ′

.
∑

T ′∈T (F )

[C
1
2
K,T ′h

−1
T ′ + min(α1,T ′ , α2,T ′)]‖u− uh‖B,T ′‖ℓF‖0,T ′

.
∑

T ′∈T (F )

[C
1
2
K,T ′h

−1
T ′ + α1,T ′ ]m

1
2
T ′c

1
4
K,T ′‖u− uh‖B,T ′‖nt

F [[K∇huh]]‖0,F ,

and since h−1
T ′ m

1
2
T ′c

1
4
K,T ′ ≤ m

−
1
2

T ′ c
−

1
4

K,T ′ , it is inferred that |(R(uh), ℓF )0,T (F)| can be bounded as

|B(u− uh, ℓF )|, whence

‖nt
F [[K∇huh]]‖0,F .

∑

T ′∈T (F )

(C
1
2
K,T ′m

−
1
2

T ′ c
−

1
4

K,T ′ +m
1
2
T ′c

1
4
K,T ′α1,T ′)‖u− uh‖B,T ′ .

As a result,

Y . c
−

1
4

K,Tm
1
2
T

∑

F∈FT

∑

T ′∈T (F )

ω̄T,F (C
1
2
K,T ′m

−
1
2

T ′ c
−

1
4

K,T ′ +m
1
2
T ′c

1
4
K,T ′α1,T ′)‖u− uh‖B,T ′

. ∆
1
2
T c

1
4
K,Tm

1
2
T

∑

F∈FT

∑

T ′∈T (F )

(C
−

1
2

K,T c
1
2
K,T ′ ω̄T,F )(∆

1
2
T ′ +mT ′α1,T ′)m

−
1
2

T ′ c
−

1
4

K,T ′‖u− uh‖B,T ′

. ∆
1
2
T c

1
4
K,Tm

1
2
T

∑

T̃∈NT

(∆
1
2
T̃

+mT̃α1,T̃ )m
−

1
2

T̃
c
−

1
4

K,T̃
‖u− uh‖B,T̃ .

The conclusion is straightforward. 2

Finally, we investigate the local efficiency of the non-conforming error estimator ιT . To

this purpose, we pick sh = IOs(uh). As discussed at the end of §3.2, a modified Oswald

interpolation operator can be considered in the case of isotropic and heterogeneous diffusivity

with a monotonicity property around vertices to sharpen the result.

Proposition 3.5. Set sh = IOs(uh). Let T ∈ Th. Define cβ,F̃T
= minF∈F̃T

γβ,F . Then,

ιT .

(
C

1
2
K,Th

−1
T + ‖µ̃‖

1
2
L∞(T ) +mT ‖β‖L∞(T )h

−1
T + κµ,β,T +

∑

F∈FT

m̃F ‖β·nF ‖L∞(F )h
−

1
2

T

)

× min

(
hT c

−
1
2

K,RT
, h

1
2
T c

−
1
2

β,F̃T

)
‖u− uh‖B,∗,F̃T

, (3.51)

recalling that RT = {T ′ ∈ Th;T ∩ T ′ 6= ∅}.
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Proof. Let T ∈ Th. Observe first that

∑

F∈F̃T

‖[[uh]]‖0,F ≤ min

(
hT c

−
1
2

K,RT
, h

1
2
T c

−
1
2

β,F̃T

)
h
−

1
2

T ‖u− uh‖B,∗,F̃T
.

Hence, using (3.23)–(3.24),

ι′′T = ‖uh − sh‖B,T .

(
C

1
2
K,Th

−1
T + ‖µ̃‖

1
2
L∞(T )

)
min

(
hT c

−
1
2

K,RT
, h

1
2
T c

−
1
2

β,F̃T

)
‖u− uh‖B,∗,F̃T

.

