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Abstract

In this paper, we introduce a new extrapolation formula by combining Richardson ex-
trapolation and Sloan iteration algorithms. Using this extrapolation formula, we obtain
some asymptotic expansions of the Galerkin finite element method for semi-simple eigen-
value problems of Fredholm integral equations of the second kind and improve the accuracy
of the numerical approximations of the corresponding eigenvalues. Some numerical exper-
iments are carried out to demonstrate the effectiveness of our new method and to confirm
our theoretical results.
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1. Introduction

In this paper, we consider the eigenvalue problem of the Fredholm integral equation of the
second kind: Find an eigen-pair (A, u) € R x L?(Q), such that

/ k(t, s)u(s)ds = du(t), t,s€QC R", (1.1)
Q

where k(s,t) is a given smooth function in D := Q x Q satisfying k(t, s) = k(s,t). Let T be an
integral operator defined by:

(Tu)(t) = / k(t, )u(s)ds, t,s € Q.
Q
The corresponding operator form of (1.1) is
(Tu)(t) = Mu(t), te.

Then the integral operator T is self-adjoint and compact. Thus the eigenvalues \ of T' are
semi-simple, i.e., the algebraic multiplicity of A equals the geometric multiplicity of .

Let the algebraic multiplicity of the semi-simple eigenvalue A be r. Then there are r nu-
merical eigenvalues approximating A. The authors of [9] established asymptotic expansions for
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arithmetic mean of r eigenvalues (approximating A) in the Galerkin method. Lin, Sloan and Xie
[12] proved similar results for the solution of Fredholm equations of the second kind. Mclean
[14] also discussed asymptotic error expansions for the solution of Fredholm equations of the
second kind.

There have been many attempts in improving the accuracy of numerical solutions. The
most popular methods include the Sloan iteration method (iteration post-processing method),
interpolation post-processing method and the Richardson extrapolation, see, e.g., [2, 5, 9, 11,
13, 15].

Suppose that the Galerkin eigen-pair (Ap,up) of degree m — 1 approximates (A, u). In a
recent work [17], the authors derived an asymptotic expansion of the eigenvalue approximation
error for Problem (1.1) by means of iterated Galerkin finite element methods in certain piecewise
polynomial spaces:

A=\, = (u, T(I — Pp)u) + O(h*™)
_ ﬁuh2m + O(h2m+2) 4 O(hSm),
where (3, depends only on the eigenfunction w. Replacing h with h/2 for the above equation

and extrapolating between \j, and ), /2, the authors obtained a higher order approximation for
a simple eigenvalue A:

22m)\h/2 — )\h 2m—+2
4\nj2 — An

3 =A+0O(R?), m=1.
In order to use the method in [17], it is crucial that the eigenvalue A is simple, so that the u
approximated by u, and the u approximated by uy /o are the same. However, this is not the
case for semi-simple eigenvalues, which occur when we solve boundary integral equations and
high dimensional integral equations. Therefore, there is a need to develop a new method for
higher order approximations of semi-simple eigenvalues.

In this note we propose the following procedure.

1) Calculate eigen-pair (A, up) by the Galerkin finite element method.

2) Apply the Sloan iteration to u, to obtain uj = A, 'T'uy, and the normalized Ef: =uj [|lug .

4) Calculate another eigenvalue approximation A* = (T%*, u}).

)
)
3) Project uj onto the bi-sectioned mesh and obtain u® = P, jous .
)
)

5) Extrapolate between A, and A® to achieve higher-order eigenvalue approximation.

The main advantage of our new method is twofold. First, it is applicable to both simple
and semi-simple eigenvalues as well as higher-dimensional cases. Second, comparing with the
traditional Richardson extrapolation between A, and Ay /o, extrapolation between A, and \* is
much cheaper. Note that the cost for Ay /s is 8n? times of the cost for )\, in case of a typical
n-dimensional eigenvalue problem.

