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Abstract

Digital inpainting is a fundamental problem in image processing and many variational

models for this problem have appeared recently in the literature. Among them are the very

successfully Total Variation (TV) model [11] designed for local inpainting and its improved

version for large scale inpainting: the Curvature-Driven Diffusion (CDD) model [10]. For

the above two models, their associated Euler Lagrange equations are highly nonlinear par-

tial differential equations. For the TV model there exists a relatively fast and easy to

implement fixed point method, so adapting the multigrid method of [24] to here is immedi-

ate. For the CDD model however, so far only the well known but usually very slow explicit

time marching method has been reported and we explain why the implementation of a

fixed point method for the CDD model is not straightforward. Consequently the multigrid

method as in [Savage and Chen, Int. J. Comput. Math., 82 (2005), pp. 1001-1015] will

not work here. This fact represents a strong limitation to the range of applications of this

model since usually fast solutions are expected. In this paper, we introduce a modification

designed to enable a fixed point method to work and to preserve the features of the orig-

inal CDD model. As a result, a fast and efficient multigrid method is developed for the

modified model. Numerical experiments are presented to show the very good performance

of the fast algorithm.

Mathematics subject classification: 68U10, 65F10, 65K10.
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1. Introduction

Image inpainting has been defined as the process of reconstituting the missing or damaged

portions of an image, in order to make it more legible and to restore its unity. The aim of

inpainting is then to modify an image in a way that is non-detectable for an observer who does

not know the original image [2].

There are a variety of reasons why images can have damaged parts, for instance because of

some physical degradation like aging, weather or intentional scratching. Not only that, we also

would like to recover parts of objects of an image occluded by other objects or to reconstruct

parts that have been missing due to digital communication processes. We can imagine a number

of applications of this technique: among the most known are the restoration of old pictures

with scratches or missing patches [2], text removal, digital zooming and superresolution [11],

error concealment [14], disocclusion in computer vision, X-Ray CT artifacts reduction [18],

and the long list continues. Inpainting techniques deal with these kinds of problems trying
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to reconstruct in the best possible way the missing or damaged parts of an image from the

available information.

The mathematical interest in this field became increasingly active in the last decade since

the very first works on image interpolation by Mumford, Nitzberg and Shiota [22], Masnou and

Morel [21] and Caselles, Morel and Sbert [5]. However it was the pioneering work of Bertalmio et

al [2] who proposed an algorithm to imitate the work of inpainting artists who manually restore

old damaged pictures which mainly motivated all the subsequent research in this field [11, 12].

This algorithm cleverly transports a smoothness image measure (namely the Laplacian of the

image) along the level lines (contours of the same image intensity) directed into the inpainting

domain; in their paper, they also showed that some intermediate steps of anisotropic diffusion

are necessary to avoid blurring of edges. This algorithm was created mostly intuitively but later

on turned out to be closely related to the Navier-Stokes equation, as showed by Bertozzi et al ;

see [4]. Since then, many other authors have proposed different models for digital inpainting.

Chan and Shen [11] introduced the Total Variation (TV) model for local inpainting based

on the celebrated total variation based image denoising model of Rudin, Osher and Fatemi [23].

Later on the same authors modified this model to improve its performance for large scale in-

painting, and created the so-called Curvature-Driven Diffusion (CDD) model [10]. Furthermore

they, together with Kang, introduced a higher order variational model [9] based on the Euler’s

elastica which connects the level lines by using Euler elastica curves [19] instead of using straight

lines as the TV model does. Unfortunately for the latter two models there appear to exist no

fast methods to find the numerical solution. The aim of this paper is to develop a fast multigrid

algorithm for the CDD model.

A related inpainting model was proposed by Esedoglu and Shen [16] and is based on the

very successfully Mumford-Shah image segmentation model. This model is also good for local

inpainting but shares the same problem as the TV model in that it cannot reconnect separated

parts of broken objects far apart. To fix this problem, the same authors of [16] proposed the

Mumford-Shah-Euler inpainting model which in the same fashion of the Euler’s elastica model

uses the information encoded in the curvature to reconnect smoothly the level lines. More

recently, in separate works, Bertozzi, Esedoglu and Gillete [3] proposed a model to inpaint

binary images based on the Cahn-Hilliard equation and Grossauer and Scherzer [17] proposed

a model based on the complex Ginzburg-Landau equation. It remains to develop fast multigrid

methods for these models.

Each one of the above models has its own particular features which may not suit all applica-

tions. However as rightly remarked in [13] one of the most interesting open problems in digital

inpainting (whatever the model) is the fast and efficient digital realization. The new multigrid

method for the CDD model is our first step in this direction.

We remark that measuring the quality of restoration is non-trivial as physical perceptions

can be different and the ‘true’ solutions may not be unique [12]. In our tests, we have chosen

one perception as the true solution.

