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Abstract

In this paper, we study the strong stability preserving (SSP) property of a class of
deferred correction time discretization methods, for solving the method-of-lines schemes
approximating hyperbolic partial differential equations.
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1. Introduction

In this paper, we are interested in the numerical solutions of hyperbolic partial differential
equations (PDEs). A typical example is the nonlinear conservation law

up = —f(u)e (1.1)

A commonly used approach to design numerical schemes for approximating such PDEs is to
first design a stable spatial discretization, obtaining the following method-of-lines ordinary
differential equation (ODE) system,

up = L(u), (1.2)

to approximate (1.1). Notice that even though we use the same letter w in (1.1) and (1.2),
they have different meanings. In (1.1), v = u(z,t) is a function of x and ¢, while in (1.2),
u = u(t) is a (vector) function of ¢ only. Stable spatial discretization for (1.1) includes, for
example, the total variation diminishing (TVD) methods [6], the weighted essentially non-
oscillatory (WENO) methods [7], and the discontinuous Galerkin (DG) methods [1]. In this
paper, we assume that the spatial discretization (1.2) is stable for the first-order Euler forward
time discretization

u™t = u™ 4+ AtL(u™) (1.3)
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under a suitable time step restriction

At < Atyp. (1.4)

This stability is given as
lu ™ < " (1.5)
for a suitable norm or semi-norm || - ||. For the TVD schemes [6], || - || is taken as the total

variation semi-norm. For technical reasons, we would also need a different but closely related
spatial discretization to (1.1):
uy = L(u) (1.6)

with the property that the first-order “backward” time discretization
u" Tt =" — AtL(u™) (1.7)

is stable in the sense of (1.5) under the same time step restriction (1.4). For the conservation
law (1.1), the operator L can often be obtained simply by reversing the wind direction in the
upwind approximation. We refer to, e.g., [1, 7, 11] for such implementation in ENO, WENO
and DG methods.

Even though the fully discretized scheme (1.3) is assumed to be stable as in (1.5), it is
only first-order accurate in time. For a high-order spatial discretization such as in the WENO
and DG methods, we would certainly hope to have higher-order accuracy in time as well. A
higher-order time discretization for (1.2) is called strong stability preserving (SSP) with a CFL
coefficient ¢, if it is stable in the sense of (1.5) under a possibly modified time step restriction

At < ¢ Aty (1.8)

SSP time discretizations were first developed in [10] for multi-step methods and in [11] for
Runge-Kutta methods. They were referred to as TVD time discretizations in these papers, since
the semi-norm involved in the stability (1.5) was the total variation semi-norm. More general
SSP time discretizations can be found in, e.g., [3, 4, 12, 13]. The review paper [5] summarizes
the development of the SSP method until the time of its publication.

In this paper we study the SSP property of a newly developed time discretization technique,
namely the (spectral) deferred correction (DC) method constructed in [2]. An advantage of this
method is that it is a one step method (namely, to march to time level n + 1 one would only
need to store the value of the solution at time level n) and can be constructed easily and
systematically for any order of accuracy. This is in contrast to Runge-Kutta methods which are
more difficult to construct for higher order of accuracy, and to multi-step methods which need
more storage space and are more difficult to restart with a different choice of the time step At.
Linear stability, such as the A-stability, A(«)-stability, or L-stability issues for the DC methods
were studied in, e.g., [2, 8, 14]. However, for approximating hyperbolic equations such as (1.1)
with discontinuous solutions, linear stability may not be enough and one would hope the time
discretization to have the SSP property as well.

The (s + 1)-th order DC time discretization to (1.2) that we consider in this paper can be
formulated as follows. We first divide the time step [t", "], where

" ="+ At
into s subintervals by choosing the points (™) for m = 0,1,--- , s such that

tn:t(0)<t(1)<...<t(m)<...<t(s):t"+1,
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We use
At(m) _ t(m+1) _ t(m)

to denote the sub-time step and u,(cm) to denote the k-th order approximation to u(t(m)). The

nodes ¢("™) can be chosen equally spaced, or as the Chebyshev Gauss-Lobatto nodes on [t ¢+
for high-order accurate DC schemes to avoid possible instability associated with interpolation
on equally spaced points. Starting from u™, the DC algorithm to calculate u™*! is in the

following.

Compute the initial approximation
ugo) =u".

Use the forward Euler method to compute a first-order accurate approximate solution
uy at the nodes {t(™}s _:

Form=0,---,s—1
ugm+1) _ ugm) + At(m)L(u(lm)) (19)

Compute successive corrections
Fork=1,---,s

(0)

Uyl = u”.
For m=0,---,5—1
T = )+ A (L) = Lu™) + L (L)), (1.10)
where
0<6,<1 (1.11)

and I (L(uy)) is the integral of the s-th degree interpolating polynomial on the s + 1
points (), L(ug)))jzo over the subinterval [t(™) t(+1] which is the numerical quadrature
approximation of

£m+1)

/t(m) L(u(r))dr. (1.12)

Finally we have

n+l _  (s)
U =Ug /s

The scheme described above with 6, = 1 is the one discussed in [2, 8]. In [14], the scheme is
also discussed with general 0 < 0 < 1 to enhance linear stability. The term with the coefficient
01 does not affect accuracy.

In the next three sections we will study the SSP properties of the DC time discretization
for the second-, third-and fourth-order accuracy (s = 1,2, 3), respectively. In Section 5 we will
provide a numerical example of using the SSP DC time discretizations coupled with a WENO
spatial discretization [7] to solve the Burgers equation. Concluding remarks are given in Section
6.
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2. Second-Order Discretization

For the second-order (s = 1) DC time discretization, there is no subgrid point inside the
interval [t",t"*1]. We can easily work out the explicit form of the scheme

ugl) =u" 4+ AtL(u"),
1 o (2.1)
u" =" iAt (L(u") + L(uy )) .

Notice that this is exactly the optimal second-order SSP Runge-Kutta scheme originally given
in [11] and proven optimal for the SSP property among all second-order Runge-Kutta schemes
in [4]. The CFL coefficient ¢ in (1.8) for this scheme is 1.

