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Abstract

In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli-
cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpo-
lation and the related Bernstein-Jackson type inequalities are established, which play an
important role in pseudospectral method. The pseudospectral method is applied to a two-
dimensional singular problem and a problem on axisymmetric domain. The convergence
of proposed schemes is established. Numerical results demonstrate the efficiency of the

proposed method.

Mathematics subject classification: 65N35, 41A10, 41A63.

Key words: Jacobi pseudospectral method in multiple dimensions, Jacobi-Gauss type inter-
polation, Bernstein-Jackson type inequalities, Singular problem, Problem on axisymmetric
domain.

1. Introduction

The main advantage of spectral method is its high accuracy, see [4-9]. However, this merit
may be seriously affected by singularities of genuine solutions, which could be caused by several
factors, such as degenerating coefficients of leading terms in differential equations. Moreover,
the coefficients of derivatives of different orders involved in underlying problems may degenerate
in completely different way. For solving such problems, Guo [11,12] developed the Jacobi ap-
proximation in certain non-uniformly weighted Sobolev space, and proposed the corresponding
Jacobi spectral method with its applications to one-dimensional singular differential equations.
We also refer to the work on the Jacobi approximation in [1,7,16,20]. The Jacobi spectral
method is also very useful for many kinds of other related problems, e.g., differential equations
on unbounded domains and axisymmetric domains, [3,10,13,14,25]. On the other hand, some
results on the Jacobi approximation have been successfully applied to the analysis of various
rational spectral methods,see e.g., [15,17,18,22,23, 26].

In practice, it is more important and interesting to solve multi-dimensional singular problems
and related problems numerically. Guo and Wang [21] provided the Jacobi spectral method in
two-dimensions. It is well known that the pseudospectral method is more preferable in actual
computations, since it only needs to evaluate unknown functions at interpolation nodes. This
feature simplifies calculations and saves a lot of work. Furthermore, it is much easier to deal
with nonlinear terms. Guo and Wang [19] investigated the Jacobi pseudospectral method for
one-dimensional singular problems. However, no existing works have been found for considering
the Jacobi pseudospectral method in multiple dimensions.
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This paper is devoted to the Jacobi pseudospectral method in multiple dimensions and
its applications. In the next section, we recall some basic results on the one-dimensional Ja-
cobi approximation. In Section 3, we establish the main results on the Jacobi-Gauss type
interpolation in multi-dimensional space, which play important role in designing and analyzing
various Jacobi pseudospectral schemes for singular problems and other related problems. We
also derive a series of sharp results on the Legendre-Gauss type interpolation and the related
Bernstein-Jackson type inequalities, which are very useful for pseudospectral methods of partial
differential equations with non-constant coefficients. It is noted that Canuto, Hussaini et.al [6],
and Bernardi and Maday [4] first studied the Legendre-Gauss type interpolation in the Sobolev
spaces, and Quarteroni [24] first considered the Bernstein-Jackson type inequalities in Lp-space
for the Legendre orthogonal approximation. We improve and generalize some of those results
in this paper. As examples of applications, we consider a two-dimensional singular problem in
Section 4, and a problem defined on an axisymmetric domain in Section 5. The convergence of
proposed schemes is proved. Numerical results confirm the theoretical predictions. The final
section provides some concluding remarks.

2. Preliminaries

We first recall some basic results on the one-dimensional Jacobi approximation. Let A =
(=1,1), and x(z) be a certain weight function. Denote by N the set of all non-negative integers.
For any r € N, we define the weighted Sobolev space H} (A) in the usual way, with the inner
product (u,v)ry,A, semi-norm |v|, A and norm ||v||, ., respectively. In particular,

Li(A) = HQ(A), (U, )y, 4 = (4, 0)0,5,A,

and [|v|lx,a = [[v[lo,x,a- For any r > 0, the space HJ(A) and its norms are defined by space
interpolation as in [2]. The space Hg, (A) stands for the closure in Hy (A) of the set D(A)
consisting of all infinitely differentiable functions with compact support in A. Besides,

oHI(A) = {v | v e HI(A),v(~1) = 0}.

Whenever x(x) = 1, we omit the subscript x in the notations.
Let a, # > —1. The Jacobi polynomials Jl(a’ﬁ)(:c), 1=0,1,2,..., are the eigenfunctions of
Sturm-Liouville problem

Do (1 — 2)*T (1 + 2)PHo,u(x) + M1 — 2)*(1 + 2)Pv(x) =0,  z €A,
with the corresponding eigenvalues
AN — il +a+8+1) 1=0,1,2,...

Let () (z) = (1 — 2)*(1 + 2)”. We have that
TP @D @ @) da =2

where §; ;- is the Kronecker symbol, and

(@,8) 20BN+ a4+ DT+ B+ 1)
T T @ltatBr )T+ )T +tat B+ 1)
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Thus, for any v € Li(“*ﬁ) (A), we have

i 50 760 ()
1=0

where

1
f)l(a’ﬁ) = v(:c)Jl(a’B) (2)x' P () da.

>

Now, let N € N, and denote by Py (A) the set of all algebraic polynomials of degree at most
N. Moreover,

oPn(A) = {v|v e Py(A),v(-1) =0},
and
PRU(A) = {v|v € Pn(A),v(+1) = 0}.

Throughout this paper, we denote by ¢ a generic positive constant independent of any function
and N.
The orthogonal projection Pn o .4: Lx(" 5 (A) = Pn(A) is defined by

(PN,a,8,AV — V)8 A =0, Vo € Pn(A). (2.1)

For description of approximation results, we define the space H” e A(A), r € N, with the
semi-norm

|U|7«,X(a,ﬁ) VAN — ||a;v||x(“+Tv5+T>,A

and the norm .

1
[0l an = O 10 @ an)®-
k=0

For any r > 0, the space H” (@B A(A) is defined by space interpolation.
According to Theorem 2 1 of [20], for any v € H” N A(A), reNand 0< pu<r,

1PN, e,8,00 = [y an < NPT 0], ) a8) 44 (2.2)

We now turn to the Jacobi-Gauss type interpolation. Let Céajg)y C}(za]\f)J nd (: L N j,
j < N, be the zeros of polynomials JJ(VQJ’FBI)(I), (14 x)J(a’ﬁH)( ) and (1 — )&Jaﬁ( )7
respectively. We denote by w(ZaA[,j)], 0<j <N, Z=G,R,L, the corresponding Christoffel
numbers such that

N
/ oz (a,ﬁ) Z ¢ (Za]’\?)y Vo € Pangay (A), (2.3)
=0

where Az =1 for Z =G, Az =0 for Z =R, and Az = —1 for L, respectively.
We introduce the following discrete inner product and norm,

N

B B B 3
(V)00 zvn = P WCERNNVEER TR olles zva = (0:0) 00 4 ya
5=0

By the exactness of (2.3), we have that

(@ V) s,z A = (D) y@m ps Vo1 € Panya, (D), Z =G, R, L. (2.4)
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Let A(Za,f,) ={z|z = C(Za]’@, 0 < j < N}. The Jacobi-Gauss-type interpolation Zz . q,3,A0 €
Pn(A) is determined uniquely by
Iz Napav(@) =v(@), zeAFy.