Here is the outline of the remaining sections. In Section 2, we state our main results. To
prove these results, we list some relevant lemmas in Section 3. Section 4 provides proofs of the
main theorems. Finally, numerical results are presented in Section 5.
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2. The Asymptotic Expansion

The equivalent form of (1.1) consists in finding A € R,u € L?(2) with (u,u) = 1, such that

(Tu,v) = Mu,v), Yove L*(Q), (2.1)

where (-, -) denotes the usual inner product in L?- space.
Let Ky, : {okloi No; = ¢, U?=1U_i = Q} be a partition for the domain Q. Let hj be
the diameter of o and h := mgx{hk}. We assume that h — 0 as n — oo and that K} is

quasi-uniform, i.e., there exists a constant C' independent of n, with the property:

h

- < for all k.
mkin{hk}_c orall &

The corresponding finite element space is defined by

SCM(KR) = {9 : @loy € Pno1,1 <k <}

Where P,,—1 denotes the space of polynomials of degree not exceeding m — 1. Here we use the
superscript (-1) in the notation for the above finite element space to emphasize that it is not a
subspace of C'(Q).

The Galerkin approximation of (2.1) is defined as: Find A, € R,up € Sf?;l{(Kh) with
(up,up) = 1, such that

(Tup,v) = Ap(up,v), Yo € an__li(Kh). (2.2)

Let the eigen-pair (A4, up) approximate the eigen-pair (A, u) of (2.1), and let uj be the Sloan
iteration of uy, i.e., Apuj, = T'up. Then we have Pyuj = up, and

uj, =T (N, 'un), (2.3)
where Py, : L*(Q) — Sy(,:z (K}) is an L%-projection operator defined by
(u,v) = (Ppu,v), Yové€ Sf;_li(Kh). (2.4)
Moreover, we assume that 17,5: is the unit function of uj, i.e., uNfL = uj/||ujllo- Let
= Pyuy, X = (T, u;). (2.5)
The following are the main results of this paper.

Theorem 2.1. Let (A\,u) and (An,up) be solutions of (2.1) and (2.2), respectively. Suppose
that Py, : L*(Q) — SS 1 (K,) (Q C R") is the L2-projection operator defined by (2.4) and that
A® is defined by (2.5), then we have

A= Ap = (u,T(I = Pp)u) + O(h*™), (2.6)

A=\ = (u, T(I — Pu)u) + O(h>™). (2.7)

2

We postpone the proof to Section 4.
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To obtain asymptotic expansions of A— A, and A—\*, we need to have asymptotic expansions
of (u, T(I — Pp)u) and (u, T(I — Py/2)u), respectively. For the one-dimensional case, it is easy
to do so (see the following Lemma 3.5). But for the two-dimensional or higher dimensional
cases, we need to extend Theorem 2.2 in [4] (the following Lemma 3.5) from I := [0,1] to
Q:=[a,b] X [¢,d] (or @ C R™).

Divide [a,b] into N sub-intervals, a = to < -+ < ty = b. Let hyp = tgy1 — tk, k =
0,1,---, N—1.Divide [¢,d] into M sub-intervals, ¢ = so < -+ < sy = d. Let hoy = s141—51, | =
0,1,---,M — 1. We get N x M sub-domains oy (k=0,1,--- , N—-1; 1=0,1,--- M —1,n=
N x M) of Q, where

[to, t1] % [0, 51] k=1=0;

[to,tl]X(Sl,SlJrl] kiO,lSlSM*l;
(tk7tk+1] X [80,51] [=0,1<k<N-—1;
(tk,tk+1]x(sl,sl+1] 1<kE<N-1,1<I<M-1.

Okl =

Let K}, be the corresponding mesh for the domain 2, hy; = diameter(oy;), h = nllcalx{hkl}.

Theorem 2.2. Let Q C R%. Assume that u,v € C™2(Q). Then there erists a constant
¢ =¢(m, 1), independent of h, such that

/U(t, s)(u— 4" u)(t, s)dsdt

Tkl
. ~1 21 m—21 m,U amu m

=Y entindy = [ G gl + 00 (28)
1=0 P

where i;ln_l s an interpolation operator defined in the next section.