The rest of this paper is organized as follows. Section 2 introduces the image inpainting

problem and two variational models, followed by the review of a commonly-used numerical

method in Section 3. Section 4 describes first the modified CDD model and then the framework

of a nonlinear multigrid method with emphasis on two smoothers, global and local. A local

Fourier analysis is shown to give an indication of the effectiveness of both smoothers. Finally

Section 5 presents some testing results illustrating the effectiveness of the modified model and

the associated multigrid method.
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2. Problem Formulation and Variational Models

Given an image z = z(x, y) defined on a domain Ω ∈ ℜ2 and one subset D ⊂ Ω where

the pixel values of z are missing or damaged due to some reason as illustrated in Figure 2.1.

The typical inpainting problem is to try to reconstruct the values of z in D from the available

information on Ω\D which may contain noise. The subset D which is known as the inpainting

domain may have complicated topology and be not necessarily connected.

Fig. 2.1. Illustration of a typical inpainting problem

2.1. The total variation model

In this section we review very briefly the TV model [11], which was constructed based on

three principles that a good inpainting model must satisfy. These are: Locality meaning that to

carry out the inpainting process only the information surrounding the inpainting domain must

be used, Restoration of narrow edges meaning that the model must be able to reconstruct the

missing parts of the edges which give the most visually information in an image, and Robustness

to noise meaning that it must get rid of any noise present and restore the missing part.

Assume that u = u(x, y) and η = η(x, y) are respectively the true image and the unknown

additive Gaussian noise satisfying z = u+ η in Ω\D. Following Rudin, Osher and Fatemi [23],

the TV inpainting model is as follows

min
u

∫

Ω

|∇u| dxdy +
λ

2

∫

Ω\D

(u − z)2 dxdy. (2.1)

Although direct minimization ideas [6, 7] could be applied, so far the above minimization is

mainly solved via its associated Euler-Lagrange equation:

∇ ·

(

∇u

|∇u|

)

+ λE(z − u) = 0 with
∂u

∂~n
= 0 in ∂Ω, (2.2)

where ~n is the unit outward normal on the boundary ∂Ω and λE

λE =

{

λ > 0 (x, y) ∈ Ω\D

0 (x, y) ∈ D .
(2.3)
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In D alone, where λE = 0, equation (2.2) reduces to an ill-conditioned boundary value problem

with non unique solution as it was shown in [5].

To illustrate the virtue and limitations of the TV model we shall present two inpainting

examples. In the top of Figure 2.2, the inpainting domain D represented by the horizontal

noisy bars is relatively small in size compared with the characteristic feature of the image,

therefore the TV model performs very well and carries out a good inpainting. In the bottom of

Figure 2.2, however, D (represented by the noisy triangle) is relatively large and therefore the

TV model gives an unpleasant result.
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Fig. 2.2. On one hand, at the top, we show a TV inpainting satisfying the connectivity principle [10,11].

On the other hand, at the bottom, one that does not satisfy it

2.2. A curvature-driven diffusion model

The CDD model which we review in this section was designed to correct the inability of the

TV model in reconnecting separated parts of broken objects far apart.

Looking for a solution to this problem, Chan and Shen [10] realized that in the TV model

the diffusion coefficient given by D̂ = 1
|∇u| only depends on the contrast or strength of the

level lines and it does not depend on the geometric information of the level lines themselves.

They found that the curvature κ = κ(x, y) defined by κ = ▽ · ∇u
|∇u| could be used to modify the

diffusion coefficient D̂ by introducing a function g = g(|κ|) within it. This way the geometric
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information encoded in κ is used to strengthen the diffusion coefficient where necessary. The

new diffusion coefficient D̂ is then given by

D̂ =
g(|κ|)

|∇u|
, with g(s) =







0 s = 0

∞ s =∞

> 0, 0 < s <∞.

(2.4)

On one hand, the choice of g(∞) =∞ was selected to take advantage of those points with

very high or infinity curvature and use them to encourage reconnection by increasing D̂ as much

as possible.

On the other hand, the choice of g(0) = 0 is to avoid the CDD model degenerating to the TV

model. According to Chan and Shen the choice of g(0) = a 6= 0 could endanger the connectivity

principle, see [10]. They suggested [10]

g(s) = sp, with s > 0, p ≥ 1. (2.5)

We shall find another way to satisfy the connectivity principle by allowing g(0) 6= 0 in §4.

To get rid of possible noise present on the initial image which could be propagated to the

interior of the inpainting domain, a fidelity term is used as in the TV model. Thus, by defining

the vector field V =
〈

V 1, V 2
〉

by V = G ∇u
|∇u| with G = G[(x, y), |κ|]

G =

{

1 (x, y) ∈ Ω\D

|κ|p (x, y) ∈ D,
(2.6)

the CDD scheme is to solve the following third order nonlinear equation for u:

∇ · V + λE(z − u) = 0 with
∂u

∂~n
= 0 in ∂Ω, (2.7)

where ~n and λE are defined as before. Since V contains the term |∇u|−1, to avoid the singularity

at flat regions |∇u|β :=

√

|∇u|
2
+ β is used instead of |∇u|, where β is a small parameter.

Equation (2.7) will become

α∇ · V + χ(z − u) = 0 (2.8)

if we let

α =

{

1
λ in Ω\D

1 in D
and χ =

{

1 in Ω\D

0 in D.

3. Review of Numerical Methods

In this section, we intend to review the state-of-the-art methods for numerically solving the

CDD model. Surprisingly the list is very short and it only has been solved using an explicit

time marching scheme.