Let us now consider ι′T . Still using (3.23)–(3.24), the first two terms in ι′T (see (3.44)) are

bounded by

(
mT ‖β‖L∞(T )h

−1
T + κµ,β,T

)
min

(
hT c

−
1
2

K,RT
, h

1
2
T c

−
1
2

β,F̃T

)
‖u− uh‖B,∗,F̃T

,

and it remains to bound the last term, namely
∑

F∈FT
m̃F ‖Jβ(uh − sh)‖0,F . For all T ∈ Th, it

can be shown by proceeding as in the proof of (3.23)–(3.24) that

‖{uh − IOs(uh)}‖0,∂T .
∑

F∈F̃T

‖[[uh]]‖0,F ,

whence the conclusion is straightforward. 2

To illustrate by a simple example, assume that β and µ are of order unity, that β is solenoidal

(or that its divergence is uniformly bounded by µ̃ locally), and that the diffusion is homogeneous

and isotropic, i.e., K = ǫId with real parameter 0 < ǫ ≤ 1 and Id the identity matrix in

R
d,d. Then, mT ≃ min(hT ǫ

−
1
2 , 1), α1,T ≃ 1 + ǫ−

1
2 , α2,T ≃ 1 + h−1

T , and it is readily verified

that all the constants appearing in the local estimates for ηT , ζT , and ιT are bounded by

(1 + ǫ−
1
2 min(hT ǫ

−
1
2 , 1)), which corresponds to the result derived in [31] for continuous finite

elements.

4. Numerical Results

In this section, the present a posteriori error estimators are assessed on two test cases.

The first one is a pure diffusion problem with heterogeneous isotropic diffusion; its aim is

to verify numerically the sharpness of the diffusion flux error indicator ζT when evaluated

with the proper weights. The second test case is an advection–diffusion-reaction problem with

homogeneous diffusion; its aim is to verify the behavior of the a posteriori error estimates in

the low- and high-Péclet number regimes. We have always taken σ = 4 and θ = 1 in (2.10)

and (2.9), respectively. The corresponding dG method is the so-called Symmetric Weighted

Interior Penalty method analyzed recently in [13]. Moreover, we have set p = 1, i.e., used

piecewise linears. In all cases, the non-conforming error indicators have been evaluated using

the standard Oswald interpolate of the discrete solution; see (3.22).

4.1. Heterogeneous diffusion

We consider the following test problem proposed in [47]. The domain Ω = (−1, 1)× (−1, 1)

is split into four subregions: Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0),

and Ω4 = (0, 1) × (−1, 0). The source term f is zero. The diffusion tensor is isotropic, i.e.,
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Table 4.1: Heterogeneous diffusion with parameter α = 0.13.

N ‖u − uh‖0,Ω ‖u − uh‖B (
∑

T∈Th
ζ2

T )
1

2 (
∑

T∈Th
ι2T )

1

2 est. eff.

112 8.48e-2 3.27 15.62 11.84 27.45 8.4

448 7.16e-2 3.11 10.92 11.35 22.26 7.2

1792 6.19e-2 2.93 9.89 10.82 20.72 7.1

7168 5.37e-2 2.75 9.16 10.27 19.43 7.1

order 0.21 0.09 0.11 0.08 0.09 –

of the form K|Ωi
= ǫiI with constant value within each subregion for i ∈ {1, 2, 3, 4}. Letting

ǫ1 = ǫ3 = 100 and ǫ2 = ǫ4 = 1, the exact solution written in polar coordinates is

u|Ωi
= rα (ai sin(αθ) + bi cos(αθ)) , (4.1)

with α = 0.12690207 and

a1 = 0.100000000, b1 = 1.000000000,

a2 = −9.603960396, b2 = 2.960396040,

a3 = −0.480354867, b3 = −0.882756593,

a4 = 7.701564882, b4 = −6.456461752.

Non-homogeneous Dirichlet boundary conditions as given by (4.1) are enforced on ∂Ω. The

exact solution possesses a singularity at the origin, and its regularity depends on the constant