Even though the SSP property for the scheme (2.1) was already proven in [11, 4], we will
prove it again here to illustrate the approach that we will use also for higher-order DC time
discretizations. This approach was used in [12] to study SSP Runge-Kutta methods. The first
equation in (2.1) is already in Euler forward format. The idea of the proof is to write the second
equation in (2.1) as a convex combination of Euler forward steps. That is, for arbitrary a1, as
satisfying

a; >0, as >0, a; +az =1, (2.2)

we rewrite the second equation in (2.1) as
n+1 n 1 n n 1 (1)
u"T = aqu” + iAtL(u ) + agu”™ + §AtL(u1 )
and substitute the first equation in (2.1) into the apu™ term of the equation above to obtain

1-— 2042
2041

1
Wt = oy (u” + AtL(u")) + s <u§1) + gAtL(ugl))> . (2.3)
2

Clearly, this is a convex combination of two Euler forward steps. By assumption, the first-order
Euler forward step (1.3) is stable in the sense of (1.5) under the time step restriction (1.4),
hence it is clear that (2.3) is stable in the sense of (1.5) under the modified time step restriction

1—20&2

20&1

1
At < Atg, 2—At < Aty.
(6]

Notice that aq, as are arbitrary subject to (2.2), hence the CFL coefficient ¢ defined in (1.8)
for the step (2.3), hence the scheme (2.1), to be SSP is

Y 2.4
¢ = max min T 2ay as (2.4)

where the optimization is taken subject to the constraint (2.2). As in [12], we reformulate the
optimization problem (2.4) as

¢c= max z (2.5)
{0‘170‘2}

subject to the constraint (2.2) and

201 > 2(1 — 2a), 2009 > 2. (2.6)
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We then use the Matlab routine “fminicon” to obtain the solution ¢. The Matlab routine
produces the optimal solution ¢ = 1 achieved at ay = as = 1/2. This is the same result as
the one already obtained in [4] theoretically. Of course, for this simple optimization problem,
it is not necessary to use the Matlab routine. However for the more complicated optimization
problems later associated with higher-order DC schemes, the usage of this Matlab routine will
be helpful.

We remark that the sole purpose of writing the second equation of (2.1) into the mathemat-
ically equivalent but more complicated form (2.3) is to obtain the optimal CFL coefficient ¢ in
(1.8) for the provable SSP property of the scheme (2.1). In actual computation we would use
(2.1) since it is simpler to implement.

3. Third-Order Discretization

For the third-order (s = 2) DC time discretization, there is only one subgrid point inside
the interval [t",¢"T!]. By symmetry, this point should be placed in the middle, that is,

£(0) _ 4m t<1>:tn+1m (2 = gntt
) 2 ’ :

We can then easily write out the explicit form of the scheme:

1 1
uf) =+ AL ), ul® = u + SatL ),

1 5 2 1
1 n n 1 2
u(2 )=+ iAt (—L(u )+ gL(u(1 ) — —12L(u(1 ))> ,

1 1 1 2 )
uf? =l + S0 (L) - L)) + 54t (- L") + L) + EL(uf))) . (31)

) 2 1
ugl) =u"+ At (EL(U”) + gL(uél)) - EL(ug))) )

1 1 1 2 )
w = ulD 4 gt (L(ug”) - L(ug”)) + oAt [ ——Lu") + SLus) + —Lw?) ) .
2 2 12 3 12
For our analysis, the following equivalent form of the scheme is more convenient:

1 1
u(ll) =u" + iAtL(u”), uf) = ugl) + iAtL(u(ll)),

1 5 2 1
uf) = u" 4 At (EL(u”) + L) ~ —L(u§2))> ,

) 1
u(22) ot 591At (L(u(;)) - L(Ugl))) +5At <

Lo 4 S + o)
5 3\t 37\t ) (3.2)

3

1 5 2 1
1 n n 1 2

1 1 1 4 1
nt+l _ ,m | (1 _ (1) z 1 7 (@ 702
u" Tt ="+ 292At (L(u3 ) — L(uy )) + 2At <3L(u )+ 3L(u2 )+ 3L(u2 )) :

We now attempt to rewrite each equation in (3.2) as a convex combination of forward (or
backward) Euler steps, as in the previous section. The first two equations are already of the
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forward Euler type and would be SSP for a CFL coefficient ¢ = 2. We would need to write
the remaining equations for uél), uf), ugl) and u"*! into convex combinations of forward (or
backward) Euler steps. We present the details of this procedure for the last equation involving
w1 only, as the process is similar for the other equations.

To this purpose we take

2

af] 20, a3 20, a3 20,08} 20, o tah taftafi=1,  (33)

and further
B 20, B 20, B 20, B+ + 87 = (3.4)
and rewrite the first term u™ on the right-hand side of the last equation in (32) as
ut = (o) + o) + af) + o um = (B8] + A3 + B + of) + o) + af)un.

After a further algebraic manipulation using all the equations in (3.2), we can then rewrite the
last equation in (3.2) into the form

1 5
un—i—l _ éQl)un + (__ o 1(3%

1 2 5 2 1 2 1 2
gaé,g - ﬂag,é)l - 555,2) - 5@5,,32 AtL(u™)
2 1 2 1 2 1

+

1
ol 1 #Atuugw)l

(2) (1)

1 1
+ a33u2 <6+ﬂa2>AtL( )

1 oy L@ 2@ 1. 1
+ [+ (02 - ot - 2 - o) avziul?)
2) (2 2 2
+ 6§§u§> S - o)) AL | (3.5)
24 6
To simplify and standardize the notations, we denote
2 2 2 1 2 0 2 1 2 2 2
agy=afy, ayh=afl, aii=afl, o} =8, afi=p, afi=p3 (36
and
2 1 1 1 1
1 2 2 2 2
b = 3 52 59104;,% - gaé b 08 = et ﬂag )
1 1 5 5 1
1 0 2 2 2 2 2
b:(s,i = b2, bﬂ =5 ﬂag ) — =) — o &) - 55;,2) - §5§ ), (3.7)
1 1 1 1
1 2 2 2 2 2 2
o) -3 §,3+591 i) — 3083~ 2,0 ﬂgg 6&%
and write (3.5) as
W =37 (0l AL ). (3.8)
,J
Similarly, we obtain
ult = Z (a;gugl) +b; @ HAtL(u ;l))) : (3.9)

4,9
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with
1 1 1 2
M =alll, ai =af, aff =ab},
3.10
o5 Lo Lo o ! 1o ,eo_ 1 (3.10)
1,1 — 24 2 2,2 2 2,3 1,1 — 3 2 2,3 1,1 247
where
al >0, 0y >0, a8} >0, al) +al)+all)=1. (3.11)
Moreover,
uf? =7 (afhul? + i atLw)), (3.12)
i
with
0 2 1 2 2 2 1 2
afy =af), aiy=0af), o) =af, of)=af),
1 1 1 2 1 1 1
0 2 2 2 1 2 2
b’ = 5~ 504(2,% - 504( ) — ﬂaéyi, b = 33— 504(2,% - 504(2 ) (3.13)
1 1
2 2 1
b(l,% - 6+ ﬂ é,z)b b( ) 5917
where
o8 >0, 053 >0, 08 > 0,08} >0, o +af)+ai +al)=1. (3.14)
And finally,
ugl) = (a;%ugl) + b;%AtL(ug-l))) , (3.15)
ij
with

O = 2 Zall)— o)~ 2o — o0 b8 = 291all) — 2al) — 2f) — 20, (3.16)
b = o) — safl B = 3 Shrald, B = o
where
afl 20, 055 >0, 0§} 20, afl} +af +al} =1, (3.17)
and further
A >0, g >0, gY > O gl 4 gl .