3.1. Discretization

We start by discretizing the CDD model (2.7) for a general coefficient G as follows

V 1
i+ 1

2
,j
− V 1

i− 1
2
,j

h
+
V 2

i,j+ 1
2

− V 2
i,j− 1

2

h
+ λE(zi,j − ui,j) = 0. (3.1)
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Fig. 3.1. On the left side an x -half-point and on the right side a y-half-point

The finite difference scheme is illustrated in Figure 3.1. Here we assume h is the stepsize and

the discrete image z ∈ ℜm×n; we shall mainly consider the case of n = m.

Now we have to approximate V 1 and V 2 at the half-points, for instance at (i+ 1
2 , j), ux is

approximated by central differences (ux)i+ 1
2

,j = (ui+1,j −ui,j)/h, uy by average approximation

(uy)i+ 1
2
,j = (ui+1,j+1 − ui+1,j−1 + ui,j+1 − ui,j−1)/4h

and |∇u|β in the natural way :

1

h

√

(ui+1,j − ui,j)
2

+

(

1

4
(ui+1,j+1 − ui+1,j−1 + ui,j+1 − ui,j−1)

)2

+ h2β (3.2)

Hence Eq.(3.1) becomes

−Gi+ 1
2
,j

(

α(ux)
i+ 1

2
,j

h|∇u|
i+1

2
,j

)

+Gi− 1
2
,j

(

α(ux)
i− 1

2
,j

h|∇u|
i− 1

2
,j

)

−Gi,j+ 1
2

(

α(uy)
i,j+ 1

2

h|∇u|
i,j+ 1

2

)

+Gi,j− 1
2

(

α(uy)
i,j− 1

2

h|∇u|
i,j− 1

2

)

+ χui,j = χzi,j .
(3.3)

To approximate the curvature term κ in G or in (2.4), we use the same idea of the ghost half

points to approximate the divergence operator

κ = ∇ ·
∇u

|∇u|
=

∂

∂x

[

ux

|∇u|

]

+
∂

∂y

[

uy

|∇u|

]

. (3.4)

By using again central differences and averages we have for example at (i+ 1
2 , j) that

h ·
∂

∂x

[

ux

|∇u|

]

i+ 1
2
,j

=

[

ux

|∇u|

]

i+1,j

+

[

ux

|∇u|

]

i,j

. (3.5)

4h ·
∂

∂y

[

uy

|∇u|

]

i+ 1
2
,j

=

[

ux

|∇u|

]

i+1,j+1

−

[

ux

|∇u|

]

i+1,j−1

+

[

ux

|∇u|

]

i,j+1

−

[

ux

|∇u|

]

i,j−1

. (3.6)

Finally (2.7) becomes a system of nonlinear algebraic equations denoted by

ui,jSi,j − ui+1,j

(

Ci+ 1
2
,j

)

− ui−1,j

(

Ci− 1
2
,j

)

− ui,j+1

(

Ci,j+ 1
2

)

− ui,j−1

(

Ci,j− 1
2

)

− χzi,j = 0
(3.7)
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where the new C notation represents the nonlinear terms, for instance,

C(i+ 1
2
,j) =

α G(i+ 1
2

,j)

h|∇u|(i+ 1
2
,j)

(3.8)

(and the notation for C at the other three half-points is similar) and Si,j is defined as

Si,j = Ci+ 1
2
,j + Ci− 1

2
,j + Ci,j+ 1

2
+ Ci,j− 1

2
+ χ. (3.9)

The Neumann’s boundary condition on ∂Ω is determined by the TV denoising model and

therefore is treated as

ui,0 = ui,1, ui,n+1 = ui,n, u0,j = u1,j, um+1,j = um,j. (3.10)

On the other hand, as in [10], the inpainting domain D is mathematically understood as an

open set, i.e., not including its boundary and therefore away from ∂Ω.

3.2. Explicit time marching method

In this method, solving (2.7) indirectly, one looks for the steady-state solution of a parabolic

equation of the form:

∂u

∂t
= r(u), with r(u) = ∇ · V + λE(z − u), (3.11)

or, r(u) = α∇ · V + χ(z − u), with the initial condition u(x, y, 0) = z(x, y) and appropriate

boundary conditions and using an explicit Euler method for the left hand side, we get

uk+1
i,j = uk

i,j − τr(u
k
i,j), k = 0, 1, . . . (3.12)

Here a size restriction on the time step τ = ∆t has to be imposed to guarantee the stability of

the numerical solution. This is the main drawback of the time marching method, the problem

being that due to its high nonlinearity, τ must be chosen very small which implies a large

number of iterations to reach a meaningful solution. One option is to accelerate this method

using the ideas developed in [20]. However, even in that case the cpu-time consumed by the

resulting algorithm is still not appropriate for large images.