α, namely u ∈ H1+α(Ω); see [48] for further regularity results for this type of problems. The

expected convergence order of the error in the L2-norm is 2α, while the expected convergence

order in the energy semi-norm is α. Table 4.1 presents the results on a series of quasi-uniform

unstructured triangulations with N mesh elements. All the meshes are compatible with the

above partition of the domain Ω. The last line of the table displays the convergence orders

evaluated on the last two meshes. The convergence orders for the error both in the L2-norm

and in the energy semi-norm are in good agreement with the theoretical predictions. The same

conclusion is reached for the a posteriori error estimators based on ζT and ιT (observe that in

the present case, ηT = 0 because f = 0 and p = 1). The column labelled “est” reports the total

a posteriori error estimator derived in Theorem 3.1, and the column labelled “eff” reports the

effectivity index of the estimator, namely the ratio of the a posteriori error estimator to the

actual approximation error. The effectivity index is about 7 on all meshes. Notice that all the

constants in the estimators are explicitly evaluated. To compare, using the more conventional

dG method based on arithmetic averages (i.e., weights equal to 1
2 on all faces) and a penalty

term γK,F equal to the arithmetic mean of the normal diffusivities on each face, the effectivity

indices are about 5 times larger.

We have also examined a similar test case with a less singular solution corresponding to

milder contrasts in the diffusion, namely ǫ1 = ǫ3 = 5 and ǫ2 = ǫ4 = 1. In this case, the exact

solution is still given by (4.1) with α = 0.53544095 and

a1 = 0.44721360, b1 = 1.00000000,

a2 = −0.74535599, b2 = 2.33333333,

a3 = −0.94411759, b3 = 0.55555556,

a4 = −2.40170264, b4 = −0.48148148.
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Table 4.2: Heterogeneous diffusion with parameter α = 0.54.

N ‖u − uh‖0,Ω ‖u − uh‖B (
∑

T∈Th
ζ2

T )
1

2 (
∑

T∈Th
ι2T )

1

2 est. eff.

112 2.66e-2 6.11e-1 4.82 8.70e-1 5.69 9.32

448 1.13e-2 4.28e-1 2.49 6.09e-1 3.10 7.23

1792 4.98e-3 2.97e-1 1.66 4.23e-1 2.08 7.00

7168 2.26e-3 2.06e-1 1.13 2.92e-1 1.42 6.90

order 1.14 0.53 0.56 0.53 0.55 –

Table 4.3: Error as a function of mesh elements on adaptive meshes.

N ‖u − uh‖B (
∑

T∈Th
ζ2

T )
1

2 (
∑

T∈Th
ι2T )

1

2 eff.

112 6.11e-1 5.69 8.70e-1 9.3

148 4.58e-1 2.53 6.17e-1 5.5

200 3.51e-1 2.20 4.40e-1 6.3

288 2.86e-1 2.00 3.17e-1 7.0

394 2.69e-1 1.72 3.13e-1 6.4

Table 4.2 presents the results. The conclusions are similar to those reached with the previous

test case. The effectivity index is approximately equal to 7 (except on the coarsest mesh), and

thus takes comparable values to those in the previous test case, confirming the robustness of

the estimates with respect to diffusion heterogeneities.

We conclude this section by an example on how the error estimator can be used to adapt

the mesh. We consider the test case with parameter α = 0.54. Starting from the quasi-uniform

mesh with N = 112 considered previously, the adaptive mesh refinement procedure flags 5% of

the mesh elements yielding the largest error indicators. Results are reported in Table 4.3. The

efficiency of the procedure can be seen for instance by observing that the error in the energy

semi-norm is approximately 0.29 on an adaptive mesh with N = 288 elements, while N = 1792

elements are needed in a quasi-uniform mesh to achieve the same target. Fig. 4.1 presents two

meshes obtained with the adaptive refinement procedure, one with 148 elements and one with

200 elements. We see that the adaptive refinement correctly aims at capturing the singularity

at the origin.

4.2. Advection-diffusion-reaction

Consider the domain Ω = (0, 1)×(0, 1), the advection field β = (1, 0)t, the reaction coefficient

µ = 1, and an isotropic homogeneous diffusion tensor K = ǫI. We run tests with ǫ = 1 and

ǫ = 10−4 to examine the difference between dominant diffusion and dominant advection regimes.

Since the diffusion is homogeneous and isotropic, the SWIP method coincides with the more

conventional Interior Penalty dG method. The source term f is designed so that the exact

solution is

u(x, y) = 0.5x(1 − x)y(1 − y)

(
1 − tanh

(
0.5 − x

γ

))
. (4.2)

Here, the parameter γ = 0.05 controls the thickness of the internal layer at x = 0.5. Homoge-

neous Dirichlet boundary conditions are enforced.