We have now written all the equations in (3 2) as convex comblnatlons of forward or back-
ward Euler steps, depending on the signs of b( 1o in (3.8), (3.9), (3.12) and (3.15). We notice,
from their definitions in (3.7), (3.10), (3.13) and (3.16), that bgi)l, bgi, bg and bélg are always
non-negative, bﬁ and b§2§ are always non-positive, and the other b;l
or negative, at least a priori. Because of our stability assumption (1.5) for the Euler forward

i could be either positive

step (1.3) and the Euler backward step (1.7), we would need to replace the operator L(u (1))

by L(u y)) when the corresponding b( 1. is negative. After this modification, the scheme (3.2) is
clearly SSP under the modified time step restriction (1.8) with the choice of the CFL coefficient

al®
c= maxmln{ 3,k } (3.19)

1,5,k |b(lk|
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subject to the restrictions (1.11), (3.3), (3.4), (3.11), (3.14), (3.17) and (3.18).
As before, we optimize the equivalent problem:

c= max =z (3.20)
{a{).85

subject to the restrictions (1.11), (3.3), (3.4), (3.11), (3.14), (3.17) and (3.18), and, for all the
relevant ¢, j and k,
a’) > z|b{)| (3.21)

by the Matlab routine “fminicon”. As mentioned before, when the resulting by,)f is negative, we

will change the relevant L(u; (l) ) by E(ugzi) The optimal scheme in terms of the CFL coefficient
(1.8) is the following
ugl) =u" + 1AtL(u”), u(2) (1) + AtL( (1)),

(1) (agoiu” + bloiAtL u') ) (al 1w (1 + bgliAtL( ( ))) + (afiuf) + bfiAti(uiQ))) ,

(2) (agogu” + bgogAtL u') ) + (a(llgu(ll) b(l)AtL(ugl)))
- (a% P B ) + (afhul” +oihatrw)) . (3.22)
)) + (ag Jul? + AL (u (1))) + (a§ Jut® + b ALL(u >))
(a‘;; M b ALL(ug) ) ( 2Jus) + bCIALL(u (2))),
g )) + (a1 4“1 - b§14AtL( (1)))
( AL () + (afju” + b)AtL )

(u

(‘231 (2)+b(2)AtL &) + (aflhul? + o acLs?)),

Our + 03 ALL(u"

(0 n
b ZAtL (u

Jr
+
Jr
with the coefficients ay;c and b;l,)c given by (3.6), (3.7), (3.10), (3.13) and (3.16), and

ag] =0.2912, al!) =0.2911, af’) = 0.1374, a§2§ =0.0736,

a) = 02453, af) =0.5026, o) =0.3664, A5 =0.1284,
() =0.2686, af) =0.2457, al) =0.0000, of) =0.2435,
) =0.0811, A5 =0.1120, 6, =0.8393, 6 =0.7884.

(3.23)

The CFL coefficient for this scheme is ¢ = 1.2956. Therefore, we have proved the following
result.

Theorem 3.1. The third-order DC scheme (3.22)-(3.23) is SSP under the time step restriction
(1.8) with the CFL coefficient ¢ = 1.2956.

Even though the CFL coefficient for the scheme (3.22)-(3.23) is reasonably high, it requires
10 evaluations of L or L. Comparing with the optimal SSP third-order Runge-Kutta method in
[4, 11], which has a CFL coefficient 1 and requires only 3 evaluations of L, the third order SSP
DC scheme (3.22)-(3.23) is much less efficient. Of course, since we have used an optimization
routine to obtain the optimal value of ¢, we cannot guarantee that we have obtained the
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theoretical optimal value of this CFL coefficient. Theorem 3.1 provides therefore only a lower
bound of the CFL coefficient to guarantee SSP. The actual DC scheme may be SSP for a larger
value of the CFL coeflicient.

_If our objective is to have as few evaluations of L or L as possible, we may require as many
by,l to be positive as possible. A careful search reveals that we need at least 9 evaluations of L

or L to obtain a SSP scheme. This leads to the following third-order DC scheme:
1
ugl) =u" 4 —AtL(u”), ug ) = (1) + AtL( (1 ))
<”ﬂumﬁAw<mg+Q$@9+aaun¢%y

(o
(al3uf” + AL ()
(

+ o+

ot = (@ + b AtL ™))
u$? = ( Ourm + b ALL(u" )
+@%w%%mw)(@¢u@mumy (3.24)
W = (% + 50 An) + (ol + KAL) + (oPul® + oA ()
+ (aélqu + bg13AtL(u (M ) (a2 3u22) + b(2 YALL(u (2))) ,
untt = (ag"}lu” + % ALL( u")) + (a ut? + b AL (u (1)))
+ (a‘fi @ b AL () ) (a‘;i & bS ALL(u (1)))
+ (afus” + AL @)) + (afhul” + i AL () |
with the coefficients a( ,1 and b . given by (3.6), (3.7), (3.10), (3.13) and (3.16), and

ad] =0.5833, all)=0.2041, o’ =0.4310, al’) = 0.0000,

i) = 0.1650, “{ =0.6266, ol =0.3065, A =0.3603,

A5 = 01550, o) =0.3654, o) =0.0593, af) =0.1652,
) = 02827, B =0.0602, 6, =0.8990, 6 =0.9115.

(3.25)

The CFL coefficient for this scheme is ¢ = 0.8990. Apparently, this scheme has a much smaller
CFL coefficient and only 1 fewer evaluation of L or L than that of the scheme (3.22)-(3.23),
hence is much less efficient.

As indicated in the introduction, the original spectral deferred correction scheme in [2, 8]
corresponds to #; = 0 = 1. Within this subclass, we apply our optimization procedure above
to obtain the following third-order DC scheme:

ugl) =u" + 1A?ﬁL(u”)7 u(2) (1) + AtL( (1 ))
uf = (@ + b AL ™)) + (aﬁu‘ll) +olatr()) + (aful + ol AL w?)),
uf? = (afum + o QAL (™)) + (af3ul” + o AL ("))
+ (afgug?) + DAL () ) (aggugU + bSO ALL(u (”)) : (3.26)
ul) = (ag"gu" + b ALL( u")) + (a DY + o ALL(u ‘1))) + (ag?§u§2> + bngtZ(uf)))

+ (aélguél) + bé13AtL(’u, (1) ) (a2 3U22) 4 b(2)AtL( (2))) ,
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(a‘f}1 4 b AL (u™) )

(e
+ (aful? + )AL <2>) (a5 + b ("))
+ (ol + oA () + (a§hul” + B AL (),

with the coefficients § nd b(

) =0.3333,
’) = 0.1977,
() = 0.2124,
2 = 0.0577,

a,
al
Q3
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) 4 ) AL (u <1>))

,)g given by (3.6), (3.

ad') =0.3333, al’) = 0.1405, o@ = 0.1405,

af) =0.5636, ol =0.2552, ) =0.1814,
af] = 01742, af’) =0.1092, ol = 0.1961,

(%) = 0.0872, 6; =1.0000, @ = 1.0000.

7), (3.10), (3.13) and (3.16), and

(3.27)

The CFL coefficient for this scheme is ¢ = 1.0411. However, it needs 11 evaluations of L or L.
Therefore, it is much less efficient than the scheme (3.22)-(3.23).