Corollary 2.1. Under the same assumption as in Theorem 2.2, if Q) is a square, and if the
mesh is refined uniformly with M = N (which implies h = h1, = hoy ), then (2.8) can be written
as follows

/ o(t,s)(u— 4" u)(t, s)dsdt

Okl
— gp2m / oM (1, 5) - ul™ (¢, 5)dsdt + O(R2™H),

Okl

where the dot denotes the inner product and

omf o omf o f
(m) (4 g) — _
fE s (asm "otosm—1 T prigsm—i0 atm)  fEuwe

We can also extend Theorem 2.2 from Q C R? to Q := [a1,b1] X - - X [an,bs] € R™. Divide
[a;, b;] into M; intervals, a; = tjo < tjn < -+ < tipg, = b; (0 = 1,2,---,n). Then we have the
following result.

Corollary 2.2. Let Q C R™. Assume that u,v € C™F2(Q). If Q is a hypercube and if the
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mesh is refined uniformly with My = My = --- = M, then (2.8) can be written as follows

/ o(t)(w— i) ) (t)dt

Jkl"'kn

— gp2m / o™ (1) - al™ (1) dt + OB+,

Oky - ky

where h = diameter(oy,...k,,) and

f(m)(t): 0 fﬂ"'ﬂ ; a f '7"'78 f ) f:uava
oty ot ot - otly otm
with i1 + 1o+ -+ 1, =m, “-7 is the inner product symbol.

Theorem 2.3. Let A and A\, be eigenvalues of (2.1) and (2.2), respectively. Assume that
k(s,t) € C"™2(Q x Q) (Q C R?) in (1.1) and that \° is defined by (2.5). Then we have the
following extrapolation

22mAS — Ny m

40° — A

-—§—i=A+Om% m=1. (2.10)
Remark 2.1. In the one-dimensional case, suppose that P,,_1 = span{li,ls, - ,l;n}. From

the local property of P, /2, we see that

m
P%UZ: E aili
i=1

at each element of K, /5, where the coefficients a; (i =1,---,m) are determined by the following
local equations

G/z(lz,l_]):(’z&\i,l]), j:17 , M.
i=1

Therefore, the calculation is relatively simple (in the two-dimensional case, m should be replaced
by m?).

3. Some Relevant Lemmas
To prove our main results, we first establish some relevant lemmas. In this section, we
assume that Q C R™.
Lemma 3.1. Let (A, u) and (\n,up) be solutions of (2.1) and (2.2), respectively. Assume that
k(s,t) associated with T is a smooth function in D = Q x Q. Then we have
[lu—unllo = OR™); (3.1)
IA = | = O(h*™).
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The results are well known [1, 5, 16]. We now define an interpolation operator ;"' : L?(Q) —
Sf,:_li(Kh) of degree m — 1 as
i )y, € P,
with
/m';l”_ludt = /Uudt, Yo € Pp_1. (3.3)

Ok Ok
Lemma 3.2. Let P, : L?(Q) — Sf,:z (K1) be an L%-projection operator defined by (2.4) and u
be the eigenfunction of (2.1). Then we have
[ Pru = ullo = O(h™); (3.4)

||z‘ff_1u7u|

0,00,0% <ChmHuHm,oo 3.5

It is evident that (3.4) holds. The proof of (3.5) can be found in [7]. Since Sf,:_li(Kh) is a
discontinuous piecewise polynomial space and P} possesses localization, we have

it = Py, /UPhudt = /vudt, Vo € Ppy_q.

Ok Ok

Lemma 3.3. Suppose that uy, is the eigenfunction of (2.2) and uj is the Sloan iteration of up.
Then uy, and uj, all approzimate to w, with the following error estimate:

lu, = ullo = O(R*™). (3.6)
The proof of this result can be seen in [5, 15].

Lemma 3.4. Assume that u is the eigenfunction of (2.1) and u® is defined by (2.5). Then
there follows
([z° — ullo = O(R™). (3.7)

Proof. 1t follows from w® = P%E;i and Lemma 3.2 that
[uj, = @®[lo = O(A™). (3-8)
Note that (u,u) =1 and Ef: = u} /||u3|lo- From Lemma 3.3, we have
up, — wlugllo
[z llo

(i, = ullo + l[u = uj o) = O(R*™). (3.9)

lo = [[up, — u + ullullo = ullujlollo
[l o

g, = ullo = |
1
= lluillo
Combine (3.8) with (3.9), we obtain
12 —ullo < @ — wjllo + lluj, — ullo = O(R™).
Then (3.7) follows.

