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1. Introduction

Back-propagation (BP) algorithm is widely used in neural network training, and its con-

vergence is discussed in, e.g., [4, 5]. A momentum term is often added to the BP algorithm

in order to accelerate and stabilize the learning procedure [2, 10, 11], in which the present

weight updating increment is a combination of the present gradient of the error function and

the previous weight updating increment.

Phansalkar and Sastry [8] give a stability analysis for the BP algorithm with momentum

(BPM in short). They show that the stable points of BPM are local minima of the least squares

error, and other equilibrium points are unstable. Qian [9] also discusses BPM, showing that

the behavior of the system near a local minimum is equivalent to a set of coupled and damped

harmonic oscillators. The momentum term improves the speed of convergence by bringing

some eigen components of the system closer to critical damping. These two results are local

convergence results describing the behavior of the learning iteration near the local minima of

the error function. They can not be directly used for the usual situation when the initial weights

are chosen stochastically.

The convergence of BPM is also considered by Bhaya [2] and Torii [12]. They require the

gradient of the error function Ew(w) to be a linear function of the weight w. Especially in [12]
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the learning rate and the momentum coefficient are restricted to be constants. Consequently,

the iteration procedure of BPM can be expressed as a stationary iteration. The convergence

property is then determined by the eigenvalues of its iterative matrix. Unfortunately, for usual

activation functions such as Sigmoid functions, the gradient of the error function is not a linear

function of the weight. We mention that Bhaya [2] reveals an interesting fact that BPM is

equivalent to the conjugate gradient method in a certain sense.

In [15], some convergence results are given for BPM in a simple case where the network

has no hidden layer. These results are of global nature in the sense that they are valid for any

arbitrarily given initial values of the weights. Moreover, it is not required that the gradient of

the error function is linear. The key for the convergence analysis is the monotonicity of the

error function during the learning iteration, which is proved under the uniformly boundedness

assumption of the activation function and its derivatives.

The aim of this paper is to generalize the results in [15] to a more general and more important

case, that is, the BP neural network with a hidden layer. Due to the involvement of the hidden

layer, we shall need an extra assumption that the weight vectors connecting the hidden and the

output layers of the BP neural network are uniformly bounded. Then, we are able to establish

the convergence of BPM.

The rest part of the paper is organized as follows. In Section 2 we introduce BPM and

discuss its convergence property. In Section 3 we make some numerical experiments to verify

our theoretical result. The details of the convergence proof are provided in Section 4.

2. BPM and Its Convergence

Consider a BP neural network with three layers. The numbers of neurons for the input,

hidden and output layers are l, n and 1, respectively. Let the input training examples be

ξj ∈ Rl (j = 1, · · · , J), and the corresponding desired outputs be Oj ∈ R (j = 1, · · · , J).

We denote the weight matrix connecting the input and the hidden layers by V = (vij)n×l,

and we write vi = (vi1, vi2, · · · , vil) ∈ Rl (i = 1, · · · , n). The weight vector connecting the

hidden and the output layers is denoted by w = (w1, w2, · · · , wn) ∈ Rn. Let g : R −→ R be a

given activation function for the hidden and output layers. For convenience, we introduce the

following vector function for x = (x1, · · · , xn) ∈ Rn

G(x) = (g(x1), g(x2), · · · , g(xn)) . (2.1)

For any given input ξ ∈ Rl, the output of the hidden neurons is G(V ξ), and the final output of

the network is

ζ = g (w · G(V ξ)) . (2.2)

We remark that, in practice, there should be bias involved in the above formulas for the output

and hidden neurons. Here we have dropped the bias so as to simplify the presentation and

derivation.

The usual square error function is defined by

E(w, V ) :=
1

2

J
∑

j=1

[

Oj − g
(

w · G(V ξj)
)]2

≡

J
∑

j=1

gj(w · G(V ξj)), (2.3)
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where gj(t) ≡
1
2
(Oj − g(t))2, j = 1, · · · , J . The aim of the network training is to find (w∗, V ∗)

such that

E(w∗, V ∗) = min E(w, V ). (2.4)

The gradients of the error function with respect to w and V respectively are as follows

Ew(w, V ) =

J
∑

j=1

g′j(w · G(V ξj))G(V ξj), (2.5)