Here we assum that v € C(A) for Z = G, v € C(AU{z = —1}) for Z = R, and v € C(A) for
Z = L. They are named as the Jacobi-Gauss interpolation for Z = G, the Jacobi-Gauss-Radau
interpolation for Z = R, and the Jacobi-Gauss-Lobatto interpolation for Z = L, respectively.
According to Theorems 4.1, 4.5 and 4.9 of [20], we have the following results.
(i) For any v € C(A) N H (o 500 4(A), k,l€Nand 0<k+1<1

1Z6 N 8,00 Ly asipin g < Cllv]lyasnsrn g+ N0 yasirrprrin o (2.5)

(i) For any v € C(AU{z = —1}) NH_ (osi1 4(A) withv(—1) =0, k1N, 0<k<I<1
and [ < 41,

||IR7N7Q’Q7A'U||X(a+k,6—t)7A < C||v||x(a+k,ﬁfl)7A + CNil||am’l)||x(a+k+1,5fz+1)71\. (2.6)

(iii) For any v € C(A) N H;(a,w,l) A(A) with o(£1) =0, k1l e N, 0 < kI < Lk<a+1
and [ < 041,

||IL N,a,3, A’UHX(Q k-0 A S C||’U||X(a kp—1) A T cN™ ||0xv||x(a7k+1,571+1),1\. (2.7)

Furthermore, as the special cases of Theorems 4.2, 4.6 and 4.10 of [20], we have the following
results.
(i) For any v € C(A) N H . 5 ,(A) and integer r > 1,

1Ze,N,a,6,40 = |y A < eNTT|030] y(atrs4m A- (2.8)

(ii) For any v € C(AU{z = -1})N H o) A(A) and integer r > 1,

1Zr.Na,8.00 — Vlly@.0 A < N[00y (@tr84m) A- (2.9)
X X

(iii) Let -1 <, <0o0r0< a,8 < 1. Ifv € C(A),d%v € L? Vatr—1sr-n (A) and integer
r > 1, then
||IL,N,a,ﬁ,AU v”X(a /A S CN_TH(? ’UHX(Q+7 1,647—1) A- (2.10)

The result (2.8) improves one of the results in (13.12) of [4], where
107 (Za.n 0,040 = v)[[a < eN*" vl e ay, p=0,1.
But it does not imply the result (13.13) of [4], where

IZa,N,0,000 —v]|a <N~ 7"1nN||v||D%(A),

In fact, both the semi-norm [|0;v||,.» o and the norm are bounded above by the

||”||D%(A)
norm ||v|| gra). However, so far, it has not been clear if

1050l A < C||U||D%(A)'

In pseudospectral method, we need more precise results on the Legendre-Gauss-Lobatto
interpolation which was considered by Bernardi and Maday [4]. We now derive some sharper
results on such interpolation, and establish the related Bernstein-Jackson type inequalities.
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Let
I @) = =) @), 1=0,1,....

They form a complete Li(—l,—n (A)-orthogonal system, see [16]. Further, we set
Qn(A) = spaLn{Jl(fl’fl)(Jc)7 0<I<N-2}.
The orthogonal projection Py ,_1,-1 AV : Li(—l,—n (A) = @Qn(A) is defined by
(PN,~1,-1,A0 = 0, 0),(-1.-1) = 0, Vo € Qn(A).
According to (1.8) of [16], for integer r > 1,
108 (PN, —1,-1,Av = V) [y ui—1-1) o < NPT 000y rmrir-1) 5y =0, 1. (2.11)

We now estimate ||0,(Zr 0,040 —v)|a. In fact, due to (4.27) of [19], for any v € H}(A) N
Li(flﬁl)(A)v
172300400y 4 < e(lvlly-r-n 4 + N7 Bav]a)- (2.12)

On the other hand, by virtue of (3.4) of [19], for any ¢ € P%(A),
18:6l1a < NIl 1. (2.13)
Obviously,

10:(ZL, 0,000 — v)||A
< |0z (PN, —1,-1,4v = 0)|[A + [|02(Z1,5,0,0,40 — Pn,—1,-1,A0)|A- (2.14)

Moreover, using (2.13), (2.12) and (2.11) successively, we deduce that if v € H}(Q),0%v €
Li(,.,lv,,,l) (A) and integer r > 1, then

02(Zr,n,0,0,40 — Pn,—1,-10)|[a = 102T1,N,0,0,0(0 — Pn,—1,-1,00)]|a
cN||Zr, n,0,0,a(v — Py, —1,-1,40)ly(~1.-1) 4
cN|v = Py —1,-1,A0|ly (1.1 g + ¢c[|0z(v — Py —1,— 1,A0) A

CNIiT||8;U||X(r71,r—1)71\.

NN N

Substituting the above estimate and (2.11) with x = 1 into (2.14), we conclude that if v €
H(Q),00v e L2, ,, ., (A) and integer > 1, then
(=1,

102(Z1,n5,0,0,40 — V)[4 < N[00y r-1r-1) 4 (2.15)
We next turn to estimate ||05(Zr, n,0,0,Av — v)||a, without the condition v(+1) = 0. We set
- 1 1
B(r) = o(x) — 2 (1 +2)o(1) — 51— ajo(-1),
and define the interpolation Zy, x..0.4v(x) as
~ - 1 1
Tr.3,0040(2) = Ip.n.0,040() + 5 (@ + 1o(1) + 5 (1 = 2)v(=1).
It can be checked that

Irn000(@) = Tp vo0a0(x) on ALY
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This implies Zp, v.0.0.4v = Z1 n.0,0.A0. It is easy to show that #(41) = 0 and
T1,5.0040(x) = v(x) =T §,0,048(x) — B(z).

Accordingly, due to (2.15), we have that if v € HY(Q),0%v € Li(r,lyr,l) (A) and integer r > 2,
then

10(Z1,n,0,000 — V)||A
= ||02(Z1,n,0,000 — V)||A = ||02(ZL,n,0,0,A0 — D)||a
< CN17T||626|‘X(T—1,T—1)7A = cN17T||0;vHX<T71,r71)7A. (216)

If r =1, then by the Cauchy inequality, we assert that

- V2
10204 < 19sv]la + - [v(1) = v(=1)] < 2[|0zv][a-

This implies the validity of (2.16) for any integer r > 1.
The above result improves the corresponding result of [4], where

105(Zr,N0,00v = v)[[a < eN* o] grr(a)y, p=0,1.

The improved result will be used in Section 4 of this paper.

We now derive the Bernstein-Jackson type inequalities. By (2.10) with @ = 8 = 0, (2.16)
and the imbedding inequality, we verify that if v € C(A), 9w € Li(,,,l,,.,l) (A) and integer r > 1,
then

1Z2,5,0,0,4v = vllc(a)

1 1 . .
< || Zo,n0.040 = VlIZTL 30040 = 0215y < N2 0501 a (2.17)

3. Jacobi-Gauss Type Interpolation In Two Dimensions

In this section, we investigate the Jacobi-Gauss type interpolation in two dimensions, which
serves as the mathematical foundation for the Jacobi pseudospectral method.