3.3. A possible fixed point method

For numerically solving the nonlinear algebraic equation (3.3) at each (i, j) point we fix the

nonlinear terms G and |∇u| at some k -step and solve for the k+1 step as in [1, 27] for other

problems. We have from (3.7) that

uk+1
i,j Si,j − u

k+1
i+1,j

(

Ck
i+ 1

2
,j

)

− uk+1
i−1,j

(

Ck
i− 1

2
,j

)

− uk+1
i,j+1

(

Ck
i,j+ 1

2

)

− uk+1
i,j−1

(

Ck
i,j− 1

2

)

= χzi,j

(3.13)

where similar to before

Ck
(i+ 1

2
,j) =

α Gk
(i+ 1

2
,j)

h|∇uk|(i+ 1
2
,j)

(3.14)

and so on, and

Si,j = Ck
i+ 1

2
,j + Ck

i− 1
2
,j + Ck

i,j+ 1
2

+ Ck
i,j− 1

2

+ χ. (3.15)
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Then such a fixed point method amounts to solving the linear system of (3.13)

A(uk)uk+1 = z, (3.16)

where uk and z are defined as uk = [uk
1,1, u

k
2,1 . . . , u

k
n,1, u

k
1,2, . . . , u

k
n,m] and z = [χz1,1, χz2,1 . . . ,

χzn,1, χz1,2, . . . , χzn,m].

The selection of the diffusion coefficient G in D plays a crucial role on the feasibility of the

implementation of the numerical scheme. According to Chan and Shen [10], on the inpainting

domain, G must obey equations (2.5) and (2.6). Therefore it must be

G =







0 κ = 0,

∞ κ =∞,

|κ|p, 0 < |κ| <∞ with p ≥ 1.

(3.17)

Since we allow G to be 0 when κ = 0, matrix A(uk) is singular i.e. whenever κ = 0 at one

(i, j) pixel of the image then A(uk) losses one degree of its rank. Therefore the fixed point (FP)

method (3.16) does not work for the CDD model with (3.17).

One solution (motivated by numerical consideration) is to modify the above G to Ḡ = G+ǫ,

where ǫ is a small and positive parameter. This idea will be tested shortly.

4. Nonlinear Multigrid for a Modified CDD Model

Multigrid methods (MG) have proved to be very useful when solving many linear (and some

nonlinear) partial differential equations (PDEs) such as those arising from image restoration

problems and others, see [7,8,15,24–26] for successful examples. Usually for a multigrid method

to converge, a suitable smoother is the key and the task of finding one is nontrivial for a nonlinear

problem.

We now proceed to develop a multigrid algorithm for the CDD formulation (2.7):

∇ ·

(

Gi,j
(∇u)i,j

|∇u|i,j

)

+ λE(zi,j − ui,j) = 0. (4.1)

4.1. The generic algorithm

First of all, we start by introducing new notation and rewriting the equation for the purpose

of making it more tractable for computing implementation. Write (4.1) as

(Nu)i,j = −α∇ ·

(

Gi,j
(∇u)i,j

|∇u|i,j

)

+ χui,j = χzi,j, (4.2)

after we have denoted by Nu = χz the main nonlinear operator equation; see (2.8). Since we

have to approximate this equation on grids of different sizes we will denote by Nhuh = χzh the

discrete equation (4.2) defined on the finest grid Ωh of size h and similarly by N2hu2h = χz2h

the same on the coarser grid Ω2h which is obtained by standard coarsening, i.e., the nonlinear

operator N2h which results from defining equation (4.2) on the cell-centered grid Ω2h with grid

spacing 2h. Likewise we can generate a sequence of L coarse levels 2h, 4h, 8h, . . . , 2Lh.

Next we briefly mention the standard intergrid transfer operators. Denote by R2h
h (restric-

tion) and Ih
2h (interpolation) respectively two transfer operators between Ωh and Ω2h which
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on cell-centered grids are defined by the following equations [26]: The Restriction operator is

defined by R2h
h uh = u2h where, 1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2,

(u2h)i,j =
1

4

[

(uh)2i−1,2j−1 + (uh)2i−1,2j + (uh)2i,2j−1 + (uh)2i,2j

]

(4.3)

and the Interpolation operator is defined by Ih
2hu2h = uh where, 1 ≤ i ≤ n/2, 1 ≤ j ≤ m/2,

(uh)2i,2j =
[

9(u2h)i,j + 3[(u2h)i+1,j + (u2h)i,j+1] + (u2h)i+1,j+1

]

/16,

(uh)2i−1,2j =
[

9(u2h)i,j + 3[(u2h)i−1,j + (u2h)i,j+1] + (u2h)i−1,j+1

]

/16,

(uh)2i,2j−1 =
[

9(u2h)i,j + 3[(u2h)i+1,j + (u2h)i,j−1] + (u2h)i+1,j−1

]

/16,

(uh)2i−1,2j−1 =
[

9(u2h)i,j + 3[(u2h)i−1,j + (u2h)i,j−1] + (u2h)i−1,j−1

]

/16. (4.4)

P4

DhW \Dh h D2hW \D22h h

a b

c d
e

Fig. 4.1. When applying standard coarsening to Ωh, some points in Ω2h are computed using partial

information coming from Dh and thus we need to include those points in D2h

Finally we discuss how to coarsen the interfaces, unique to inpainting problems. It suffices

to discuss 2 consecutive grids. First define as Dh the inpainting domain in the finest grid Ωh

and D2h is the coarse grid counterpart to be constructed on Ω2h. Basically, Dh is identified

using a binary mask matrix Mh composed of 1’s for points in Dh and 0’s for points in Ωh \Dh.