Within the subclass of 6; = 63 = 1, we can also explore SSP schemes with as few evaluations
of L or L as possible. We would still need at least 9 evaluations of L or L to obtain a SSP
coefficients agl,)c and b;l,)c given by (3.6), (3.7), (3.10), (3.13) and

scheme, namely (3.24) with the
(3.16), and

af'] = 0.5866,
i’} = 0.1170,
1
() = 0.1298,
85 = 0.2945,

The CFL coefficient for this scheme is ¢ = 0.6491, which is not very impressive.

ayly = 02058, al’) =0.4773, o) =0.0811,
af) =0.6133, o) =03112, B =0.3535,
af] =0.3786, o) =0.1799, al’} = 0.1170,
5% =0.0599, 6; = 1.0000, 6 = 1.0000.

(3.28)

Finally, we consider a special class of the third-order DC scheme (3.1), in which 6, = 0.

In this subclass, we do not need to evaluate ugl),

hence this may lead to a scheme with fewer

evaluations of L or L. After removing the constraints associated with the evaluation of ult

and

setting A2 = 0, the optimization procedure described above yields the following scheme within

this subclass:
1
ugl) =u" + —AtL(u”), ug ) =
ugl) :( (0) ”—i—bO)AtL n)

ug) ( (O)U” +b O)AtL

+ (P + BAL ()

u"t = (agoiu” + bloiAtL (u™)

uf? + AtL( (L,
)) + (el
) (a12u1 —l—b(l AtL( (1)))

(a(;% (1)+b(1)AtL

) + al 4u1 ) b(1 AtL

)

+ (afhul” + B AL () ) + (aful® + FALLW) ) |

with the coefficients a(.ik and b;
ayl] = 0.3238,
ay’) = 0.1774,
B = 0.0757,

ik given by (3.6), (3.7), (3.10) and (3.1

3), and
o) =0.3237, o) =0.1264, al’) = 0.2204,
af) =0.2825, o’} =0.5589, al’} = 0.1586,
B9 =0.2038, 6; = 1.0000, 6 = 0.0000.

L)) + (2 + 0 AT WD),

(3.29)

) (a2> @ 4y AL (u <>))

(3.30)
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The CFL coefficient for this scheme is ¢ = 0.9515. This scheme is still less efficient than the
scheme (3.22)-(3.23), even though it has only 8 evaluations of L or L, 2 fewer than the scheme
(3.22)-(3.23) has.

We can further reduce the number of evaluations of L or L to 7 within this subclass, yielding
the following scheme:

1
ugl) =u" 4+ —AtL(u”), u§2) = 1) + AtL( ))
ugl) ( (0) u” + bloiAtL u') (al 1u1 bgllAtL( (1))) + (ag iuf) +b 2)AISL( (2 ))) ,

ug” = (agogun + b )ALL(u") ) (a ut + b )AL (u <1>))

+ (aful® + b AtL)) + (a‘;; (1 +b‘21;AtL (1) (3.31)
untl = (agog " b ALL( ")) ( W 4y AL (u ) (a7 @ Ly AL (u “))
+ (afhus? + bh AL ) + ( ) +b(2231AtL ).

with the coefficients a(»i,l and by,)f given by (3.6), (3.7), (3.10) and (3.13), and

af] = 05862, all)=0.2481, of) =0.4252, af) =0.0293,
af) = 01315, o] =0.4546, af) =04281, af)=0.1173, (3.32)
) = 03387, A1 =0.1147, 6, = 1.0000, 6 = 0.0000.

The CFL coefficient for this scheme is ¢ = 0.7040. This scheme is slightly less efficient than the
scheme (3.29)-(3.30).

4. Fourth-Order Discretization

For the fourth-order (s = 3) DC time discretization, there are two subgrid points inside
the interval [t",¢"*1]. By symmetry, these two points should be placed at t) =" + aAt and
t?) = ¢ 4 (1 — a)At respectively for 0 < a < % We will only consider the standard choice of
the Chebyshev Gauss-Lobatto nodes with a = (5 — v/5)/10, however, see Remark 4.1 for the
general case of arbitrary a.

With the choice of the Chebyshev Gauss-Lobatto nodes, we can easily write out the fourth-
order DC scheme

/8

u(ll) =u" + Yo AtL(u"), uf) = u(ll) + AtL( (1)) u(lg) = uf) + 'yoAtL(u(IQ)),

1
us) ="+ 34t (7 L") + 75 Luf) +fy;L< ) + 97 L))

u§2) :uél) + gﬁtﬁﬁ (L(uél)) — L(ugl)))
V5 5 W5 @y V5, @3
+ At( 30L( )+WL( )—i—wL(ul )—%L(u1 ),

W) P 4 rori0; (L) — L)

+§At (’YZL(U")+7§L( M) 445 L) + 47 L(u <3))),
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1
uf) ="+ S8 (3 L") + 75 L(S?) + 75 L) + 97 L))

5)
o =l + B g, (108" - 2008

1 V5 o VB VB o VB (3
+ §At (WL(U )+ WL(UQ )+ wL(u2 )— —L(us’) |,

uf? =l p0stt (L) - L))
1 I, _ .
+ 50t (1 L") + 75 L) + 5 L) + 7 L)) (4.1a)

1
uf) =+ S8 (3 L") + 77 L) + 75 L) + 7 L))

u? =ud 4 gmog, (L(uff)) - L(ug”))
1 NG 75 1) 75 (2) V5 (3)
At -2 rwmy + 2p VO W@y - ¥Y2p
+2 t( 30 (u™) + 30 (uz’) + 30 (uz”) 30 (us”) ],

W —u® 4 o At (L(uf)) _ L(U§2)))

1 _ n — 1 - 2 3
5 At (3T L") + 75 L) + 75 L) + 47 L) )

where
5—-v5 . 11+v5 25445
Yo = ’ M= (5 Yo = /7%
10 60 60 (4.1D)
L 25x£13v5 4 VBl
BT 60 0 T T

We can rewrite (4.1) into an equivalent form similar to (3.2), then attempt to rewrite each
equation as a convex combination of forward (or backward) Euler steps, as in the previous
section. The first three equations are already of the forward Euler type and would be SSP for
a CFL coefficient ¢ > 2. As to the fourth equation, we can rewrite it as

- (1) 3 2000) w2
0]
with
a’) =afl), affl=al), a¥) =al, o) =al),
b\ = %vf — 70053 — Y008% —Y0adl,
= Loy~ o Vo -
173 5287 5
b = %%Y —yad), b = %vz ,
where
a5 >0, 0l >0, 083 >0, o) >0, o] + a8 + ol +ad) =1. (4.4)

Similarly, the fifth equation in (4.1) can be rewritten as

2 i) (i i i
ué ) = Z (a;%ug) + b;ﬁ%AtL(té ))> (4.5)