3.1. Orthogonal Jacobi approximation in two dimensions

We first recall some basic results on the Jacobi orthogonal projections in two dimensions.
Let
Ag={zg|—1<zy <1}, Q=AM xAg, z=(21,22),

and x(z) be a certain weight function. We define the weighted Sobolev spaces H, ({2) and
H{ () as usual, with the norm |[v[],,y. Besides,

ol () ={v | ve Hy(Q), v(~1,12) = v(z1,—1) = 0}.

In particular, L*(Q) = HY(f), with the inner product (u,v), and the norm [[v]|y. Whenever
x(z) = 1, we omit the subscript x in the notations.
For ay, &y, By, By, 7q, 04 > —1, ¢ = 1,2, we set that

a:(al,dl,OQ,dQ), ﬁ:(ﬁ17515ﬁ27ﬁ~2)5 7:(71772)) 0= (61752)'
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The two-dimensional Jacobi weight functions are given by

X(lo"ﬁ) () = X(al’ﬁl)(xl)x(dz’ﬁZ)(xg), Xéaﬁ)(l’) — X(dl’ﬁl)(xl)x(az’ﬁ2)(m2);
YO (2) = xO10) (1) (12:92) (15).
Let N = (N1, N3), N1, N3 € N. Py stands for the set of all polynomials of degree at most N,

with respect to the variables z4,q = 1, 2.

The Li(w-) (Q)-orthogonal projection Py .5 : L2, 5 () — Py is defined by

X8
(PN,%M) -0, Qb)x(wé) =0, Yo € Pn.

We also introduce the non-isotropic space H;’(‘?a),A(Q), r,s € N, as

H;Zi,m’A(Q) = {U € Li(w‘) Q) |op,ve Lim,sw(/\% Limw,o‘lw) (A1)
and 9;,v € Li(wﬁsﬁﬁs)(/\% Li(wl,dl)(AI))}-
Its semi-norm [v|,. ;.\ (+.5) 4 is given by

1
2

ar,u22 72 +88’U22 T2
(H o HLxm,m(AQ’walw,dlw)(Al)) 19z, ||LX<72+5,62+s>(AQ’Lxm,o‘l)(Al))

The corresponding norm is

N

lollrxrmr.a = (10020 + 01 g0 a)

We have from Theorem 3.1 of [21] that for any v € H;’(SW) () and integers r, s > 0,

||PN7’Y,5U - U||X(7v5) < C(Nfr + N55)|U|r,s;x(7v5),A' (31)

In the forthcoming discussions, we need another orthogonal projection. To do this, let
Hg,ﬁ,w,a(Q) = Limﬁ) (22), and

Ho 46 = {v | [vl1.0,84.5 < oo},

equipped with the semi-norm and norm as

1 1
3 3
[V]1,0,8,7,6 = (Haﬂclvni(laﬁ) + Haﬁmv”iémﬁ)) v vllesqye = (|U|ia,ﬁm5 + ”UHi(W")) )

For 0 < p < 1, the space Hgﬁmé(Q) is defined by the space interpolation, with the norm
lv|l4,0,8,+,5- We define the bilinear form as

G p3.5(t V) = (O, 00y 0) o0 + (Dt Baa0) o + (wy0)y00, - Vv € Ho g 5(90).
The orthogonal projection Py , 5 5 H) 5. 5(Q) — Py is defined by
00,676 (PN ,a,5,7,60 = V) =0, V$ € Py.

To derive the approximation results, we introduce the non-isotropic space Y;Ezg(Q), with
integers r,s > 1l and o,A=1,2. Forr=0c=s=A=1,

18,05\
Y;,ZW,(S(Q) = Hé,ﬁ,’y,é(g)v
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Forr4+o0 >3 and s+ A\ > 3,

7,8,0,\

YI5730) = {o | fellyrson < oo,

with the following semi-norm and norm,

_ T
|U|YJ,’§Z?1§ - (Ha’“UHLim,m(A%Li(aﬁr1,51+r1>(A1))

+ |02 vl| 2 .12

|| T2 ||Lx(a2+s’1’ﬁ2+s’1)(A%Lx(”l’él)(Al))
-2

+ 1057720, | 12 12

|| L 2 ||LX(Q2,B2)(A2’LX(01+7'+073161+7~+073) (A1)

1
2

FA-2
+ 1|04, 02 V|72 72
102,02, ||Lx<a2+s+xfa,52+s+x—3)(AQ*Lxm,m)(Al)) ’

1

2

ol gos = (10 + ol as0s)

For any r,s > 1, the space Y;Z‘;;(Q) is defined by space interpolation.

We know from Theorem 3.2 of [21] that if v, < &g, 04 < Bq, qg=1,2, and

0&1<’Yl+0’7ﬁ1 <61+U) a2<’)/2+)\) ﬁ2<52+)\) 0‘))\:101‘2) (32)

then for any v € Y;;‘;:\;(Q) and r,s > 1,

1PN 57,60 = Vll1prvs < €N+ Ny =) [olly e

oA 3.3
e (3.3)
Taking the boundary conditions into consideration, we have to deal with functions vanishing
on the whole boundary or some parts of the boundary. So we need to consider other orthogonal
projections. Denote by V1, V5, V3 and Vj the corners (—1,—1),(1,—1),(1,1) and (—1,1) of the
square (2, respectively. I'; (j = 1,2,3,4) stand for the edges with the endpoints V;_; and
Vi (Vo = Va), respectively. Let I' C 09,
T
HOl,a,ﬁ,v,é(Q) ={v]|ve Hi,ﬁm(;(ﬂ), v(z) =0on '},
r,0 1,0
Py = HO,a,ﬁ,'y,zi(Q) NPx.

The orthogonal projection Palg o H&g By 5(Q) — ’PJI:,’O is defined by

1,r r,0
aa,ﬁv'Ygé(Pa7ﬁ,’y76v -, (725) = 07 V(ZS S PN .

In particular, for I' = 082, we denote HOI:};,@%(S(Q) and 77;,’0 by H&’a76,776(9) and PY;, respec-
tively.

We can estimate the difference between v and Palzgmév. For instance, let ' =T'; UT, U Ty.
Then we have from Theorem 3.4 of [21] that if —1 < ag, 82 < 1, 74 < Gy, 04 < Bq, qg=1,2,and
one of the following conditions holds:

H0<ar <1, a1 <m+1, <1, B <01 +2,

(ii) a1 <y +2, f1 <0, 61 >0,
then for any v € HOI:};,@%(S(Q) N Y;Ezg(Q) and r, s > 1,

1,0 _ _
1PN 6. 5y.50 = V108,78 < (N7 + No %[

c=A=2. (3.4)

s,
Y. 555
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Moreover, if (i) holds and 31 < d1+1, then (3.4) is also valid with o = 1; while if =1 < a9, 82 <0
or 0 < ag, P2 < 1, then (3.4) also holds with A = 1.
In this paper, we shall use another specific orthogonal projection. For this purpose, let

@aaﬁ(u7 U) = (al‘lu7 aﬂilv)x(laﬁ) + (6:C2U’a 8;82U)Xéa,6) .
. . BT 1,0 r,0 .
The orthogonal projection Py, 5: Hy', 5 5(€2) — Py is defined by
aa,g(ls]{,’};’ﬁv —v,¢9) =0, Vo € Py

Let
1
[v[1,0,6 = (||aw1v”i(aﬁ) + Hazzvllim,m)%
1 2

If the conditions for which (3.4) holds are fulfilled, then by using the projection theorem and
(3.4), we deduce that

=17 1,7
|PN,a,ﬁU - ’U|170éaﬁ < |PN,a,ﬁ,'y,6U - U|11C¥75
1,7
< ||PN,a,ﬁ,'y,6U - ’U||17a,g7%5
< (N4 N ol (35)
a,B,v,5

where the values of o and A are the exactly same as in (3.4).