The question is then how to construct a similar M2h on D2h. A simple way is by restriction

M2h = R2h
h Mh. The problem in doing so is that M2h will have some orphan entries due to the

action of the operator R2h
h on Mh. Those entries precisely identify those interface points in Ω2h

which were not aligned to the coarse grid. In Figure 4.1 we give an example of such a case.

There the points a, b, c, d in Ωh are used to compute the coarse point e in Ω2h, however c and

d belong to the inpainting domain Dh and therefore e will be an orphan. For that reason we

decided to include such type of points into the inpainting domainD2h by setting their respective

entries in M2h to 1 (i.e., for M2h to take all orphan points if any). The problem in applying

this strategy is that the mask starts expanding when moving in the coarsest direction and

eventually (depending on the size and topology of Dh) may reach the physical boundary ∂Ω at

some coarse level; in other cases where Dh is disconnected some of its disconnected parts can

merge themselves as well. Clearly for inpainting we have a very difficult interpolation problem

and it is by no means an easy task to approximate the error at coarse levels. Furthermore we

observed that for some problems additional errors were incorporated by coarse levels. Hence

we decided to stop the mask generation at the level for which the mask is just one pixel away
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from the boundary. This decision obviously prevents using those coarsest levels with only a few

points; however this was the one that worked best.

We have also tried another strategy based on the idea of trying to reach the coarsest level

using an adaptive mask generation. In this strategy the mask first starts growing till close to

the boundary (like in our above idea) but then starts contracting or at least keeping one pixel

away from the boundary. Unfortunately, this seemingly reasonable idea gave worst results than

the above one (particularly for inpainting binary images).

To proceed, denote by FPS a general fixed-point type smoother; we shall define it shortly.

Now we state our V-cycling nonlinear MG below, meaning that just one recursive call to the

algorithm is made on each level to approximately solve a coarse grid problem.

Algorithm 1 (Nonlinear Multigrid Method)

Select an initial guess uh on the finest grid h.

Set k = 0 and err = tol+1.

While err < tol

uk+1
h ← FAS(uk

h, N
k
h , zh,Mh, ν0, ν1, ν2, gsiter)

err = ‖uk+1
h − uk

h‖2, k = k + 1

end

Here the full approximation scheme (FAS ) algorithm is defined [24, 26] recursively as follows:

Algorithm 2 (FAS) uh ← FAS(uh, Nh, zh,Mh, ν0, ν1, ν2, gsiter)

1. If Ωh = coarsest grid, solve Nhuh = χzh accurately (i.e. ν0 iterations by FPS) and

return Else continue with step 2.

2. Pre-smoothing: For l = 1 to ν1, uh ← FPS(uh, zh, gsiter,Mh).

3. Restrict to the coarse grid, M2h ← R2h
h Mh and u2h ← R2h

h uh.

4. Set the initial solution for the next level, ū2h ← u2h.

5. Compute the new right hand side χz2h ← R2h
h (χzh −Nhuh) +N2hu2h.

6. Implement u2h ← FAS2h(u2h, N2h, z2h,M2h, ν0, ν1, ν2, gsiter).

7. Add the residual correction, uh ← uh + Ih
2h(u2h − ū2h).

8. Post-smoothing: For l = 1 to ν2, uh ← FPS(uh, zh, gsiter,Mh).

Here gsiter represents the number of inner Gauss-Seidel iterations at each pre or post-

smoothing FPS step.

4.2. The modified CDD and the FP smoother

Although the above algorithm appears applicable to solving (4.2), it requires a suitable

smoother FPS. To this end, we have tried various choices of FPS but failed to find a working

smoother; the fixed-point method from §3.3 cannot be used as an efficient smoother.
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In trying to find a smoother that would work with Algorithm 2, our idea is to address

the problem described in §3.3 by overcoming the singularity associated with the FP method.

Motivated by the Euler’s Elastica model [9], we decided to introduce two positive parameters

a and b in the function g. Specifically our proposal for the diffusion coefficient G is

G =







a κ = 0

∞ κ =∞

a+ b|κ|p, with p ≥ 1 and 0 < |κ| <∞.

(4.5)

For a general p, our modified CDD takes the form

∇ · (a+ b|κ|p)
∇u

|∇u|
+ λE(z − u) = 0. (4.6)

Since κ → 0 in flatter regions, it is speculated in [10] that the connectivity principle is put at

risk if the diffusion coefficient is not zero. We shall demonstrate via our numerical experiments

that for the modified model (4.6) as long as a is sufficiently small we can satisfy the connectivity

principle, i.e., reconnect the contours across large distances. However if we select a too small

compared with b we introduce instability to the linear system (3.7). Experimentally we found

that 20 < b
a < 250 works well.

Note that, setting b = 1 and a = 0 reduces the modified model to the original CDD

model [10]. On the other hand, setting a = 1 and b = 0 transforms the modified model to

the TV model [11]. Therefore our inpainting model (4.6) is half way between the CDD model

and the TV model. Moreover, as we shall see, it inherits the virtue of the original CDD model

in reconstructing large scale missing parts while sharing with the TV inpainting model the

advantage of having a working fixed point (FP) method which in turn can provide a fast and

efficient smoother for a multilevel method.