Lemma 3.5. ([4]) Assume that Py, : L*(I) — an__lg(Kh) is an L*-projection operator defined
by (2.4) and u,v € C™2(I) with I = [0,1]. Then there exists a constant ¢ = ¢(m), independent
of the mesh Ky, such that

/ v(t)(u — Pyu)(t)dt = chi™ / u™ ()™ (t)dt + O(hE™T3). (3.10)

Ok Ok
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4. Proof of Theorems

4.1. Proof of Theorem 2.1

Since A(u,uy) = (Au,uj) = (Tu,uf) = (u, Tu}), we have

(u, Tuj)
)\ == W. (4.1)
Further, using Ap(u, uj) = (u, Apuy) = (u, Tup) gives
Ny = L Tun) (4.2)
(u, u)
Since up, = Ppuj, from (4.1) and (4.2), we have
Ao =, TS — un)) = —— (u, T(T — Po)ut)
t ) T ) m
1 1
- (w,T(-P T - Pp)(us —
(u,ui) (U” ( h)u’) + (u’ U}él) (’U,, ( h)(uh U’))
1 1
= TI-P I — P,)Tu,uj, —u). 4.3
ey 0 T = P) o (1 = Pa) T ) (4.3
Using (u,u) =1 and (3.6) yields
L (u,u) + (u,uf —u) — (u,uf, —u)
(’U,, u}sb) a (’U,, u) + (’U,, U‘;L - u)
(u, uj, — u) 2
=1—-—7T" 7 _—1+0O(h"™). 4.4
Substituting (4.4) into (4.3) and using Lemmas 3.2 and 3.3, we obtain
A=A = (u, T(I — Py)u) + O(h*™).
Then (2.6) holds. Using the fact that
Au,uf) = () = (Tus ) = (u, Tuf)
gives A = (u,TuN,SL)/(u,uN,SL) As A = (TES,UN,SL), we have
1 —
A= N = ——[(u,Tup) — (T, uj) (u, u)]
(u’ Up,
1 _
= ——(u,Tuj, — (T7", uj)uj)
u, uj,
1 ; TS
= ———(w,Tu}, —T%°) + ——(u, TT" — (TT°,u},)uj)
(u,uj, w, uj,
Note that (T%°, uj )uj is the projection of T%° on span{u;}. Then
(uy,, Tw* — (T, uj )u;) = 0. (4.5)

From Lemma 3.2, we get

1T — (T, uj,)uj [lo = O(h™). (4.6)
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Combining (4.5), (4.6), (3.9) and (2.5) gives

1 —~ 1 —~ —
A= N = —— W, Tu;, = TT°) + ——(u —u;, Tu’ — (TT°,u} )uj)
(u, uj, (u, up)
1 —
= ——(u, Tuj, — T%°) + O(h*™)
(u, uj)
1 —~ ,
= ——(u,T(I - Py)uj) + O(h*™)
(w,uy 2
1 1 —
= ———(u,T(I — Pu)u) + ——(u,T(I — Pu)(uj —u)) + O(h*™)
(u, uj) ’ u, uj, :
= ———(u,T(I — Pu)u) + L (I = Pu)Tu,uj — u) + O(h>™)
(u, uj) ’ u, uj,) :

It follows from (4.4), (3.4) and (3.9) that
A=A = (u,T(I = Py)u) + O(h*™).

Then (2.7) follows. We complete the proof of Theorem 2.1. O

4.2. Proof of Theorem 2.2

Denote the centroid point of the sub-domain oy as (¢, 1,841 ). Using Taylor expansion of
v(t,s) ab (ty1,5.,1) gives

0 0
0(8,5) = oot g) + [0~ i) g+ (5= ) g ot o)+
1 0 m m—+2
+m (t—tk%)g +(3—3z+%)£ V(b1 si44) + Ohy ™).