3.2. Jacobi-Gauss type interpolation

We are now in position to study the Jacobi-Gauss type interpolation. Let Z = (Z1, Za),
Zq=G, R, L,qg=1,2. We define the discrete inner product and norm in two dimensions by

Ny Ns
_ (’Y )0 (v2,02) (71,0 (v2,02) (71,01) | (72,62)

(u’ U)X(7,6)7Z,N - Z Z u ( leNi ]1’<Zz,N27]'2) v (CleNi ]1’<Zz,N2,J2) leyNiijlwz27N27j2’

Jj1=072=0

1
Hv||x(7v5>,Z,N = (vﬂv);(’y,é),zJ\['
By (2.4), we have
(102, V102)yv.0) z v = (D102, Y1¢2) 005 Vdg-thg € Pan 42z, (3.6)

with Z, = G, R, L, q=1,2. Next, let

6 ,61) ,83) )

QgN) = {(x17x2) |1 = szllNi 17 C(ZZ2N22]2 <Jg <Ny q= 172}-

The Jacobi-Gauss-type interpolation Zz n,,sv(x) € P, is determined uniquely by
T _ Q(’Yv‘s)
Z,N,y,60() =v(x),  TE€Q, Y.

Here, we assume that v € C(Q) for Z = (G, G), v € C(QU{(x1,22) | 1 = —1 or x5 = —1}) for

= (R,R), and v € C(Q) for Z = (L, L), etc.. For simplicity, we use the notations Z¢, n v
for Z = (G,G), Igp,N,,5v for Z = (R, R), and Ir n,,sv for Z = (L, L), respectively. They are
the standard two-dimensional Jacobi-Gauss interpolation, Jacobi-Gauss-Radau interpolation
and Jacobi-Gauss-Lobatto interpolation, respectively. In the Jacobi pseudospectral method
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coupled with domain decomposition, we also use frequently the mixed interpolation Zz v, sv
with Z = (R, L), denoted by Zrr N ~,s0-

We now consider the stability of Jacobi-Gauss-type interpolation. Let k4,l; € Nk =
(k1,k2),1 = (I1,12) and

X(’Y+k,5+l) (I) _ X(’Y1+k1751+l1) (xl)x(’v2+k2,52+l2) (x2)

We define x(O+%9=0 (z) and x(=%9-D(z) similarly. For simplicity of statements, we introduce
the non-isotropic spaces

Mg ,5.51(2) :{U |ve Li(wk,uz) (), Oyv € Li(wz+k2wf52+l2)(A2; Limwﬁl,«sﬁzﬁl)(Al))a
Oz,v € Li(72+k2+1,52+12+1) (Az; Li(71+k1,51+11)(A1))7 02,0z, € Li(v+k+1,5+l+l) (Q)},

MR,,6,5,1(2) {U |ve Li(wm—z) (Q2), Oxyv € Li(wz+k2,52—12>(A2; Li(vﬁkﬁl,al—uﬂ) (A1),
6;82U € Li(72+k2+1,62—l2+1)(A2; Li(wl+k1,51fh)(A1))a 69616962“ € Li(v+k+1,él+1)(ﬂ)}7

MLa%fsakal(Q) :{U | v e Li('yfkﬁfl) (Q)7 a1151’U € Li(72*k2y52*12) (A27 Li(71*k1+1w51*11+1)(Al))7
)

2 . T2 2
axgv S LX(7271C2+1,52712+1) (A27 Lx(vlfhvélfh) (Al)); 69c18x2U S LX(—yfk+l,67l+1) (Q)
and

MR ,51,1(8) = {U lve Li(m—kzﬁz—b)(A% Li(wﬁkﬁl,sl—lﬁl) (A1),

2 . T2
amv € LX(V2*’€2,52*12) (AQ’ LX(71+k1+1,51*l1+1) (Al))’

2 . T2
8952” € LX(72*’€2+1Y52*12+1) (A27 LX(71+k1y51*l1) (Al))a

2 T2
azlazQU S LX(7271C2+1,52712+1) (AQ» LX(71+k1+1’51*11+1) (Al))}

Like the spaces o H" () and Hg  (€2), we can define the spaces o Mg~ 5.41(€2) and M7 _ 5, ().
In addition,

Mpp 50,0(8) = {v | v(=1,29) = v(21, =1) = v(z1,1) = O}

The stability of Jacobi-Gauss interpolation is stated below.

Theorem 3.1. For any v € C(Q) N Mg ~,5,%,1(), kg, lg e Nand 0 < ky +1; <1, ¢g=1,2,

1Za,N .60 atrs+0

< dllvllyesnarn + N[0y vl 2 (AasL

2
x(r2+k2,62+12) X(n+k1+1,61+11+1>(/‘1))

+ Ny 02,0l 2

72
x(v2 k241,82 +12+1) (A2’LX(’Y1+klwf51+l1) (A1)

+ cNlegl||8x18952’U||X(w+k+1,5+1+1).
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Proof. Due t0 Zg N .~,6V = ZG,Na,vys,060,02 (LG, N1 41,61,8, V), We use (2.5) to verify that

||IG’N,%6U||X(—Y+IC’5+[) S C||IG7 N1, 61 U||Lf<('v2+k2’52+l2) (A2;Li(71+k1,61+l1) (A1)

—1
+ cNy |0y, I vl 2 L2
2 192226, Niyso00 ||Lx(vz+k2+1,<52+12+1>(A%Lxmﬁkl,«slm)(Al))

< cl|v)| g2 L2
= ” ||Lx(wz+k2v52+l2)(A2’LX(W1+k1y51+l1)(Al))

+ Ny |06, 0] 2 (AasL

2
x(v2tk2,82+12) X(71+k1+1151+11+1)(A1))

+ Ny 0,0 12

T2
otk 1,85+ ip+1) (A2 L7 (0 iy 5y 41q) (A1)
11
+ eNy Ny |02, 0,0 L2

T2 .
Oratko 4 18g 441 A2 L0 (0 15y 41y ) (A1)

This leads to the desired result. ]

In the same manner as for the proof of the last theorem, we use (2.6) and (2.7) to derive
the following results.

Theorem 3.2. For anyv € C(QU{(z1,22) | x1 = —1 or 22 = —1})NoMp.~.5,%.1(), kg, lq €N,
0<ky<lg<landly <64+ 1, g=1,2,we have

”IR,N,’y,éU”X(WJrk,S—l)

—1
< c||vlyrr5-n + Ny ||8x1v||Li(72+k2Y527l2)(AQ;Li(WHkHLSPHH)(Al))
+ eNy |0z, 2

T2
x(r2tko+1,83—1a+1) (A%Lxhﬁkl,slfn) (A1)

+ cNf1N§1||3m13z2vllx<w+k+1,sfz+n-

Theorem 3.3. For any v € C(Q) N Mg,'y,zi,k,l(ﬂ)’ kg lg € N,O < kg, lg < 1, kg < vg+1 and
lg <dq+1,qg=1,2,we have

||IL,N,W,6U||X(771€,571)
-1
< c”””x(’Y*k,Sfl) + CN1 ||amlv||Li(72*k27‘52712)(A2;Li(71*k1+1,517l1+1)(Al))
+ Ny [0, vl 2

T2
~a—ka 1,55 —15+1) (A2L7 () iy 6y —1q) (A1)

+ CNlegl ||8x18x2’U||X(’yfk+l,5fl+l) .