4.2.1. A global smoother

Now we can similarly consider a fixed point method for numerically solving the discretized

equation of (4.6) at each (i, j) point. To do this we fix the nonlinear terms G and |∇u| at the

current k -step and solve for the new k+1 step. Thus we again obtain that

uk+1
i,j Si,j − u

k+1
i+1,j

(

Ck
i+ 1

2
,j

)

− uk+1
i−1,j

(

Ck
i− 1

2
,j

)

− uk+1
i,j+1

(

Ck
i,j+ 1

2

)

− uk+1
i,j−1

(

Ck
i,j− 1

2

)

= χzi,j

(4.7)

where

Ck
(i+ 1

2
,j) =

α Gk
(i+ 1

2
,j)

h|∇uk|(i+ 1
2

,j)

,

Si,j = Ck
i+ 1

2
,j + Ck

i− 1
2

,j + Ck
i,j+ 1

2

+ Ck
i,j− 1

2

+ χ, (4.8)

whose corresponding linear system A(uk)uk+1 = χz is now never singular and hence solvable.

We can check that in this case A(uk) is a symmetric and sparse block-tridiagonal matrix

with the important feature that it is weakly diagonally dominant. To show this, we can choose

and arbitrary row of it and see that all the ai,j with i 6= j entries but at most four are equal to

zero. The nonzero entries in this row are given by Ck
i+ 1

2
,j
, Ck

i− 1
2
,j
, Ck

i,j+ 1
2

and Ck
i,j− 1

2

respectively
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and all are positive. The diagonal entry ai,i on the other hand is computed using (4.8). Thus,

we have that

ai,i ≥
n
∑

i6=j

|ai,j | in Ω

with strict inequality in Ω\D and therefore A(uk) is weakly diagonally dominant. Furthermore,

because

G ≡ 1 in Ω\D and G = a+ b|κ|p with p ≥ 1 in D

we can deduce by using the Gerschgorin theorem that A(uk) is Positive Semi-Definite.

Therefore, with A(uk) having such a property, we can apply the Gauss-Seidel (GS) iterations

to solve the linear system (4.7):

A(uk)uk+1 = χz.

As a smoother, we shall name this fixed-point method with GS iterations the FPGS smoother,

which can be stated as follows.

Algorithm 3 (FPGS Smoother) uh ← FPGS(uh, zh, gsiter ,Mh)

Choose an initial guess uh.

for k = 1 to gsiter

Apply gsiter Gauss Seidel iterations to the linear system Ah(uk
h)uk+1

h = zh

end

4.2.2. A local smoother

Following from [1, 15, 25] for solving other PDEs, we also considered a local-type fixed point

smoother. The difference of this smoother from the global one is that we apply the relaxation

steps locally. The scheme is the same as that of (4.7) with k representing the kth step. The

idea is to update ui,j with the nonlinear terms Ck fixed at each k local step meaning that when

we apply relaxation to the next (i, j) point, some C nonlinear terms have been updated. We

call this smoother FPLS and is defined as follows:

Algorithm 4 (FPLS Smoother) uh ← FPLS(uh, zh, gsiter ,Mh)

for i = 1 to m

for j = 1 to n

for k = 1 to gsiter

ūh ← uh and update ui,j by solving the linear equation

uk+1
i,j S̄i,j − u

k+1
i+1,j

(

C̄k
i+ 1

2
,j

)

− uk+1
i−1,j

(

C̄k
i− 1

2
,j

)

− uk+1
i,j+1

(

C̄k
i,j+ 1

2

)

− uk+1
i,j−1

(

C̄k
i,j− 1

2

)

= χzi,j

(4.9)

end

end

end

Here C̄k
i,j means Ck evaluated at ūi,j and the same applies to S̄i,j , as in (4.8).
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Test problem
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Fig. 4.2. Test problem.

4.2.3. Use of the smoothers as independent methods

On their own, both smoothers are not always convergent; this situation is different from the

image denoising case [27]. Consider the test problem illustrated at the top of Figure 4.2. In

the middle and at the bottom of the same Figure we show the results obtained from using

FPGS and FPLS as independent methods. The failure of both in trying to solve the problem

is evident. The PSNR measure used is as defined in §5.

However our main interest is not on the convergence of both smoothers but in their smooth-

ing capabilities. In this case as we shall show, FPGS has better smoothing rates than FPLS

and therefore it is our preferred smoother for a nonlinear MG algorithm.

4.2.4. Local Fourier analysis

We just have seen that both FPGS and FPLS are not always convergent. However to be used

in a multigrid algorithm we only need them to reduce (smooth) as much as possible the high

frequency components of the error regardless the overall error itself.