Evi
(w, V ) =

J
∑

j=1

g′j(w · G(V ξj))wig
′(vi · ξ

j)ξj , i = 1, · · · , n. (2.6)

Given arbitrarily the initial weights w0, w1 and V 0, V 1, BPM method updates the weights w

and V iteratively by


































wk+1 = wk − η

J
∑

j=1

g′j(w
k · G(V kξj))G(V kξj) + τk(wk − wk−1),

vk+1
i = vk

i − η

J
∑

j=1

g′j(w
k · G(V kξj))wk

i g′(vk
i · ξj)ξj

+ γk,i(v
k
i − vk−1

i ), i = 1, · · · , n, k = 1, 2, · · · ,

(2.7)

where η ∈ (0, 1) is the learning rate, and τk and γk,i are the momentum coefficients to be

determined. Denote

∆wk+1 = wk+1 − wk, (2.8)

∆vk+1
i = vk+1

i − vk
i , i = 1, · · · , n, (2.9)

pk = Ew(wk, V k) ≡

J
∑

j=1

g′j(w
k · G(V kξj))G(V kξj), (2.10)

qk
i = Evi

(wk, V k) ≡

J
∑

j=1

g′j(w
k · G(V kξj))wk

i g′(vk
i · ξj)ξj , i = 1, · · · , n. (2.11)

Then (2.7) can be rewritten as follows:
{

∆wk+1 = τk∆wk − ηpk,

∆vk+1
i = γk,i∆vk

i − ηqk
i , i = 1, · · · , n, k = 1, 2, · · · .

(2.12)

Similar to [15], we choose the momentum coefficients τk and γk,i as follows:

τk =

{

τ‖pk‖
‖∆wk‖

if ‖∆wk‖ 6= 0,

0 else,
γk,i =







τ‖qk

i
‖

‖∆vk

i
‖

if ‖∆vk
i ‖ 6= 0,

0 else,
(2.13)

where τ ∈ (0, 1) is the momentum factor and ‖ · ‖ is the Euclidian norm.

The following assumptions will be used:

(A1) |g(t)|, |g′(t)| and |g′′(t)| are uniformly bounded for t ∈ R.

(A2) ‖wk‖ (k = 1, 2, · · · ) are uniformly bounded.

(A3) The following set has finite number of elements:

Ω = {(w, V )| Ew(w, V ) = 0, Evi
(w, V ) = 0, i = 1, · · · , n}. (2.14)
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Remark 2.1. Condition (A1) is valid for Sigmoid functions which are the most commonly used

activation functions. Condition (A2) will be needed to guarantee the weak convergence (2.16)-

(2.18) below, that is, boundedness implies (weak) convergence in the learning iteration process.

Further investigation is necessary if one wants to drop this condition. We point out that a

condition similar to (A2) is assumed for nonlinear problems in [6]. Condition (A3) requires

that the error function has only finite number of local minimums, which is used to guarantee

the strong convergence (2.19)-(2.20). From (A1) and (A2), it is easy to verify that ‖G(x)‖ is

bounded for x ∈ Rn, that ‖pk‖ and ‖qk
i ‖ (i = 1, · · · , n; k = 1, 2, · · · ) are uniformly bounded,

and that |gj(t)|, |g
′
j(t)| and |g′′j (t)| (j = 1, · · · , J) are also uniformly bounded for t ∈ R. These

observations will be frequently used later in our proofs.

The following theorem is our main results, whose proof is postponed to Section 4.

Theorem 2.1. Assume that (A1) and (A2) are valid. Then, there exist constants C∗ > 0 and

E∗ ≥ 0 such that for 0 < s < 1, τ = sη and

η < min
{

1,
1 − s

C∗[(1 + s)(3 + 2s + s2) + (2 + s + s2)2]

}

, (2.15)

the following results hold for the iteration process (2.12):

lim
k→∞

E(wk, V k) = E∗, (2.16)

lim
k→∞

‖Ew(wk, V k)‖ = 0, (2.17)

lim
k→∞

‖Evi
(wk, V k)‖ = 0, i = 1, · · · , n. (2.18)

Furthermore, if (A3) is also satisfied, then the iteration process (2.12) converges to a local

minimum (w∗, V ∗):

lim
k→∞

wk = w∗, lim
k→∞

V k = V ∗, (2.19)

Ew(w∗, V ∗) = 0, Evi
(w∗, V ∗) = 0, i = 1, · · · , n. (2.20)