Theorem 3.4. For anyv € C(QU{(z1,22) | 1 = —1 or 22 = £1})NMp; _ 55(Q2), k1,11, ko, 12
EN, 0< ks <l1<1,ll <(51+1, 0<k2,lg<1,k2<’)’2+1 andlg<52+1,,we have

||IRL,N,%5U”L?(( As;L

2
72*k2,52*12)( X(71+k1,51711)(A1))

< cfv] gz (AasL

2
(v2—ha .82 —1) ~ (k41,81 —1g +1) (A1)

N

x(12—k2,862—-12)

+ Ny 02,0 2

T2
S a—ka 1,55 —1a+1) (A2LT (0 5y —iq) (A1)

+ CNf1N51||8x18x2U||L2(
X Y

T2
(A2iL7 () kg 1,67 —1p 1) (A1)

72 .
2—ko+1,65—1l3+1) (A2’Lx(71+k1+1151*l1+1) (A1)
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3.3. Error estimates of Jacobi-Gauss type interpolation

In this subsection, we present the main results on the Jacobi-Gauss type interpolation. For
integers r, s > 1, we introduce the non-isotropic spaces

B:/:fi (Q) {U | S Li(%ﬁ‘) (Q)7 8;11) € Li(’vz,%) (AQ, Li(71+7',51+7') (Al))a

2 2
93,V € L (rptosnre) (D23 L (5150 (A1),

s—1 2 T2
aﬂ?la;cg v € LX('Y2+571,52+571)(A2a LX(71+1,51+1) (AI))}a

Cr5(Q) { | € Lo (), 05,0 € Ly 50) (A2 Ly ermr.000-0 (A1),
s v e Li<72+571,52+571>(/\2; Lim,al) (A1),
90,05 v € Li(v2+s—2,52+s—2) (Asg; Lim,m(/\l))}
and
DI5(Q) ={v | € L3 (9), 05,0 € Ly 50 (A2 Ly ey 00y (A1),
0,,v € Li(72+s—1,62+571) (Ag; Lim,an(AI))v

s—1 2 .72
azlaz2 GRS LX<wz+s—2,52+s—2> (A2 Lxm+1,51+1) (Al))}

Their semi-norms and norms are defined in the usual way. For instance,

_ T 2 s 2
|’U|B’:j N (l |8x1 Ul |Li(v2,52) (A2;Li(71+7",<51+7‘) (A1) + ||8I2U| |Li(v2+s,52+s) (A2?Li(’v1 ,61) (A1)

1

2
-1 2
+ |0z, 05 0|52 72
|| o1 ||LX(72+S*1152+S*1)(AZ’LX(’Y1+1151+1)(A1))

and

_ T 2 s 2
|U|D:*§ B <||azlv||Li(’72,62)(A2;Lf<(71+7~,51+r) (A1) + ||az2v||Li(72+5*1752+5*1)(AQ;Li(“"Sl)(Al))

D=

+ ||ax16;;1v||%2

.72
vzts—2,0p4s-2) (AT 054 (Al))>

For any real 7, s > 0, the spaces B]5(2), C5(2) and D25(92) are defined by space interpolation.
Theorem 3.5. For any v € C(Q) N B)5(Q) and integers r,s > 1,
|Z6. N80 = vll ey < (N7 + Ny + NNy =)ol grs

Proof. We have that
I1Z6,N.~.6v = [l yr.00 < W1+ Wa,

where

Wi = 1Z6y, N1 71,60,800 = Ve s Wa = 1Ty, Ny 60,80 (262, N2,72,62,000 — V) [y -
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By virtue of (2.8),

W1 < eN; 7|05 vl| 2 L2 .
1< eNTI0g, ||LX(72152)(A2’LX(’Y1+T,<51+T)(A1))

Using (2.5) and (2.8) yields that

Wa < c||Z, v— .
2 < ] G2,N2,72,02,/A2 ||Li(72yg2)(A27Li(717(51)(/\1))

—1
cN; || Z, v — v .
+ Ny 1 Zay,Na vy 52,00 02,0 — Oy |ILi%@(AQ,Lim“élH)(Al))

< eNy *||0;, ][ 2

X

+eNy Ny 105, 035 M0l 2

X

T2
(v2+s,82+s) (A2’LX(’Y1151) (A1)
T2 .
(vats—1.5g+s-1) P27 (415, 4y (A1)

Then the desired result follows from the combination of previous two estimates. |
By the same argument as in the proof of Theorem 3.5, we can use (2.6), (2.7), (2.9) and
(2.10) to derive the following results.

Theorem 3.6. For any v € C(QU{(21,22) | 21 = —1 or g = —1})NBI5(Q) and r,s > 1,we
have
|Z.5 .60 = vllyero) < e(NTT 4+ Ny + NNy ™) ol pres

Theorem 3.7. Let —1 < 74,8, <0 0r0 < ,,04 <1,q=1,2. Then for anyv € C(Q)OC’;’E(Q)
and r,s > 1,we have

IZ2, 550 = vllyesr < e(NTT+ Ny + NTEN ™)|ofers -

Theorem 3.8. Let —1 < 42,02 < 0 or 0 < 42,02 < 1. Then for any v € C(QU{(z1,22) | z1 =
—1or xp = £1})NDI5(Q) and 7, s > 1,we have

IZrL.N..60 = vl < e(NT7 + Ny + Ny Ny ™)l pres -
Remark 3.1. We may derive other estimates. For instance,
1Zc,N .60 — 0l yr0

< N NN (00l

2
1+ 81T (A1)

+ 1103, 01172

T2
(r2ts,62+3) (A%Lxm 51y (A1)

2
r—1 2
+ 10z, 81‘2’U||Li<m+1,52+1)(A2;L1(71+T17(51+T1)(A1)))
3.4. Some results on Legendre-Gauss-Lobatto interpolation

We now focus on the two-dimensional Legendre-Gauss-Lobatto interpolation and the related
Bernstein-Jackson type inequalities, which will be used in the sequel.
For v € C(Q2), we define the Legendre-Gauss-Lobatto interpolation as

Z1,N8,0,0v = T1,N,,0,0,0: (Z1,N2,0,0,A50)-

Clearly,
| Zr,n,0,00 — 0] < Wi+ W,
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where
Wi = [|Zr,n,,00,8,0 = 2], Wa = [|Z1,5,,0,0,01 (Z2,35,0,0,4,0 — V).