When dealing with nonlinear problems the local Fourier analysis (LFA) can still be used

as a tool to check if a given smoother is effective in reducing the high frequency components;
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see [1, 26]. For simplicity we consider the case of a square image of size m ×m. Let the local

error functions ek+1
i,j and ek

i,j be defined as ek+1
i,j = ui,j − u

k+1
i,j and ek

i,j = ui,j − u
k
i,j . The LFA

involves expanding

e
(k+1)
i,j =

m/2
∑

θ1,θ2=−m/2

ψk+1
θ1,θ2

Bθ1,θ2
(xi, yj),

e
(k)
i,j =

m/2
∑

θ1,θ2=−m/2

ψk
θ1,θ2

Bθ1,θ2
(xi, yj) (4.10)

in Fourier components. Here Bθ1,θ2
(xi, yj) is the general Fourier component defined as

Bθ1,θ2
(xi, yj) = exp

(

iα1
xi

h
+ iα2

yj

h

)

= exp

(

2iθ1iπ

m
+

2iθ2jπ

m

)

(4.11)

with α1 = 2θ1π/m, α2 = 2θ2π/m ∈ [−π, π]. From (4.7) and (4.9) we obtain

−
(

Ci+ 1
2

,j + Ci− 1
2

,j + Ci,j+ 1
2

+ Ci,j− 1
2

)

ek+1
i,j + Ci+ 1

2
,j e

k
i+1,j

+ Ci− 1
2

,j e
k+1
i−1,j + Ci,j+ 1

2
ek

i,j+1 + Ci,j− 1
2
,j e

k+1
i,j−1 = 0.

Therefore the local amplification factor µi,j =
∣

∣

∣
ψk+1

θ1,θ2
/ψk

θ1,θ2

∣

∣

∣
is defined by

µi,j(θ1, θ2) =

∣

∣

∣
Ci+ 1

2
,j e

iα1 + Ci,j+ 1
2
eiα2

∣

∣

∣

∣

∣

∣
Ci+ 1

2
,j + Ci− 1

2
,j + Ci,j+ 1

2
+ Ci,j− 1

2
− Ci− 1

2
,j e

−iα1 − Ci,j− 1
2
e−iα2

∣

∣

∣

. (4.12)

What follows is to compute the nonlinear coefficients C(·,·) at each (i, j) point and find the

maximum for the kth step

µ̄i,j = max
θ1,θ2

µi,j(θ1, θ2)

in the high frequency interval (α1, α2) ∈ [−π, π] \ [−π/2, π/2]. Recall that FPGS and FPLS

smoothers only differ in when to update the C coefficients.

Since our FPGS and FPLS smoothers are linearized at each step, their smoothing rates will

change at every outer iteration. Then we have an m×m rate matrix M̄k, for the kth step, with

entry µ̄i,j representing the local smoothing rates at (i, j) point. Unfortunately, our initial tests

showed that the maximum is close to 1 and yet the practical performance of the smoothers

appears quite good. This prompted us to look for a better explanation.

In order to evaluate their effectiveness, it turned out that the (new) accumulated rate based

on (old) consecutive smoothing rates is well below 1. That is to say, the above maxima are not

achieved at the same location (otherwise LFA is not helpful)! For either smoother, suppose we

have completed K (accumulated) inner relaxation steps. Let M̄k denote the corresponding rate

matrix (for 1 ≤ k ≤ K); then define

µ̂K = max
i,j

(M̄1)i,j(M̄2)i,j · · · (M̄K)i,j (4.13)

as the accumulated smoothing rate of a relaxation step (over K iterations). Clearly this is

a reasonable definition as it takes care of all iterations within a relaxation step; we expect

µ̂K < 1 and of course µ̂K ≪ 1 if the underlying smoother is good. For linear problems, we have

a constant value µ̄i,j = µ̄ so µ̂K = µ̄K .
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Finally for completeness, we shall name the resulting global smoother based on modifying

(3.17) by Ḡ = G+ǫ as FPGS(ǫ). Likewise we shall denote the corresponding multigrid algorithm

based on FPGS(ǫ) as MG(ǫ).

As an example, we present in Table 4.1 the accumulated local smoothing rates computed

for the first five iterations for the test problem of Figure 4.2.

Table 4.1: Illustration of accumulated smoothing rates for FPLS, FPGS and FPGS(ǫ) smoothers

with gsiter = 10 used for all tests. Here F4 means FPGS(10−4) and F8 means FPGS(10−8). Note

K = gsiter ν, where gsiter is the number of inner iterations

Up to outer µ̂K Left bar region µ̂K Right bar region

iterations ν FPGS FPLS F4 F8 FPGS FPLS F4 F8

1 0.5891 0.9620 0.7898 0.7911 0.8354 0.9690 0.8558 0.8568

2 0.5492 0.9448 0.7528 0.7538 0.2567 0.8986 0.7624 0.7651

3 0.5183 0.9333 0.7160 0.7201 0.0420 0.8861 0.7465 0.7506

4 0.4863 0.9327 0.6920 0.6958 0.0037 0.8804 0.6382 0.6337

5 0.3867 0.9320 0.6445 0.6483 0.0016 0.8633 0.5622 0.6216

From Table 4.1 we can argue that FPGS reduces the high frequency modes much faster

than FPLS. Clearly the FPGS(ǫ) method is not as effective. We also tested on other inpaiting

problems with various inpainting domains and noticed a similar behavior; therefore FPGS is

our preferred smoother. Furthermore Table 4.1 also suggests that 3 to 5 fixed point iterations

are sufficient to get an smoothing rate comparable to GS for the Poisson equation [26].