3. Numerical Experiment

Let us illustrate the convergence behavior of our BPM with a hidden layer by using two

numerical examples simulating two benchmark problems, i.e., the 8-bit parity problem and the

Sonar problem. In all cases, the logistic activation function g(x) = 1/(1 + exp−x) is used for

the hidden and output nodes of the following network structures. The learning rate η is 0.1

and the momentum coefficient τ is 0.05. The maximum number of epochs was set to 5000, and

the training was considered successful whenever Fahlman’s “40-20-40” criterion was satisfied

[3] (i.e., values in the lowest 40% of the output range were treated as logical zero, values in the

highest 40% of the output range were treated as logical one, and values in the middle 20% of

the output range were treated as indeterminate and therefore considered as incorrect).

The 8-bit parity function is a mapping defined on the set of 28 = 256 distinct 8-dimensional

binary vectors, and its value is 1 or 0 when the sum of the 8 components of a binary vector is odd

or even, respectively. The network is of three layers with the structure 8-8-1. We shall compare

our results with those in [1], where two very efficient second order learning methods, namely,

Levenberg-Marquardt with adaptive momentum (LMAM) and optimized Levenberg-Marquardt
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with adaptive momentum (OLMAM), are proposed. It is easy to show that (w, V ) = 0 is a

local minimum point of the error function E(w, V ) defined by (2.3). So the initial values of

(w0, V 0) are chosen stochastically in [−2, 2] rather than in a much smaller region [−0.1, 0.1] as

in [1]. In all the 100 trials, the learning iteration tended to a local minimum as predicted by

our convergence prediction. 5 trials were completely successful, i.e., all the 256 binary vectors

were correctly classified according to the “40-20-40” criterion. So the performance of our first

order method BPM in this respect is not as good as the second order methods LMAM and

OLMAM, for which the successful trials were 14 and 94 respectively as reported in [1]. But in

average we correctly classified 98.68% of the binary vectors, which seems not too bad. On the

other hand, we point out that the computational time of each epoch is O(m3) for LMAM and

OLMAM methods (m is the total number of the weights and bias of the network) since it needs

to solve a linear system of order m, while it is only O(m) for our BPM since it only involves

computations such as inner products of m-dimensional vectors.

The Sonar benchmark is a well-known classification problem. The task is to classify reflected

sonar signals in two categories (metal cylinders and rocks). The related data set comprises 208

input vectors, each with 60 components. We use a 60-7-1 feedforward network (60 inputs, 7

hidden nodes, one output unit). The training set consists of 104 input vectors and 10 trails

are performed as in [7]. The initial values of (w0, V 0) are chosen stochastically in [−1, 1]. All

the 10 trials were completely successful, i.e., all the 104 binary vectors were correctly classified

according to the “40-20-40” criterion. We can not compare this result with that in [1], since the

network with hidden layer is not used in [1] for this case. Instead, we compare it with the result

in [7] which correctly classified 99.8% of the input vectors when 12 hidden nodes are applied in

a standard feedforward neural network and the best performance of 100% was attained by the

network with 24 hidden units. So this comparison indicates that our momentum method can

improve the performance of the training for feedforward neural networks.

4. Proof of Theorem 2.1

4.1. Useful lemmas

We shall use the following abbreviations:

Gk,j = G(V kξj), ωk,j = wk · Gk,j . (4.1)

Notice

ωk+1,j − ωk,j = Gk,j · ∆wk+1 + (Gk+1,j − Gk,j) · wk+1.

Then, it follows from (2.12) that

J
∑

j=1

g′j(ω
k,j)(ωk+1,j − ωk,j)

=
J
∑

j=1

g′j(ω
k,j)Gk,j(τk∆wk − ηpk) +

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · wk+1

= −η‖pk‖2 + τkpk · ∆wk +

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · wk+1.
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By Taylor’s formula, expanding gj(ω
k+1,j) at ωk,j gives

gj(ω
k+1,j) = gj(ω

k,j) + g′j

= (ωk,j)(ωk+1,j − ωk,j) +
1

2
g′′j (tk,j)(ω

k+1,j − ωk,j)2,

where tk,j lies between ωk+1,j and ωk,j . Consequently,

E(wk+1, V k+1)