Due to (2.10) with o = 5 =0,
Wi < CNfT||8;1U||L2(A2;Li(7,7117,71)(Al))-
Also, we have from (2.10) with = 1 that
12231 000 0lay < |[0llay + €Ny 18z, 0|4,
This with (2.16) leads to that

W < ||Z1,35,0,0,400 — V|| + Ny 102, (Z1,32,0,0,0,0 — V)|

< eNyPllOz,vllez | aszean) T CNlezl_sHazlai;lW|L2(H oy (A2 L2(AD)-
? (a1, ? (a2

Therefore
|Zr N.0.0v —v]| < e(N; "+ Ny 4 NNy~ %)|w

e (3.7)

where

v

_ 2 2
B <||3§1“||L2<AzaLi<r1,,.1) aap FH00M L sie )

1
2

+ ||83;18;2_1’U||ii(572§72) (AsiL2(Ar)) T ||8;1_18x2’U||i2(A2;Li(T72m72) (Al)))
Next, we estimate ||0z, (Zr,n,0,00 — v)||. We have that
102, (Zr,N,0,00 — V)|| < W5 + Wy,
where
W3 = |0z, (ZL,Ny,0,0,0,v — V)], Wy = (|02, Z1,81,0,0,01 (ZL,N2,0,0,0,V — V)] |-
With the aid of (2.16), we obtain that
W3 < CN117T||a;1U||L2(A2;Li(7,7117,71)(Al))-

Using (2.10) and (2.16) with » = 1, we derive that

Wy < ][0z, (Z1,n5,0,0,0,0 — V)|

< cN21*5||8118;2_1@||Li(572’572) (A2;L2(A1))
We can estimate ||03,(Z1, n,0,0v — v)|| similarly. Finally, the previous statements yeild
Z,3,0,00 — V() < c(N{7 + Ny~ %) |v| grs. (3.8)
In the end of this section, we consider the Bernstein-Jackson type inequalities. Obviously,
I|Zz,n5,0,00 — v||c) < Ws + W,
where

Ws = |Z1,n5,,0,0,0,0 — Vl|c() We = [|Z1,5,,0,0,01 (Z2,35,0,0,0,7 — V)|[c()-
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Further, by (2.17) and the imbedding inequality, we have that for 0 < 7 < %,
1r
W5 < eNP? ||8;;11)||C(A2;Lf<(7,71 oy (A1)

=T ar
s CNl ||am1v||H%+7](A2;Li(7'71,7v71)(Al)).

Next, using (2.17) with » = 1 and r = s — 1 successively, along with the imbedding inequality,
gives that

_1
We < ||Zr,N2,0,0,0,v — Vl[c(a) + Ny ?[|0s, (Zr, N2,0 0,0,V = V)|le(ans2 (A1)

1_
< CN22 SH ’UHL 2 (ot 1)(A2 C(Al))+CN N2 S||8zl(95 1U||Li(572§72)(AQ;L2(A1))
-1 3 .
< c]\f22 °||o2 ’UH » 571)(A2;H%+"(A1)) +cN; 2N22 |10z, 05, 1'U||Li(3727872)(AQ;L2(A1)).

Consequently, for 7,8 > 1 and 0 < n < %

1, 1, _1 3 g
1Z2,n5.0,00 = vllc@) < (Nf +Ng "+ N PNy ) v] g (3.9)

where

(AosH2T7(AL))

9 2
v s = 2V
| |F7;S (” HH2+"(A L2(’V‘ o 1)(A1)) H || (q N

2

+ ||8113;;1U||Li(572’572) (A2%L2(A1))>
Remark 3.2. In the forthcoming discussions, we denote by F,;“‘S(Q) the space with the norm

]

1
rpe = ([l + o2,

Remark 3.3. The estimate (3.9) is still valid, if |v|py is replaced by

v

2 2
e =10 s, oo + WIS oy

1

2

+ 10,0, 1v| |Li(572,572) (A2%L2(A1))>

4. Jacobi Pseudospectral Method for Singular Problems

We consider the model problem
~ 03, (01(2)0, U (2)) = Oy (a2(2) 05, U (2)) + ap(@)U () = f(z),  ze€Q.  (4.1)
Without lose of generality, we suppose that
ao(z) = ao(@)x" (@), ar(@) = @ (@)X (@), aa(w) =A@ (@), (42)

where ) 1
aq(z) € Epti(Q), Sq:5y > 1,0<n < 3

dg(z) >a® >0, Vo €, ¢=01,2
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We look for the solution of (4.1) such that

lim a1 (2)U(x)0,, U(z) = lim  as(2x)U(2)05,U(x) =

r—I1Uls x—ToUly

To do this, let
Aa,py,6(u,0) :(dlaxlwaxlv)xgam + (dzamu,awv)xga,m
+ (Gou, v) 0y, Yu,v € Hy g 5(9).
A weak formulation of (4.1) is to find U € Holtﬁ,w;(Q) such that
Aoy s(Uv) = (f,0)200), Yo € H) 5. 5(9). (4.4)

By Remark 3.2, we verify that for any u,v € H, 5. 5(),

[Aa,p,y.8(w, )| < (a1l L) + a2l L) + ol Lo @) lull1,0,8,7.81V]1,0.6.4.6
< cllarll g+ llazllpro + llaoll gro)llullesysllvliesqe, — (45)
. 0 1 ~
|A0¢»ﬁ7’)’15(u’ ’U,)| 2 mln(afnl)n? al('m)n’ IIllI])Hqu ,a,3,7,0° (46)

Therefor, if f € Li“”**‘” (), then by (4.3), (4.5), (4.6) and the Lax-Milgram Lemma, the
problem (4.4) has a unique solution such that [|Ul[1,a,5,v,5 < ¢l[f|ly(-v.-5-

We denote the discrete inner product and norm with Z = (G,G), by (u,v)y,q,n and
llv]|y,c,n, respectively. Let N = (Ni,N3) be any pair of positive even numbers, d4(z) =

Ip ny2,0,00¢(2), ¢ =0,1,2, and flz) = xEr=9 f(a).
Assume f € C(Q). Let

Aa»ﬁ7’)’a57N(u7 U) = (d183:1ua 8$1U)X§Q’ﬁ)’G’N + (d283:2ua 8$2U)Xéa’ﬁ)’G’N + (dou, ’U)X(’Y"S),G,N'
The Jacobi paeudospectral scheme for solving (4.4) is to find uy € Py such that

Aapron(un,®) = (f0)yow an: ¥ € Py. (4.7)
We know from (3.6) that for any ¢, ¢ € Py,
|Aapr.58(6, )] < Nl llo@10s 8l o0 g yllOn ]l oo gy

Fllazlle@ 10229l o» ¢ N1029 1L 00 6 x + llaollo@l¢llxon e nl¥llxe».an

< (llarlle) + lazlle@) + laollc@)16l1.0.6.7.51%l1.0.8.7.5-

Furthermore, let Ny=O(N3). Thanks to (3.9) and (4.3), there exists a constant ¢* > 0, de-
pending only on ||dq||Fn1,1,q =0,1,2, such that

2
> lagllcw) < ¢ (4.8)
q=0

Consequently, for any ¢,v € Py,

|Aa.pr.58(0,9)] < NDl1,08,7.8 1% 10,876 (4.9)
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On the other hand, according to (3.6), (3.9) and (4.3), we find that for any ¢ € Py and suitably
large mode N, the coefficients a4(z),q = 0,1, 2, are uniformly bounded below by a constant
cx > 0, namely,