This, together with (3.3) and (3.5), yields

/ o(t,s)(u— i u)(t, s)dsdt

Okl
1 0 o1" —
= / T {(tt,ﬁ_;)& +(s— sl+;)$} Uty si41)(u—1ij Yu)(t, s)dsdt
Okl
1 ) a1t -
+ / L [(t — tk+%)5 + (s — sl+%)$} V(tpyy,si41) - (u—1ij Yu)(t, s)dsdt
Okl
+ / ORI (u — i~ u)(t, s)dsdt == I1 + I + O(h" ™). (4.7)
Okl
Set
1 hlk 1 h2l
Ey(t) = 5 [(t —thpy)? — (7)2 o Ea(s) = B (s —s111)° = (7)2 :
It is easy to verify that
1 m 2m m m
)" = W(El )™ 4 F_a(t), (4.8)
1 m 2m m m
(s —sp)™ = W(EQ )™ 4 Fpna(s), (4.9)
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where F,,_5 € Py,_s. Note that (E/™)(") (i = 1,2) vanishes at the edges of o1 when 7 < m — 1.
Combining (4.8), (4.9), (3.3) and the binomial theorem, and repeating integration by parts with
respect to ¢t and s respectively, we have

1 o) a1 o
L ::/m {(tthré)&Jr(ssH%)%} Uty sipn)(u—ip Yu)(t, s)dsdt

Okl
Lo 900y 5144) i m—i m—

:/ WZ;C““W“*%%)(S*SH%) (u— i ) (t, 5)dsdt

Okl =

Lo (tk-l,-lasl.l,_ 1) ) gm—i _ .
= Ei())D 2 (gmi(g))(m=i) . (y — jm—1

= otosmT /(22)( i) (2m—2i)!( 2 () (u— iy u)(t, s)dsdt
N Okl

,Z 0"t 155114 /(71)m e (2m 0T OF 0™ (u — iy~ lu,)(t’s)dsdt

otigs™m—? 2m — 27)! otigsm—1
Okl
O"v(tpyssSiy1) i 0™t s)
=(- 2m 'Z /WE ()BT (s )Wd sdl. (4.10)
Okl
Analogously, we have
I =(—1)m*! A O™ Moltr g, s14y)
2 (2m + 2)! Come+2 Atigsm+1—1
7 m—+1—1 a e ( )
Tkl
Using the facts that
Ei(t) = O(hz), 3" 7' (s) = O(hp" 7%, (4.11)
and u € C™2(Q), we get
=C-O(k%) - O(RF+2-20) / dsdt = O(h374). (4.12)
Okl
From (4.7), (4.10) and (4.12), we get
/v(t, ) (u— i u)(t, s)dsdt (4.13)
Okl
O (g1, 8141) M ult, s)

— _ % 7 m—i 2m—+4
B 2m 'Z / Otidsm—1 Ei(t) By (s )8#8 g dsdt + O™,
Okl

By the Taylor expansion of the first derivative above at the point v(t, s), we have

8m’U(tk+%7 5l+%)
ottgsm—1
~9Mu(t,s) omtlu(t, s) omtlu(t, s)

_— 1 — ) 1 —S) 2 . .
Atiogm—i + (tk+§ t) oti+19gm—i + (Sl+§ S) otiHgm+1—i + O(h’kl) (4 14)
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Substituting (4.14) into (4.13) and using (4.11) yield

/ o(t,s)(u— i7" tu)(t, s)dsdt

Okl

V" g O | G 0B O G

kl
omtly(t, s)

; i omu(t, s
W(tml —t)EI() By (s) - oult 5)

dsdt
atza m—1

omtLy(t, s)

Atigsmti—i 1 1) (s101 — 9B (s ).M

atza m—1

- omu(t,s) i 0™u(t, s)
Z /atzam zE()EQ ( )8tzam zd sdt

dsdt| + O(h; )

2m o Z CZ (Ly + Lo) + O(hZmt4), (4.15)
It can be verified that

(b, — DL = —— (B0, (4.16)
1

(5101 —9)E5"'(s) = —m(@n“%(s))'- (4.17)

Using (4.11), (4.16) and integration by parts, we have

omTly(t, s)

Ly = W(tmé — B () B3 (s) -

O™u(t, s)
787518 ——dsdt
ok

- amﬂv(tas) 1 i1 ’ m—i 8mu(t 5)
—/mmWMPHﬂ@(M%(ﬁ%?m

dsdt

: 1 iy 0 0™t s) 0™ ult, 5)
_ 1+1 m—i 2m-+4
- /E1 W) at(atmasm Ot 0sm- =)dadt = O™)

Okl

Similarly, using (4.11), (4.17) and integration by parts, we have

_ [ g 1 mi1ig . 0 0" (t s) 0™ uft, s)
L= /El(t)m+1fiE2 () 85((%1857”*1 i otigsm i

)dsdt = O(hi ).