= E(wk, V k) +
J
∑

j=1

g′j(ω
k,j)(ωk+1,j − ωk,j) +

1

2

J
∑

j=1

g′′j (tk,j)(ω
k+1,j − ωk,j)2

= E(wk, V k) − η‖pk‖2 + τkpk · ∆wk +

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · wk+1

+
1

2

J
∑

j=1

g′′j (tk,j)(ω
k+1,j − ωk,j)2. (4.2)

Using Taylor’s formula again, we have that there exists t̂k,i,j between vk+1
i · ξj and vk

i · ξj such

that

g(vk+1
i · ξj) − g(vk

i · ξj)

= g′(vk
i · ξj)∆vk+1

i · ξj +
1

2
g′′(t̂k,i,j)(∆vk+1

i · ξj)2

= g′(vk
i · ξj)(γk,i∆vk

i − ηqk
i ) · ξj +

1

2
g′′(t̂k,i,j)(∆vk+1

i · ξj)2

= −ηg′(vk
i · ξj)qk

i · ξj + g′(vk
i · ξj)γk,i∆vk

i · ξj +
1

2
g′′(t̂k,i,j)(∆vk+1

i · ξj)2. (4.3)

Then it is easy to prove the following Lemma 4.1.

Lemma 4.1. For the second last term in (4.2), there holds

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · wk+1

= −η

n
∑

i=1

‖qk
i ‖

2 +

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′′(vk
i · ξj)γk,i∆vk

i · ξj

+
1

2

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′′(t̂k,i,j)(∆vk+1
i · ξj)2

+

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · ∆wk+1, (4.4)

where t̂k,i,j lies between vk
i · ξj and vk+1

i · ξj.

Lemma 4.2. If (A1) and (A2) are valid, then there exists a constant C0 > 0 such that

‖Gk+1,j − Gk,j‖ ≤ C0(η + τ + η2 + τ2)

(

n
∑

i=1

‖qk
i ‖

2

)
1

2

. (4.5)
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Proof. Denote

ϕk,i,j = g(vk+1
i · ξj) − g(vk

i · ξj).

Then we have

‖Gk+1,j − Gk,j‖ =

(

n
∑

i=1

ϕ2
k,i,j

)
1

2

.

It follows from (4.3) that

ϕk,i,j = −ηg′(vk
i · ξj)qk

i · ξj + g′(vk
i · ξj)γk,i∆vk

i · ξj +
1

2
g′′(t̂k,i,j)(∆vk+1

i · ξj)2.

It is easy to see that there exists C1 > 0 such that

|ϕk,i,j | ≤ C1

(

η‖qk
i ‖ + |γk,i|‖∆vk

i ‖ + ‖∆vk+1
i ‖2

)

≤ C1(η + τ)‖qk
i ‖ + C1‖∆vk+1

i ‖2. (4.6)

By (2.12) and (2.13) we have

‖∆vk+1
i ‖2 ≤ (‖γk,i∆vk

i ‖ + ‖ηqk
i ‖)

2 ≤ 2(τ2 + η2)‖qk
i ‖

2.

By (A1) and (A2), ‖qk
i ‖ is uniformly bounded, i.e., there exists C2 > 0 such that ‖qk

i ‖ ≤ C2 for

any i and k. Consequently,

‖∆vk+1
i ‖2 ≤ 2C2(τ

2 + η2)‖qk
i ‖. (4.7)

Using (4.6)-(4.7) and setting C0 = max{C1, 2C1C2} yield

|ϕk,i,j | ≤ C0(η + τ + η2 + τ2)‖qk
i ‖,

which leads to the desired result (4.5). �

Lemma 4.3. Let (A1) and (A2) be valid. Then, there exists a constant C∗ > 0 such that

∣

∣

∣

∣

∣

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′(vk
i · ξj)γk,i∆vk

i · ξj

∣

∣

∣

∣

∣

≤ τ

n
∑

i=1

‖qk
i ‖

2, (4.8)

∣

∣

∣

∣

∣

1

2

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′′(t̂k,i,j)(∆vk+1
i · ξj)2

∣

∣

∣

∣

∣

≤ C∗(τ + η)2
n
∑

i=1

‖qk
i ‖

2, (4.9)

∣

∣

∣

∣

∣

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · ∆wk+1

∣

∣

∣

∣

∣

≤ C∗(τ + η)(η + η2 + τ + τ2) ·
(

‖pk‖2 +

n
∑

i=1

‖qk
i ‖

2
)