Aa,ﬁ,'y,&,N((,b, (725) 2 C*”(b”ia,ﬁfy,é' (410)
Hence, by the Lax-Milgram lemma, (4.7) has a unique solution such that
lunlltes,.6 < el Za,N 6 oo
We now deal with the convergence of numerical solution uy.
Theorem 4.1. Let (4.2) and (4.3) hold, and v, < &y, 0 < B, ¢ =1,2. IfU € Y;E?’g’)‘(Q),
fe B;ll(’;; (Q) and ri,7a,7],75 = 1, then

i = Ul See” (N N3 [Ullyrya o + AR (U, )
@, 5,7,

+ (N4 N, NN, )1

BTlldlré’
Y
where
i - 1\1— Noyi_st Niy—1 Noy2_g| .
~v(U,a) = (7)2 sl+(7)2 51+(7) 2(7)2 o a P |0z, 0]] o
Niyi- Nay1—s Niy-3 $—sh| =
+ [ 7)2 52+(7)2 52+(7) 2( )2 S2 |a2 F;27‘9é||8z2v||xéa,g>

A B e

Proof. Let Ux = Py, 5., sU. By (4.4), (4.7) and the ellipticity (4.10),

SERE

0% [oll o0

Cellun = Unf 0,576 < Aapy,on(un — Unyun — Un)
= (f,un — UN)yer9).6.N — Ao gy sn(Un,un — Un)

=Aupq6Uun —UN) — Aaprysn(Un,un —Un)

+(f,un — UN)yer6),6,N — (f,un — UN )6 -

Thus

lun = UNI o545 <C (|Aa,ﬁm5(Uv un —UN) — Aa,py,6N(Un,un — Un)|

+ (If un = UN)ye0 an — (Frun — Un) g |) : (4.11)

We now estimate the first term at the right side of (4.11). For simplicity, let

Aap7,6(1, 0) = (102,10, 05,0) .00 + (820251, 02,0) 0. + (G0t D)0

Then R
Aop,6U,¢) = Aaprysn(Un, ¢) = Gi(9) + G2(9), (4.12)

where

G1(d) = Aaprys(U,d) — Aaprys(U,d),  Ga(d) = An gy s(U,0) — An gy s.n(Un,s b).
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By using (3.9), we find that
610N < (1~ llanl105 Ul o + N2 = e 1020 oo
+ o = dollz~ @1Vl ) 1911054
< AN (U, a)l|9l11,0,8.7.5-
On the other hand, by using (3.6) and the definitions of Ay 5.~.5.5(u, ¢) and a,(z) gives
Ao gy s NPy .05 50 0) = Aa sy 6 (PN jg.aprysUs ) V6 € Py
whence
|G2 ()] < |Aaﬁ,’Yy5(P]{/'/2,a,B,'y,6U —U,9)|+ |Aa,6,v,&N(PJ{//2,a,ﬁ,7,5U —Un,9)l.

With the aid of (4.9), we obtain that

|Aaﬁ»%5(PJ{l/2,a,ﬁ,'y,6U -U, ¢)| < C*HP]{[/Za,ﬁ,'y,&U - U”17a,ﬁ,7,5||¢||1,a76,%6-
Moreover,

|A0¢,57’Y,5’N(PJ{//2,a,ﬁ,'y,6U - UNa ¢)|

< C*HPJ{//Za,ﬁ,'y,éU = Unll1,0,8,7,818l11,0,8,7.6

< (1P 20,050 = Ulltasins + 108 = Ullta,p8) 18l

Along with the above and (4.14), we use (3.3) to reach that

1G2(0)] < ¢ (1P 2.0,8.60 — Ulltapovs + U8 = Ullt.aysins) 18l,a,.5

< e (Ny " 4 Ny T)|Ully oo 2 []1,0,8,0
@, 0,7,
Next, due to (3.6),

(f,9)xe0.an = Tanmsf, ) yon gy = (T Nsf @)oo -

Thereby, we use Theorem 3.5 to obtain that

(£, 0) = (£, ®) 0 an| < e = Fllyens 18l
<N NS NI, ) )]

|¢||1,aﬁ,%5'

o}

-
Bv,é

A combination of (4.11)-(4.13), (4.15) and (4.16) with ¢ = uny — Uy leads to that
||uN - UN||1,a7g,%§ < cc* (Nllfh + N21*7"2) HU”Y”BYTQY;YA + CA?V(U, Zl)

(N Ny NN, )|

el .
B 1 2
V58

Finally, the desired result follows from the above estimate and (3.3). |

(4.13)

(4.14)

(4.15)

(4.16)
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Remark 4.1. Let Py, n, = Py with N = (N1, N3). If, instead of (4.2), G1 € Pr,+2.ks
a2 € Pry kot2s 60 € Phy koy 0 < k1 < Ny and 0 < ko < Na, then we have that

lun = Ullv,a,6.7.6

e (N + Ny 7™)|U]

—p! ! _ 1— ’ ~
voges TN AN A NN, T

Remark 4.2. If f is not continuous, we may take

aq() = Pny2,0,00q(2)
or 4q(x) = PI{//2,0,0,0,0 dq(x) in (4.7), instead of a4(x) = I n/2,0,004(7), ¢ = 0,1,2. In these

cases, we have the error estimates similar to those stated in Theorem 4.1.

Remark 4.3. With the aid of (4.3)-(4.5) and Theorems 3.5-3.8, we could design and analyze the
Jacobi pseudospectral schemes for singular problems coupled with certain boundary conditions
and other related problems.

We close this section by presenting some numerical results.

Example 4.1. We consider problem (4.1) with
ai(z) = az(x) = (1 - 21)(1 — a3)
and ag(z) = 1. Take the test solution
U(x) = arcsin(z1z2)e® 2. (4.17)

Clearly, [0, ,U| — 00, ¢ = 1,2, as & tends to V;, 1 < j < 4. We use (4.7) to solve (4.4)
numerically.

Let ¢z, n,,j, and Qz, N, j, be nodes and weights of the one-dimensional Legendre-Gauss
quadrature. We measure the numerical errors by

N1 N> 1
E(un) = (Z D (UCz 31> SN0 ) UN(Czl,NmnCZ2,N1,j1))QQzl,Nl,lezz,N2,j2) :

J1=072=0

(4.18)

We present the errors E(uy) in Table 4.1. Obviously the scheme (4.7) provides accurate
numerical solutions even for small mode N, and for the solution with singular derivatives.
Moreover, the numerical solution converges to the exact solution rapidly, as N increases. This
confirms the theoretical analysis in the previous parts.

Table 4.1: The errors E(un).

N=8 | N=16 | N=24 | N=32 | N=40 | N=48 | N=56 | N =64
3.06e-3 | 4.97e-4 | 1.62e-4 | 7.15e-5 | 3.77e-5 | 2.23e-5 | 1.42e-5 | 9.63e-6

In Fig. 4.1, we plot the exact solution of (4.4) and the numerical solution of (4.7) with
N = 64. Clearly, the numerical solution matches the exact solution very well.