.3
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with
0 2 1 2 2 2 3 2 1 2
o) =af), af)=al), o} =0al) o} =af) af)=all
0 1 2 2 2 1 2
b\’ = 3N~ Y0asy — Y00y — Yoa) — 5%*@5,%7
W _ 1 Vo Vb VB 1y
bia= 5’73 Ty Ta2,3 T 5’72 Q3 55 (4.6)
2 1 2y 1 _ 2
b} = 3%~ Yooy ) — 373 oy
5 1 1 (s n VE
bg% = —571 —5M a;g, byly = ?91,
where

Ayl >0, ayy >0, 04(2) >0, ay) >0, ayd >0,

(4.7
The sixth equation in (4.1) can be rewritten as
3 % % % %
W = 3 (Ol + 608 0) (1)
1.3
with
0 3 1 3 2 3 3 3 3 2 3
a3 =05t ai=o0r) ai=arl al=al el=al e =a,
1 1 1
0 3 3 3 3 !
400 = L et~ 00— r0af) — Lograll — Lyral)
b B V5, VB V5 ) N Vo, ) _ L+o®
1,3 12 5 5 23 5 2,4 2 2,5 5 2,6 2 3 2,67
4.9
Y RN C BN O BN ) (49)
1,3 12 2,4 2 3 2,5 2 2 2,60
11
3 -3 3
=L Ly <>+274 o)
V5 V5
o) = - e b 08 =002,
where
af] >0, ayy >0, a8} >0, af) >0, af}>0, af) >0,
( ) (3) 7 3) (3) (3) ’(3) | 7 (4.10)
Qg toagstasstas)+ayy;+ays=1
The seventh equation in (4.1) can be rewritten as
W = 3 (G + 680 ) @)

4,3
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with
0 1 1 1 2 1 3 1 1 1 2 1 1
al%) =35, iy = 659, of%) =35, al’) = B84, oS} = o}, i) = ofl), off) =afl,
0 1 1 1 _« 1) 1
bg,i = §7fr — oM Oéé % —gMm aé %—Ea( 705( 2)—’705§ 7053 4>

= L - <1>+£ oL, a<>+£ O <1>_§5<1>_£ﬁ<1>
1,4 2 Y2 3,2 5 3 3 2 3,3 5 3 4 12 3,4 5 3,3 5 3,4
4.12)
2 L 1 5 . (
bg,z)l =3 :(3 % — 52 a:(z 3+ 7092043 4 O‘glz)l ’Yoﬁé,zia
2 2 12
3 1 1 1 1
0= Lol + Lroth - Lot
1 1 V5 y VB 1 2 3
béi =357 — ?910453,% — 5 ta gia béi =37 = b2y, 31, béi =3%>
where
o8] >0, 0l >0, 0§} >0, 0f) >0, of) +af +af} +af)l=1,  (413)
and further
B 20, B3 2 0, B3 20, By =0, B5) + 853 + B3 + B3 = (4.14)
The eighth equation in (4.1) can be rewritten as
u:(f) = Z (ag 5U; @ b§Z5AtL( w)) (4.15)
4,7
with
W0 @ L) g @ g0 3) _ @)
ajs =Pz, 013 3,2, 015 3,30 015 3,45
1 2 2 2 3 2 1 2
o) =), affl=alf), of)= éi, af') —oaé,%
o 1 _ 1 9y 1 _ 2 1 2 2 2 2
5(1,) =3N §’Yfr04() N é% D £(34)1 37 () 705( ) 705( ) 705&,2,
1 1 @ V5, (o 1 \/_ 5 @ V5. 9 VB o
bg; =3 a;% + T‘glaé,g 357 Oéé )+ ? aé,é)l 1204§4)1 3 ﬁég - Tﬁé,i,
2 1 @ 1 2) 2 2
bg% == 573 a;% - 5 ag 3+ ’70920‘3 4~ 12@&21 - ’YO@,L (4.16)
3 1 @ 1 2 L
bg% =3 ag,% + 571 g% - Eag,i,
y 1 VB VB VB e 1 s
bé% =§7§r — s ?91042,3, - ?9104;21 — 32 agg,
2y 1 2y 1 _
b =5% — obaal?) — 373 g,
5 1 1 (s n VE
b$%) = — 571 — 3% g2, byl = — s
where
W20, allz0, a0 afl20 afz0 )
ag + a(2) + a(2) + a(2) + a?% =1,
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and further
B2 >0, B3>0, B2 >0, B2 >0, B+ B+ B+ 6L = o). (4.18)

The ninth equation in (4.1) can be rewritten as

3 % % % %
W = 3 (8l + 1At (419)
2]
with
0 3 1 3 2 3 3 3
o =P, atg =0, ay =055 ety =0,
1 3 2 3 : 3 3 2 3
b =052, ahg =03, ayg=oagl ahg=oagh e = ol
1 1 1 1 1 1
0 -3 3 3 -3
b =55 M fal’) - 3 o3 o — Eai(ﬁ,z)l - §Vfa§,g —3M ol
- ’705(3) ’705(3) ’Yoﬂ:?i,
p _ 1v‘a(3)+£ NONE +a<3>+§ INOBLING! _ﬁﬁ \/55(3)
1,6 9 V2 @2t 153 53 Q33 T 01054 5084 5 P340
1 _ 1
0% = — 575 a8) — 575 ) + 0b208) — S0’ — 90657)
2 2 1 12 (4.20)
3 1
4 = = et + ool - Lot
b<1>23_£93_£ NORRAY o Lo <>+§93Oz<>_17 o)
26 =19 5 5 V1033 — o030 T 572 g5 T U336 T 55 @
5 1 1
2 3 3
bé% =15~ Yobla — 7092042,4)1 3% aég - 57;04%2;
. 1 1
G _ - .- (3) ( )
b =g g s T 274
V5 \f
s =50s — 5 Osa So b5 =00,
where
off] >0, of) >0, of} >0, of)>0, of) >0, of}) >0, o)
afh + a5 +agy + ol +aff) +afy = 1,
and further
W0 A0 A0 e .
(3) (3) (3) (3) _ 3 ’
31 T 039+ O35+ 034 =g
The tenth equation in (4.1) can be rewritten as
1 i), (i i i
ufl ) = Z (aggug )+ b;}AtL(u; ))> (4.23)