Okl
Therefore,

/U(t, 8)(u — i7" tu)(t, s)dsdt

Okl

2" & +8) i m—i, 0" ult,s) 2m+4
Z /aﬁa B (1) EY T (s )ra ——dsdt + O(hy" ).
Okl
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Using the binomial theorem, we have

Z_ 1 & g 2i—2j y
E1(t):§Z(*1) Cil=5 (t =t 1)”,

) m—1 ) h2l 2m—2i—2p
B = g Y0 () sy

p=0

Consequently,

/v@@( V) 5)dsdt

Okl

"olt, ) "l )
'Z 8152857” i Jtigsm i

Okl

1 h 2i—2j '
- z ]CJ( ;k) (t_tk+%)2]

2
_ - AN 2’ "ot ) O™ ult, s)
- Z ( > ( > atz sm—i gtism— zd sdt
i . 2i—2 @ 2m—2i am ( )am ( )
Cam 2 atlasm i Qtigsm—i
(2m)! 2m 2
i d mu(t, )
| Z / atzasm i atzasm [

h2l 2m—21—2 am’()(t75) amu(t7s) )
' | i -8 — 1)“dsdt
i=0 ( > /atzasm—i 6t153m—z(5 5l+§) S
1 : i— hlk 2i=2j .
— (—1) JC;L] ( 5 ) (t _ tk+%)2j

1 m—i h 2m—2i—2p
_ (—1)m~ i— pcp (_Ql) (3—5l+%)2p‘| det-l—O(hi?HA)

(t = tyy 1) dsdt

Okl

1 m—i h2l 2m—2i—2p 5 om+4
Z( 1™ i— pcp L5 (S_SlJr%)p dsdt—l—(’)(hk}n )

L p=1

= J1+ Jo+ J3 + Jy + O(h ). (4.18)

Note that J; above is of the form of (2.8). Moreover,

2
6=ty = B30 + 5 (5 (4.19)
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Integration by parts one more time gives
9" o(t, s) 0" u(t, s)
Otids™m—t Qtigsm 1

Okl

(t =ty ) dsdt

(E2( )’ +% (%)2] dsdt

1 0% omu(t,s) OMult, ) b\ [ 9"l ) O ult )
=3 / BHO 5z g g5 + 3< 2 > / dtdsm—i orpsm—i "

Okl Okl

1 (h\? [ 0™t s) ™ult, s)
- g(—) dsdt + O(hS},). (4.20)

0™t s) O™ ult, s)
Otidsm—i Otigsm =

2 Otidsm—1 OtiQsm—*

Okl

Substituting (4.20) into Jz, we have

m 21—2 2m—2i m m
Jo = L cii (@) (@) O™t 5) O™ult, s )(t—tk+ )2dsdt
=0

2 2 Otidsm—1 Otigsm—1

Okl

1 m . h 2¢—2 h 2m—21
- - Z 022;12 Mk w2l
(2m)! & 2 2

l(@y/am ot 8) 0"l 8) 4o oS, )

3" 2 Dtidsm—i Otigsm i
Okl
- 21 h2;€h2;n72i am ( )am ( )d dt+0(h2m+4)
- 2m' Comi™ 3o Dt D™ Dt )s™ ki
Tkl
In analogy with (4.19), using
1 1 hay\?
<ssl+;>2§<E§<s>>"+g(§> , (121)
we obtain
.- hﬁhQEﬂ_% 9mu(t,s) 0™u(t, s) 2mt4
Z 22m /Wasm gl O™,
Okl
9™ u(t,s) 0™u(t, s)
Jo+ J3 = C3l hitham =2 dsdt + O(R;7). (4.2
2+ Js 227”2 2m tigsm—i prigsm—i odt + O ). (4.22)
Okl