Example 4.2. We next use (4.7) to solve (4.4) with the exact solution (4.17), ap = 1, and

ar(z) = (1 —22)(1 —22)(1 + 1—10 sin(mx1) cos(mzs)),

az(z) = (1 —22)(1 — 22)(1 + 1—10 cos(mxy) sin(mzs)).
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Fig. 4.1. (a) Exact solution of (4.4) and (b) numerical solution using scheme (4.7).

V.
¢ $ N
5SS
V. KIS RN
2% SRR
SIS
S SIESISIIIIDN
o e e S Y
T et e ettt it
Sy e e e e e ettt
s SO NN
0 = sssst e

Fig. 4.2. Numerical solution of scheme (4.7).
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These functions oscillate as 1 and xo vary. In Fig. 4.2, we plot the numerical solution of
(4.7) with N = 64. Clearly, the numerical solution also fits well with the exact solution as
shown in Fig. 4.1.

5. Jacobi Pseudospectral Method for Axisymmetric Domains

The non-isotropic Jacobi pseudospectral method can be also applied to some problems on
axisymmetric domains. As an example, we consider the following cylindrically symmetrical
problem

782‘/(/),2’)7%8%)‘/(/),2’)783‘/( ,z):F(p,z), 0§P<2;*1<Z< 17 (5 1)
V(sz) = V(pv *1) = V(pv 1) =0. .
We make the variable transformation
r1=1—p, xz2=2, Ulx)=V({1—x1,2), f(z)=F1-uz,2).
Then (5.1) is reformulated to the following problem,
=0z, (1 —21)0,,,U(x)) — (1 — x1)0§2U(ac) =(1-2)f(zx), —-1l<z <l,-1<zy<1,
U(—l,xg) = U(xl, —1) = U(Il, 1) =0.
(5.2)
We take
=@ =m=1 f=d=Fh=mwm=FR=F,=0=1p=0=0 (5.3)
Then, a weak formulation of (5.2) is to find U € Hol”gﬁmé(Q) such that
Aa,s(U,0) = (f,0) g0, Vo€ Hyy o 5(9Q). (5.4)

Obviously, aq,g(u,v) is elliptic. If f € Li(%‘” (€2), then by the Lax-Milgram Lemma, the problem
(5.4) has a unique solution such that U1 a5 < c[[f|l ¢.5-

We denote the discrete inner product and norm with Z = (R, L), corresponding to the
weight x(x), by (u,v)y,re,n and ||v||y,rr,n, respectively. Let f € C(QU {(z1,22) | 21 =
—1 or zo = £1}) and

Ga,g,N (U, v) = (0, u, 8‘“U)><(1“’5>,131L,N + (Oryu, 83”2U)x§“’vaLvN'
The Jacobi pseudospectral scheme for solving (5.4) is to find uy € ’PJI:,’O such that

o N(un, @) = (f, ) oo rons Vo€ PR (5.5)

It is easy to verify that (5.5) has a unique solution. Moreover, by the boundary conditions and
the Poincaré inequality, we use (3.6) to derive that

lunllta87.6 < clunlia,s < ellZrL,Ny6f e

We now deal with the convergence of numerical solution u .
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Theorem 5.1. IfU € Y:lé?’g’)‘(Q), fe D:l(’;? (Q) and r1,7a,7],75 > 1, then

llun = Ull1,0,8,7.6

—r —r —r! —rl — 1—7r!
<oV NIy + VT4 8 TN ).
USRS v,8

where o, A =1, 2.
Proof. Let PJ{;};,B be the same as in (3.5) and Uy = Pﬁ,’};ﬁU. By the ellipticity of the
bilinear form @, g(u,v), we use (5.3)-(5.5) to deduce that for certain a constant ¢y > 0,
colun — U105 < Gapn(uy — Un,uy — Uy)
= (fyun —UN)yo.9 g, — Ga,8,N(Un,uny — Un)
= Ga,38(U,uny —UN) —@a g n({Un,un —Un)
+ (f,un = UN)yo.9 ro,n — (frun —UN)y6.0 - (5.6)

Next, thanks to (5.3), we have that a; < 11 +2, §1 < 0 and §; = 0. Therefore, by (3.5) and an
argument similar to the derivation of (4.15), we obtain that for 1, ro > 1

|Ga,s(U,uny — UN) — Ga,p,N(Un,un — Un)]
<e(Ny T 4+ Ny |U|

Y7v1,7v2,c,x|uN — UN|1,a,B- (5.7)
a,B,v,6
Furthermore, with the aid of Theorem 3.8, we know that for v}, 75 > 1,

|(f,un — UN)XmS),RL,N — (fyun — UN)X<%5)|

<e(NTT LN, TR 4 Nlezl_Té)lle:i!‘é lun — Un |y - (5.8)
Moreover, by the boundary conditions and the Poincaré inequality,
lun — Unllyoo < cluy — Unli,a,6- (5.9)
Finally the desired result comes from a combination of (3.5) and (5.6)-(5.9). |
Example 5.1. We now use (5.5) to solve (5.4) with the exact solution
U(x) = (1+x1)(1 — 23) cos((1 4 21)(1 — 2)). (5.10)

The error of numerical solution is measured by E(uy) as in (4.18). We present the errors E(uy)
in Table 5.1. Tt shows the convergence and the high accuracy of scheme (5.5). In Fig. 5.1, we
plot the exact solution of (5.4) and the numerical solution of (5.5) with N = 64, respectively.
Clearly, the numerical solution fits the exact solution well.

Table 5.1: The errors E(un).

N=8 | N=16 | N=24 | N=32 | N=40 | N=48 | N=56 | N =64
3.36e-3 | 5.03e-4 | 1.74e-4 | 7.40e-5 | 3.97e-5 | 2.41e-5 | 1.51e-5 | 9.85e-6

Remark 5.1. We may combine the Fourier approximation and the method described in this
section to solve differential equations on three-dimensional axisymmetric domains. For the
Laplace equation on a cylinder as discussed in [3], we can design the corresponding pseudospec-
tral scheme and derive sharp error estimate for the numerical solution. The main reason is that
in our case, there exist Jacobi weights in the norms of exact solution, appearing in the error
estimates.
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Fig. 5.1. (a) Exact solution of (5.4) and (b) numerical solution using scheme (5.5).

6. Concluding Remarks

In this paper, we proposed the non-isotropic Jacobi pseudospectral method with its applica-
tions. As examples, we considered a singular problem in two dimensions and a problem on an
axisymmetric domain. The numerical results demonstrated the spectral accuracy of proposed
schemes, and agreed well with the theoretical analysis. Indeed, the multi-dimensional Jacobi
pseudospectral method coupled with variable transformations is also applicable to certain prob-
lems on unbounded domains.

We established some basic results on the Jacobi-Gauss type interpolation, with which the
convergence of proposed schemes followed. These results play important role in designing
and analyzing Jacobi pseudospectral methods for various practical problems. In fact, they also
serve as important tools in the analysis of multiple-dimensional rational pseudospectral method
induced by the Jacobi polynomials.

We also derived a series of sharp results on the Legendre-Gauss type interpolation and
the related Bernstein-Jackson type inequalities, which improve and generalize the existing re-
sults. They are very useful for pseudospectral method of partial differential equations with
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non-constant coefficients, as well as numerical solutions of initial value problems of nonlinear

ordinary differential equations. We shall report the related results in the future.
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