.3
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with
0 1 1 1 2 1 3 1 1 1
o =y, ol =44, o =1l o) =0 el =51,
2 1 1 1 1 2 1 3 1
o) =pi%, o) =g ol =al), ol =0, of=all),
0 1 1 n 1 @ I 1) 1 1
o) =57 57?(%&,5 —3n o) - ﬁa( = —71 889 — =B
L a
- EB&,Z - vwiz) 707£§ VM b
1 1 . Vb n 1 y Vb 1 5 4y V54 VB
bilg = — 57 s + 0184 — 375 iy + 0100 — T3Pl — i — i,
2 2 5 12 5 5
2 1 1
b§; =37 54(1 - —72 54 + ’709254(172 1 4(1,12 VO’YSL (4.24)
3 1 1 1 1
b§,; — 5% b . )+ 27 51,33 ~ 13 i,i,
b =~ Loratt) + oo Lam Vo 3oy Vo gy VB g0
2,7 g2 Qua T Usu 3 53 Qus T 447 AT 4,3 5 4,4
2 1 1 1 1 5
bé% =- 5’)’3 044(1% - 5’)’2 044(:% + ’7094044(174)1 - Eaff}l 709254 4>
3 1 1 e 1 1
1 \/5 \/5
o) 15’72 — “0304) — — Osc
) 5 )
1
2 1 3 _
bg; :_73 - 7094@51,41’ bg ; = 574 )
where
a1 >0, ol >0, al} >0, af) >0, aEﬁ} +al)+aly +al) =1, 4.25)
1
B >0, 69 >0, 89 >0, 80 >0, g+ 60+ 855 + 810 =al, (4.26)
and further
1 1 1 1 1 1 1 1 1
1H 20, 75920, 7 >0, % >0, A+ 88+l = 6. (4.27)
The eleventh equation in (4.1) can be rewritten as
u? = Z( Dl 1 bl AL (u ‘”)) (4.28)
4,7
with
0 2 1 2 2 2 3 2
d% =, ay =40 o =90 o =1
(1) _n(2) (2) (2) (3) (2) a(l) _(2)
8 —M4,2» 28* 4,3 28* 4.4 3,8 7 H4,2»
2 2 3 2 1 2
é% =i, af} =0, i} =af,
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0 1 _ 1 2 1 _ (2 2 1 2
buﬁﬁfﬂwgfng%gafﬂwg
1 2 1 2 2 2
-3 fr@(m) —on by ( ) ﬁ i,i ’Yo%iz) '70'74(1§ Y0 vii
1 1 _ Vb 2 s V5 o 5 @ VB V5o
= Lot s Lo Laam s Lopn Sgm B B
2 1 _ o 1 2 5 (2 2
=L 3—5% vt G-
3 1 2
bg,g =- 5’7 + 74 54 T 19 4(127 (4-29)
1 1 \/5 2 1 5 VB 5 o V5. 9 VB
bé% =- 272 4(1% + ?930@(1,% - 57;0451,% + TGSOQ(;,?; - Eai,i - ?91@(1,32 - ?9154,@
2 1 g 1 2) 5 (2)
bé,s)g =—3573 044(1,% — 572 044(1 3T 7094044 4~ 044(1 4 ’709254
2 2 12
@=Ly Ly 1o
2,8 2 4 4,2 2 4 ~4,3 12 4,4>
no1 V5 VB VB e 1
oS3 =§7§r — 5t ?930451,3, - T‘gsaii — 372 o,
2 1 1 _ 2
bg% —572 - 7094044(1 — 37 044(1,%,
5 1 1 _ n V5
bg,f)ﬁ == 5’71 - 5’74 0‘4(1,%7 bé(l,g = ?955
where
ol >0, af)>0, o} >0, oY} >0, off) >0, (130)
afi+af§+af§+afﬁ+af%fl, '
and
@50, 48 >0, 83 >0, 40 >0, 88+ 43 + 52 + 52 = o), (4.31)
and further
2 2 2 2 2 2 2 2 2
2048200 430 A+ o aaR =i
Finally the twelfth equation in (4.1) can be rewritten as
u"tt = Z ( ;Zs);u(l) + bgg);AtL(uy))) (4.33)

with

0 3 1 3 2 3 3 3 1 3 2 3
afs =7t ails=nid. Py =niR. el =0l ats=p3. i =543

(3) _5(3) o _ 3 () (3) gﬁg (3) (1) (3) (2) (Bé

Q29 =P44) Q39 =042, 0A3z9 = 43, A39 = 4y, Qg9 =5, Qg9 = Qg
1 1 1 1 1 : 1
0 3 3 3 3
a;:ﬁ—gm g—§% o)~ )~ Lyt - Ly
1
3 3 3
— S — 2 B — 5B — 10 — 903 — 02
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! J5 V5w 5.y V5 V5
by =— 37 (3)+—916i3§*—73 6(3)+—9 B — P — s — i,
2 1 3 3 3 5 3 3
bg,g:* 573 54(12)*—’72 5( )+70925( ) G z(xi ’Yo%ii,
3 1 3, 1 3 3
0=~ Lo+ Lrsey - Lo
1 1 _ ¢ \/_ 3 1 5 Vb 5 @ V5. @ VB oo
(2,3 __’72044(1,%"'_93 ()__73 ()+_9 4,4 514)1__9 ﬁ()——H 54(1,2,
2 5 2 12
@_ 1 _ @ 1, @ 5 (@3
b2,9 =- 5’73 Qy 90— 5’72 Qy 3+ Y004 a4 4 12044 4 ’709254 (4.34)
3 1 _ 3 1
9= - Lore e Lyroth - L),
b 5 VB VB e VB )] vra® 4 oo _ Lo
3,9 12 5 5 Qy ,3 5 4,4 2 4,5 5 4,6 9 3 “4,60
5 1 1
2 3 3
bgg =13~ obs — 7094044(1,4)1 — 37 044(1% — 37 ;0@(12;
g 1 1 VvV 5
3 _ 3 3 1 2
b$) =155 37 i + 274 i, bl = — 05— ?950451%, b% = ob.
where
o] >0, o) >0, of) >0, o) >0, o} >0, ofY) >0,
( ) (3) (3) (3) (3) (3) (4.35)
agytoagstoagstogytaist+as=1,
and
B >0, 6% >0, 8% >0, 88 >0, g%+ 60 + 85 + 67 = ol (4.36)
and further
3 3 3 3 3 3 3 3 3
Y >0, 4R >0, 4% >0, 4% >0, A+ 8% +48 =80 (4.37)

Similar to the third-order case, we can formulate the optimization problem (3.20), subject
to the restriction (1.11), (4.4), (4.7), (4.10), (4.13), (4.14), (4.17), (4.18), (4.21), (4.22), (4.25)-
(4.27), (4.30)-(4.32), (4.35)-(4.37), and (3.21), and solve it using the Matlab routine “fminicon”.
We obtain the following optimal scheme:

\/_
Y =u" + yAtLw™), ul? = u§ AtL( D, =0 4 oatnwd?),

uél) (agoiu + bgolAtL ) a 1) +b 1)AtL( (1))> + ( (2) ( ) + bﬁAtL( (2))>

uf? = (afu" + by AL (" ) (a Qui +uaL ™)) + (o + oAt w?))
+ (aguf) +b 3)AIfL ) (a 2u21) + b;%AtL(u () )
(el + piacL( (1)))+(a Ju +oBaL )

) + (a8l + 63AL (")) + (afhus? +0i%AtL (),

+ (a9 + 0 e l?)
u(23) (agog "+b(IO%AtL ”)
(3)