, (4.10)

∣

∣

∣

∣

∣

1

2

J
∑

j=1

g′′j (tk,j)(ω
k+1,j − ωk,j)2

∣

∣

∣

∣

∣

≤ C∗(τ + η)2‖pk‖2 + C∗(η + η2 + τ + τ2)2
n
∑

i=1

‖qk
i ‖

2. (4.11)
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Proof. (4.8) can be shown as follows:

∣

∣

∣

∣

∣

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′(vk
i · ξj)γk,i∆vk

i · ξj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

qk
i · (γk,i∆vk

i )

∣

∣

∣

∣

∣

≤

n
∑

i=1

|γk,i|‖∆vk
i ‖‖q

k
i ‖ ≤ τ

n
∑

i=1

‖qk
i ‖

2.

To prove (4.9) we take C3 = max{‖ξ1‖, ‖ξ2‖, · · · , ‖ξJ‖}, so

|∆vk+1
i · ξj | ≤ C3

(

|γk,i|‖∆vk
i ‖ + η‖qk

i ‖
)

≤ C3(τ + η)‖qk
i ‖.

By (A1) and (A2), there exists a C4 > 0 such that

∣

∣

∣

∣

∣

1

2

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′′(t̂k,i,j)(∆vk+1
i · ξj)2

∣

∣

∣

∣

∣

≤

n
∑

i=1

J
∑

j=1

C4(∆vk+1
i · ξj)2 ≤

n
∑

i=1

JC4C
2
3 (τ + η)2‖qk

i ‖
2

= C5(τ + η)2
n
∑

i=1

‖qk
i ‖

2,

where C5 = JC4C
2
3 . Now we prove (4.10). Recalling Remark 2.1, we have C6 > 0 such that

∣

∣

∣

∣

∣

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · ∆wk+1

∣

∣

∣

∣

∣

≤ C6

J
∑

j=1

‖Gk+1,j − Gk,j‖‖∆wk+1‖. (4.12)

From (2.12) and (2.13) it is easy to know that

‖∆wk+1‖ ≤ (τ + η)‖pk‖. (4.13)

This, together with (4.5) and (4.12), gives

∣

∣

∣

∣

∣

J
∑

j=1

g′j(ω
k,j)(Gk+1,j − Gk,j) · ∆wk+1

∣

∣

∣

∣

∣

≤ JC0C6(τ + η)(η + τ + η2 + τ2)‖pk‖

(

n
∑

i=1

‖qk
i ‖

2

)
1

2

≤
1

2
JC0C6(τ + η)(η + τ + η2 + τ2)

(

‖pk‖2 +

n
∑

i=1

‖qk
i ‖

2
)

= C7(τ + η)(η + τ + η2 + τ2)
(

‖pk‖2 +

n
∑

i=1

‖qk
i ‖

2
)

,

where C7 = 1
2
JC0C6. Next, we prove (4.11). Note that

|ωk+1,j − ωk,j |

= |wk+1 · Gk+1,j − wk · Gk,j − wk+1 · Gk,j + wk+1 · Gk,j |

≤ |Gk,j · ∆wk+1| + |(Gk+1,j − Gk,j) · wk+1|.
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There exists C8 > 0 such that

|Gk,j · ∆wk+1| ≤ C8‖∆wk+1‖ ≤ C8(τ + η)‖pk‖.

Moreover, by (A2) and (4.5), there exists C9 > 0 such that

|(Gk+1,j − Gk,j) · wk+1| ≤ C9‖G
k+1,j − Gk,j‖

≤ C9C0(η + τ + η2 + τ2)

( n
∑

i=1

‖qk
i ‖

2

)
1

2

.

Consequently,

∣

∣ωk+1,j − ωk,j
∣

∣

2

≤

[

C8(τ + η)‖pk‖ + C9C0(η + τ + η2 + τ2)(

n
∑

i=1

‖qk
i ‖

2)
1

2 )

]2

≤ 2C2
8 (τ + η)2‖pk‖2 + 2C2

9C2
0 (η + τ + η2 + τ2)2

n
∑

i=1

‖qk
i ‖

2. (4.14)

There also exists C10 > 0 such that

∣

∣

∣

∣

∣

1

2

J
∑

j=1

g′′j (tk,j)(ω
k+1,j − ωk,j)2

∣

∣

∣

∣

∣

≤ C10

J
∑

j=1

∣

∣ωk+1,j − ωk,j
∣

∣

2
.