5. Numerical Results

In this section, we shall first give results of five different inpainting problems designed to

test the performance of the multigrid algorithm, as illustrated in Figures 5.1-5.5. We use

the problems in Figures 5.1 and 5.2 (tested in the original CDD paper [10]) to compare the

performance of our MG algorithm with the method used in [10] and the MG(ǫ) method.

To measure the restoration quality, we found it useful to use the Peak-Signal-To-Noise-Ratio

(PSNR) to check how similar two images u and u0 of size m× n are each other. The PSNR is

defined as

PSNR = 20 log10

(

255

RMSE(u, u0)

)

, RMSE(u, u0) =

√

∑

i,j(ui,j − u0
i,j)

2

mn
. (5.1)

The larger a PSNR is, the better is the restored image. In real life situation, such a measure is

not possible because u0 is not known.

In Table 5.1 we show quantitative measure of the PSNR values for the damaged and restored

images, and in Figures 5.1-5.5 the respective images. Here we only used a few MG cycles to

obtain the results. Clearly the restored images are good.

Comparison. We now address the efficiency gains. It turns out that our multigrid al-

gorithm is many magnitudes faster, even for inpainting small images. For instance for the

inpainting problem in Figure 5.1 with only a 128 × 128 image, to reach the same accuracy,

time marching requires 160, 000 iterations and 7380 CPU seconds to converge whilst our MG

only requires 3 V-cycles and 9.6 CPU seconds. Therefore, it is not necessary to do extensive

comparisons.
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Table 5.1: Initial and Final PSNR values after applying the modified CDD algorithm to the problems

presented in this work

Problem Image Size initial PSNR final PSNR

Child, Figure 5.1 128× 128 46 95

Bars, Figure 5.3 512× 512 50 102

Ring, Figure 5.4 512× 512 27 82

Lena, Figure 5.5 512× 512 53 95

Table 5.2: Further improvements of MG results by the FMG and comparisons with MG(ǫ). Here ‘#’

denotes the number of MG cycles and ν the number of smoothing steps per grid needed

Image MG FMG MG(10−4) MG(10−8)

Problem Size ν # CPU ν # CPU ν # CPU ν # CPU

Lena 128 6 2 7 6 1 6 12 2 17 12 2 17

256 8 3 47 8 1 22 15 3 87 15 4 116

512 8 4 290 8 2 159 15 5 635 15 5 640

Bars 128 15 4 79 15 2 12 40 5 71 50 5 81

256 20 6 350 20 3 193 50 7 667 50 8 760

512 20 6 978 20 4 696 50 7 2871 50 8 3304

Ring 128 15 4 61 15 1 16 30 4 69 40 5 96

256 15 5 192 15 1 46 50 6 606 50 8 813

512 15 5 1165 15 1 241 50 7 4151 50 8 4732
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Fig. 5.1. An example of CDD inpainting for scratch removal in a real old-photograph. Notice the big

size of the scratch and the very good reconstruction. The algorithm performed 3 V-cycles in only 9.60

seconds
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Noisy image to be inpainted (SNR=4)
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Fig. 5.2. Our algorithm performs very well at noisy images
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Fig. 5.3. Another example of good reconnection across large distances. Again our MG algorithm

performed very well reconstructing this large image in a reasonable amount of time; see Table 4.1

Full Multigrid and MG(ǫ). We observed that for very large scale inpainting domains

such as those of the ring problem illustrated in Figure 5.4, the rate of convergence of our MG

algorithm is slightly dependent on the initial guess, even though our MG always converges no

matter what the initial guess is. In order to reduce this dependence and to improve even more

the speed of convergence we adopted the Full Multigrid method (FMG) as described in [26].

Indeed, much better results are obtained and can be seen in Table 5.2, where we also give the

results of MG(ǫ). Clearly MG(ǫ) is less efficient than MG and FMG.

6. Conclusions

The original CDD model of [10] improves on the total-variation norm based inpainting

model [11, 12]. The only reported time marching scheme is slow in convergence and therefore

it is only suitable to process small-sized images. Moreover, the nonlinear MG cannot be easily

used to solve the model.
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Fig. 5.4. This experiment is presented to emphasize that the CDD model uses straight lines to reconnect

the level line contours. The experiment is also particularly important to show the performance of our

MG algorithm when an inpainting domain is large
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Fig. 5.5. A practical text removal example. Notice the reconnection of the thin piece of hair (2

pixels-width) initially occluded by the thick letter C (4 pixels-width)

In this paper we developed a fast and efficient nonlinear MG algorithm for solving a modified

CDD model. By first finding out why a fixed-point method is not feasible for the original CDD

model, we then proposed a modified CDD model for which a fixed-point method is feasible

and developed a nonlinear MG for the modified model. A local Fourier analysis shows that

the global smoother is faster than the local smoother. Numerical results confirmed that the

modified model retains the desirable property of the original model in reconnecting the level

lines across large distances, and our multigrid method is very efficient.
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