+ (a?gu?) + b%AtL
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ulV = (a‘loi "4 b AL (u )) (aﬁuﬁ” + bﬁ}lAtZ(ug”)) + (af}lu(f) + bf}lAtE(u‘f)))
+ (a‘f’i 0P\ AtL(u (3))) + (ag};ug” + bgﬂAtL(uS))) + (aéﬁu(;) + bf}lAtE(u‘f)))
+ (afhul” + b AtLw)) |
uf? = (al%um + 00AtLw™) ) + (af3ul” + bAtL @) + (el +bHALL())
+ (a§3gu§3> + b‘f’gAtL(u‘lg))) + (aggu;” + bglgAtZ(uS))) + (afgu‘f) + bngtL(u‘f)))
+ (aS2us? + o AL ) + (af2ul” + i AtL (W) (4.38)
uf? = (alum + b QAL ™) ) + (afful” + bAL W) + (ol el +bALL )
+ (a§3g o ALL(u (3))) + ( Soust + b ALL (u) )) + (afgu‘f) + bngtL(u‘f)))
(a2 BALE) + (AL + (o + L),
uf? = (ol +00AtL ™) ) + (a2l + bAL @) + (afJul® +b2ALL (W)
+ (a‘f’% O AL (W) ) ( us? + b5 AL (u (1))) + (af;u‘f) + bf;AtL(u‘f)))
+ (aS9ul? + o) AL @) + (afhul” + 0§ AL () + (afu? + b ALL W) )
+ (afhul” + b AL ) |
u? = (agogun + b AALL(u" ) (aﬁ%uﬁ” + bngtZ(ugl))) + (aféu‘ﬁ + bngtE(u‘f)))
+ (a?g + bRALL(uf ))) (a; Julh + bS’Ati(uS’)) + (a§2>u§2) + bé?%AtE(ué”))
+ (agﬁg% + BSAALL(u ))) + (a§1§u31> + b;gmuug“)) + (a?%uff + bé?%AtL(ué”))
+ (af%us” + BRAL W) ) + (affuf? + viRAL ),
u"tt = (a%u + bgogAtL ) (a 9u11) +b 1)AtL( (1))) + (a%uf + bfs),Atz(uf)))
(a9 + KAL)+ (s30) + SBTA) + (o? + IAT)
+ (agigug?’) + bg?’gAtL(uf))) + (ag}gug” + bgngtZ(ugl))) + (a?guﬁf) + béQgAtL(ugf)))
+ (af9us? + o atL @) + (afgul” + o AtLw)) + (afuf? + b AtL@W)),

with the coefficients a\/), and b}, given by (4.3), (4.6), (4.9), (4.12), (4.16), (4.20), (4.24), (4.29),
(4.34), and

ad] =0.2505, all) =0.2506, all}=0.2505, ol =0.1288,
aly =0.1206, al}=0.2805, af)=0.0650, aof) =0.0721,
af) =0.1273, o’} =0.0642, o)) =0.1162, of) =0.2689,
o = 05507, ol =0.1061, ol =0.2015, B =0.0751

31 =Y »  Gga =V » (33 =0 v P31 =0 ;
B39 =0.2270, A5 =0.1554, af] = 0.2758, al’) = 0.0243,
af) = 02882, al’)=0.0388, BY)=0.0666, G =0.1137,

(4.39)
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%) =0.0901, af] =0.1384, af) = 0.0464, a§3§ = 0.0160,

afj}l =0.1188, o) =0.2048, % =0.0312, B =0.0589,

B0 = 00356, o) =0.7232, af') =0.2164, o} =0.0473,

A =0.1778, B =04305, B3 =0.0348, ~{) =0.0224,

e = 01321, ) = 0.0104, aﬁf{ =0.3139, ag; = 0.0000,

o) =0.2877, o) =0.0386, G =0.1169, B =0.1002,
(%) =0.0910, %) =0.0387, ~{) =0.0539, 713 =0.0232,

af) = 0.2040, agg = 0.0315, agg =0.0673, o) =0.1130,

oy =0.2507, B =0.0691, B =0.0653, B =0.0595,

A =0.0168, 7)) =0.0362, %) =0.0160, 6; =0.7043,

62 =1.0000, 63 =0.6622, 64 =1.0000, 05 =0.6388, O =0.9581.

The CFL coefficient for this scheme is ¢ = 1.2592. Therefore, we have proved the following
result.

Theorem 4.1. The fourth-order DC scheme (4.38)-(4.39) is SSP under the time step restric-
tion (1.8) with the CFL coefficient ¢ = 1.2592.

The optimal scheme (4.38)-(4.39) needs 21 evaluations of L or L. We can also obtain a
fourth-order SSP DC scheme with 19 evaluations of L or E, however the CFL coefficient is
only ¢ = 0.6775, hence it is much less efficient than the scheme (4.38)-(4.39). For the original
spectral deferred correction scheme in [2, 8] corresponding to 1 = 0y = 03 = 0, = 05 = 0 = 1,
we can obtain a SSP scheme (4.38) with different choices of parameters than those in (4.39),
with 21 evaluations of L or L and a CFL coefficient of ¢ = 0.9463. This is again much less
efficient than the scheme (4.38)-(4.39). We do not list the details of these schemes to save space.
Finally, when 65 = 6 = 0, we do not need to evaluate ufll) and ufl ), leading to the following
scheme:

u —

uf) + ’yOAtL(uf)),

5
@ - \/_AtL(u(l)),

)

"))+
+ AL (uf
)

uf? =u" + 0 AtL(u"), uy? +

Ugl) = ( (O) u" + b1OiAtL 1 1“1 b§11AtL( (1))) + (afiu?) + bﬁAtz(UEQ)))

+ (af}uf® ™).
0L ) + (o)

a\Ju" Bl +o3atLw)) + (aful? +bBatL )
Pt + oA () + (ahul” + AL () |

_|_

)
a
us? = (%™ + b} AtL(u )) + (aglgu§1> bgngtL(ugﬂ)) + (aﬁuﬁ” bngtL(uf)))

(a Qul? 4 BAAL ) + (o 5 BIAEE) + (o2l BN ),

_|_

O+ b GAL ™)) + (aful

B 4 b AL (u ‘3))) + (agﬁu‘;) + bgﬁAtL(u‘;))) + ( Clul + b AL (u (2)))

+ bf}lAtz(ugl))) + (a(auf) +b 2)AﬁL(uEQ)))
a i
)
2,4U

§ AL ws)),
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u$? = (a(o)u” + bgogAtE(u")) + (aglg Mo ALL(u (1))) + ( Au® 4 bngtZ(uf)))

+ (af%u® + o atL ) + (afhus? + AL W) ) + (af2ul? + bBALL ()

uf + AL () + (aful? + iBAcL(ul)),

N2

uf? = (afum + 0 AtL (™)) + (alful” + o AtL () +

+ o+

n+1

g
I

n
a®u™ + b AtL(u )) (a Dt AL (ul! )
+ (afuf? +oatLw®)) +
+ 9“23) + b235)aAtL( ¢ ))> +
"

3 3
(2 + 631,

+(
+ (053
(%) (o
(al %l + BT ) + (abfhul? + AT ) +
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with the coefficients a(,l and b( ,)g given by (4.3), (4.6), (4.9), (4.12), (4.16), (4.20), (4.34), and

ad] =0.2266, all) =0.2267, all} = 0.2259,
a) =0.1602, b =02130, of) =0.1227,
afy =0.1409, o’} =0.1200, ab’) =0.0911,
ag) = 0.6771, aglg =0.1652, al'} = 0.0625,
() =0.2362, [ = 0.1739, a?{ = 0.1772,
af) =0.2395, o) =0.0322, G5 =0.0457,
(%) = 0.0567, af] =0.1469, af’) =0.1162,
o) =0.0010, o} =0.2032, ) =0.0287,
B5) = 00319, of] =0.2821, af’) =0.2265,
%) =0.0745, ) =0.1062, A7) = 0.0999,
v =0.0381, 4 = 0.0203,
6, = 0.8523, 0 =1.0000, 5= 0.8972,

a’) = 0.1108,
ay) = 0.0705,
i) = 0.2797,
A5 = 0.0923,
aly = 0.1370,
B33 = 0.0724,
al’} = 0.0609,

(%) = 0.0583,
af’) = 0.4054,
2% = 0.0146,

04 = 1.0000.