This, together with (4.14), yields

∣

∣

∣

∣

∣

1

2

J
∑

j=1

g′′j (tk,j)(ω
k+1,j − ωk,j)2

∣

∣

∣

∣

∣

≤ C11(τ + η)2‖pk‖2 + C11(η + τ + η2 + τ2)2
n
∑

i=1

‖qk
i ‖

2,

where C11 = max{2JC10C
2
8 , 2JC10C

2
9C2

0}. Finally we take C∗ = max{C5, C7, C11} to complete

the proof. �

Lemma 4.4. If (A1) and (A2) are satisfied, then for the iteration process (2.12) there holds

E(wk+1, V k+1)

≤ E(wk, V k) − α‖pk‖2 − β

n
∑

i=1

‖qk
i ‖

2, k = 1, 2, · · · , (4.15)

where

α = η − τ − C∗(τ + η)(η + η2 + τ + τ2) − C∗(τ + η)2, (4.16)

β = η − τ − C∗(τ + η)2 − C∗(τ + η)(η + η2 + τ + τ2)

−C∗(η + η2 + τ + τ2)2, (4.17)

and C∗ is the constant defined in Lemma 4.3.
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Proof. From (4.2) and (4.4) we have

E(wk+1, V k+1) = E(wk, V k) − η‖pk‖2 − η
n
∑

i=1

‖qk
i ‖

2 + τkpk · ∆wk

+

J
∑

j=1

n
∑

i=1

g′j(ω
k,j)wk

i g′(vk
i · ξj)γk,i∆vk

i · ξj +
1

2

J
∑

j=1

n
∑

i=1

g′j

= (ωk,j)wk
i g′′(t̂k,i,j)(∆vk+1

i · ξj)2 +

J
∑

j=1

g′j

= (ωk,j)(Gk+1,j − Gk,j) · ∆wk+1 +
1

2

J
∑

j=1

g′′j = (tk,j)(ω
k+1,j − ωk,j)2.

Using Lemma 4.3 and noticing

|τkpk · ∆wk| ≤ τ‖pk‖2,

we can obtain the desired result (4.15). �

Lemma 4.5. ([14]) Let f : Rn → R be continuously differentiable, and assume that the number

of the elements of the set Ω = {x| fx(x) = 0} be finite. If the sequence {xk} satisfies

lim
k→∞

‖xk − xk+1‖ = 0, lim
k→∞

‖fx(xk)‖ = 0,

then we have

lim
k→∞

xk = x∗, fx(x∗) = 0. (4.18)

4.2. Proof to Theorem 2.1

It is easy to check that if

η <
1 − s

C∗[(1 + s)(3 + 2s + s2) + (2 + s + s2)2]
, (4.19)

then α and β defined by (4.16) and (4.17) are positive. Thus, by (4.15), the sequence E(wk, V k)

is monotonically decreasing. Note that E(wk, V k) is nonnegative, so there exists E∗ ≥ 0 such

that

lim
k→∞

E(wk, V k) = E∗.

It follows from (4.15), (2.10) and (2.11) that

∞
∑

k=1

‖Ew(wk, V k)‖2 =

∞
∑

k=1

‖pk‖2 < ∞,

∞
∑

k=1

n
∑

i=1

‖Evi
(wk, V k)‖2 =

∞
∑

k=1

n
∑

i=1

‖qk
i ‖

2 < ∞.

Consequently,

lim
k→∞

‖Ew(wk, V k)‖ = lim
k→∞

‖pk‖ = 0, (4.20)

lim
k→∞

‖Evi
(wk, V k)‖ = lim

k→∞
‖qk

i ‖ = 0, i = 1, · · · , n. (4.21)
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Finally, we use (2.8), (2.9), (4.7), (4.13), (4.20) and (4.21) to obtain

lim
k→∞

‖wk − wk+1‖ = 0, lim
k→∞

‖V k − V k+1‖ = 0. (4.22)

A combination of Lemma 4.5 and (4.22) yields (2.19)-(2.20). From Lemma 4.4 we know that

(w∗, V ∗) is a local minimum. We thus complete the proof. �
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