The last equation shows that Jz + J3 is of the form of (2.8). Using (4.8), (4.9), (4.19), (4.21)
and repeating integration by parts, we find that Jy is also of the form (2.8). These results,
together with (4.18), complete the proof of Theorem 2.2. [

4.3. Proof of Theorem 2.3
We discuss the one-dimensional case first. Substituting (3.10) into (2.6), we have

A=Ay =Bl + O™ m> 2 (4.23)
A= An = Buh®+ O(h?) m=1. (4.24)
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Then we divide every sub-interval into two equal parts. Replacing Py, with P, /5 in (3.10) and
using (2.7) yield

h 2m
=B, (5) +O(R*™F2)  m > 2; (4.25)

:@u(g)2+cxh% m=1. (4.26)

For the two-dimensional case, we only consider the rectangular domain Q. We set v = T'w and
derive from Theorem 2.2 that

u, T(I — Pp)u) = (Tu, (I — Pp)u)
= - /v(t,s)(If Pp)u(t, s)dsdt

N—-1M-1| m

9™ u(t, s) 9™u(t,s)
h2 h2m 21/ d dt h2m+4
IZ Z Ottdsm—1t OtiPsm—i +O( ki )

k=0 ol

= a,h*™ + O(h*™m T3, (4.27)

where

Q
g
I

—1 M- 1ic hlk 21 @ 2m2i/am ( )am ( )d dt
h Otigsm—1t Ptigsm—1

k=0 (=0 =0 P

which does not change with uniform mesh refinement.
Combining (2.6) in Theorem 2.1 and (4.27) yields

A=\ = (u, T(I — Py)u) + O(h®™)
= o, h*™ + O(h*™F2) + O(h3™).

Similarly, we divide each 2-dimensional sub-domain into four equal parts. Substituting P/ for
Py, in (4.27) and using (2.7) in Theorem 2.1, we have

h 2m

A=\ =ay (5) +O(R*™H2) + O(h*™).
Therefore, (4.23)-(4.26) are also valid for the two-dimensional eigenvalue problem of the Fred-
holm integral equation of the second kind. Extrapolating between Ap, in (4.23) and A® in (4.25),
we get a new approximation using higher accuracy:

22m s _ Ah

— 2m—+42 > 2
S3m 1 A+ O(h ) m >

Extrapolating between \p, in (4.24) and A° in (4.26), gives
40—\
T’lzwroaﬁ) m=1.

This completes the proof of Theorem 2.3. [
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5. Numerical Experiments

Example 5.1. Consider the eigenvalue problem of the Fredholm integral equation of the second
kind with a polynomial kernel,

/1 (St - %) u(s)ds = du(t), 0<s, t<L (5.1)
0

The eigenvalue of the largest modulus for the solution of Eq. (5.1) is Ay = 0.31357339186336.
Let m =1, i.e., Sr(nili is the piecewise constant space. We introduce some notations for this
example:
40° — A
€rrp = )\1 - )\1,}17 errZXtra = fm - )\17
Ry, = logy (erry Jerry /o), Ry = log, (errf]’ma/errfl’;tgm).
The results are listed in the following table.

Table 5.1: Numerical errors and rate of convergence.

h ALh erry, Ry, S err§xtra Ryxtra
41 0.309032 | 4.541212e-003 | 2.00 | 0.312439 | 8.568029¢-007 | 4.01
81 0.312439 | 1.134393e-003 | 2.00 | 0.313290 | 5.309702e-008 | 4.00
1671 | 0.313290 | 2.835419e-004 | 2.00 | 0.313503 | 3.311407e-009 | 4.00
32-1 | 0.313503 | 7.088195¢-005 | 2.00 | 0.313556 | 2.068434¢-010 | 4.00
64=1 | 0.313556 | 1.772027e-005 0.313569 | 1.292333e-011

We see from Table 5.1 that

4N — Ain

AL — A = O(h?), ;

— A1 = O(h%).
The results demonstrated the efficiency of our method, and also confirm our theoretical results.
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