(4.41)

The CFL coefficient for the SSP scheme (4.40)-(4.41) is ¢ = 1.0319, and it has 17 evaluations of
L or L. Tt is therefore slightly more efficient than the scheme (4.38)-(4.39). We could also reduce
the number of L or L evaluations to 16, however the CFL coefficient reduces to ¢ = 0.6775,

which is not impressive at all.

Remark 4.1. Our analysis is based on the choice of the Chebyshev Gauss-Lobatto nodes as
the subgrid points inside the interval [t",#"*1]. We could also perform an analysis for the more
general class of the fourth-order DC scheme in which the subgrid points are placed arbitrarily
subject to a symmetry constraint. We have performed this analysis for the simple case of 8 = 0
for all k£, and have failed to find a better scheme in terms of the SSP property. We will not

present the details here to save space.
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5. A Numerical Example

In this section, we perform a numerical study to assess the performance of the DC time
discretizations, coupled with the fifth-order weighted essentially non-oscillatory (WENO) finite
difference spatial operator with a Lax-Friedrichs flux splitting [7], to solve the following Burgers

equation
u2
U + 7 =0, —-1<z<1, (5.1)
with the initial condition
1 2
u(z,0) = 3 + gsin(mc) (5.2)

and a periodic boundary condition. The exact solution is smooth up to ¢t = 1.5/7, then it
develops a moving shock which interacts with the rarefaction waves. We use the WENO spatial
operator, rather than the TVD spatial operator, since the former gives better accuracy and is
used more often in applications, even though the latter fits better the theoretical framework of
this paper, being rigorously satisfying the TVD property (1.5) for the total variation semi-norm.
In Table 5.1 we list the L' errors and the numerical orders of accuracy, at the time ¢ = 0.2
when the solution is still smooth. We compute with the third- and fourth-order SSP DC schemes
(3.22)-(3.23) and (4.38)-(4.39), with the correct incorporation of the operator L, and with the
original third- and fourth-order DC schemes (3.1) and (4.1), using the same values of 6 but
without using the operator L. For this test we take the CFL number to be 0.6, that is
0.6. (5.3)

n —

mjax|uj N

This choice is based on the heuristic argument that the spatial WENO operator is a high-order

generalization of the second-order generalized MUSCL scheme [9], which is TVD for first-order

Euler forward time discretization under the CFL condition max; [u}|At/Az = 0.5. We clearly

observe in Table 5.1 that the designed order of accuracy is achieved or exceeded. The other

SSP schemes in Sections 3 and 4 yield similar errors. We do not present their results in order
to save space.

Table 5.1: L' errors and numerical orders of accuracy. Burgers equation with the initial condition
(5.2). t =0.2.

Number of DC3 SSP DC3 DC4 SSP DC4

cells L' error  order | L' error  order | L' error  order | L' error order
20 9.36E-4 - 1.27E-3 - 9.20E-4 - 1.35E-3 -

40 4.78E-5 4.29 6.62E-5 4.26 4.27E-5 4.43 6.46E-5 4.39
80 2.16E-6 4.47 2.82E-6 4.55 1.29E-6 5.05 2.11E-6 4.94
160 1.81E-7 3.58 2.04E-7 3.79 5.38E-8 4.58 9.31E-8 4.50
320 2.02E-8 3.16 2.07E-8 3.30 1.81E-9 4.89 3.21E-9 4.86
640 2.48E-9 3.03 2.49E-9 3.06 | 4.40E-11 5.36 | 7.62E-11  5.40

When t = 0.6, the discontinuity has already appeared. We plot, in Fig. 5.1, the solution
obtained with the third and fourth order regular DC schemes (3.1) and (4.1), and SSP DC
schemes (3.22)-(3.23) and (4.38)-(4.39), using the CFL condition (5.3) with N = 40 equally
spaced grid points. We can see that the numerical solutions are indeed non-oscillatory. It
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Fig. 5.1. Burgers equation with the initial condition (5.2). ¢ = 0.6. N = 40 equally spaced grid points.
CFL number 0.6. Left: third-order DC schemes; right: fourth-order DC schemes. Solid line: the exact
solution. Circles: SSP DC schemes. Crosses: regular DC schemes.
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Fig. 5.2. Burgers equation with the initial condition (5.2). t = 2.0. N = 160 equally spaced grid points.
L' errors (in logarithmic scale) versus the CFL number. Solid lines: regular DC schemes; dashed lines:
SSP DC schemes. Left: third-order schemes; right: fourth-order schemes.

seems that for this test, the regular DC schemes without using the operator L also produce
non-oscillatory results for the CFL condition (5.3).

Finally, we would like to numerically assess how large the CFL number we can take and still
maintain stability. We compute using both the third- and fourth-order SSP DC schemes (3.22)-
(3.23) and (4.38)-(4.39), and the original third- and fourth-order DC schemes (3.1) and (4.1)
using the same values of 6, but without using the operator L, to t = 2, with N = 160 equally
spaced grid points, with an ever increasing CFL number. In Fig. 5.2, we plot the L' errors of
the numerical solution versus the CFL number for the third-order (left) and fourth-order (right)
schemes. We observe that the SSP DC schemes are indeed stable for larger CFL numbers than
the corresponding regular DC schemes, and the CFL numbers for stability are much larger than
the theoretically predicted values in Theorems 3.1 and 4.1. This gap between the theoretically
predicted bound for the CFL number and the numerically allowed value might become smaller
for more demanding test cases, but we will not perform such exhaustive numerical tests in this
paper. The theoretically predicted bound can serve as a safety net for guaranteed stability.
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6. Concluding Remarks

We have studied the strong stability preserving (SSP) property of the second-, third- and
fourth-order deferred correction (DC) time discretizations. The technique of the analysis can
also be applied in principle to higher-order DC methods, although the algebra becomes more
complicated. It seems that the DC methods do not have as large CFL coefficients as the Runge-
Kutta methods for the SSP property. However, since the DC methods can be easily designed
for arbitrary high-order accuracy, they have a good application potential and the analysis for
their SSP property will be useful for their application to solve method of lines schemes for
hyperbolic conservation laws.
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