In Table 4.4 we present the results for the dominant diffusion regime. The estimator and

the error converge at the same order, and the effectivity index is comparable with that obtained
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Fig. 4.1. Two adaptive meshes derived from the error estimator: 148 elements (left) and 200 elements

(right)

for a pure diffusion problem. The dominant contribution to the total a posteriori error estimate

is the diffusive flux error indicator. When the advection becomes dominant (Table 4.5), the

main contribution is the non-conforming error indicator ι′T and, marginally, the residual error

indicator (which converges to second-order owing to the subtraction of the elementwise mean-

value of the residue). Owing to the approrpiate use of cut-off functions, the effectivity index

is only twenty times larger than in the dominant diffusion regime. The last line of Table 4.5

reports the convergence orders evaluated using the last two meshes. It can be observed that

the last mesh is sufficiently fine, leading to first-order convergence of ‖u − uh‖B, whereas this

quantity converges to order 1.5 on coarser meshes where the L2-contribution dominates. Finally,

adaptive meshes can be generated using the above error indicators (not shown). As expected,

the adaptive refinement occurs in the vicinity of the internal layer.

Table 4.4: Advection-diffusion with ǫ = 1.

N ‖u − uh‖B (
∑

T∈Th
η2

T )
1

2 (
∑

T∈Th
ζ2

T )
1

2 (
∑

T∈Th
ι
′
2

T )
1

2 (
∑

T∈Th
ι
′′
2

T )
1

2 est. eff.

256 4.39e-2 3.48e-2 3.13e-1 1.13e-2 1.90e-2 3.74e-1 8.5

1024 2.28e-2 1.03e-2 1.74e-1 2.61e-3 1.11e-2 1.96e-1 8.6

4096 1.15e-2 2.68e-3 9.16e-2 5.51e-4 5.45e-3 9.71e-2 8.4

16384 5.71e-3 6.76e-4 4.65e-2 1.28e-4 2.61e-3 4.97e-2 8.7

order 1.01 1.98 0.99 2.10 1.07 0.97 –

Table 4.5: Advection-diffusion with ǫ = 10−4.

N ‖u − uh‖B (
∑

T∈Th
η2

T )
1

2 (
∑

T∈Th
ζ2

T )
1

2 (
∑

T∈Th
ι
′
2

T )
1

2 (
∑

T∈Th
ι
′′
2

T )
1

2 est. eff.

256 7.85e-4 3.85e-2 2.43e-3 6.70e-2 9.33e-4 1.05e-1 134

1024 2.98e-4 2.00e-2 1.88e-3 3.48e-2 2.47e-4 5.56e-2 186

4096 1.32e-4 8.40e-3 1.24e-3 1.74e-2 8.80e-5 2.67e-2 201

16384 6.40e-5 2.18e-3 6.23e-4 8.53e-3 3.90e-5 1.13e-2 177

order 1.06 1.95 0.99 1.03 1.17 1.25 –
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5. Conclusions

In this work, we have proposed and analyzed a posteriori energy-norm error estimates for

weighted interior penalty dG approximations of advection-diffusion-reaction equations with het-

erogeneous and anisotropic diffusion. All the constants in the error upper bounds have been

specified, so that the present estimates can be used for actual error control in practical simula-

tions. Local lower error bounds in which all the dependencies on model parameters are explicitly

stated have been derived as well. In the case of pure diffusion, full robustness is achieved with

respect to diffusion heterogeneities owing to the use of suitable diffusion-dependent weights to

formulate the consistency terms in the dG method. This feature has been verified numerically

and stands in contrast to the results obtained with more conventional interior penalty dG meth-

ods. Furthermore, diffusion anisotropies enter the lower error bounds only through the square

root of the condition number of the diffusion tensor on a given mesh cell and its neighbors. In

the presence of advection, we have shown, in the spirit of the work of Verfürth for continuous

finite element methods with streamline diffusion stabilization, that the lower error bounds can

be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of

the square root of the lowest local eignevalue of the diffusion tensor.
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