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Abstract

In this paper, we propose an algorithm for solving nonlinear monotone equations by
combining the limited memory BFGS method (L-BFGS) with a projection method. We
show that the method is globally convergent if the equation involves a Lipschitz continuous
monotone function. We also present some preliminary numerical results.
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1. Introduction

In this paper, we consider the problem of finding a solution of the nonlinear equation

F (x) = 0, (1.1)

where F : Rn → Rn is continuous and monotone. By monotonicity, we mean

〈F (x) − F (y), x − y〉 ≥ 0, ∀x, y ∈ Rn.

Nonlinear monotone equations have strong practical background, which include the subproblems
in the generalized proximal algorithms with Bregman distances [10], the first order necessary
condition of the unconstrained convex optimization problem and the KKT system of the convex
equality constrained convex optimization problem. Some monotone variational inequality prob-
lems can also be converted into nonlinear monotone equations by means of fixed point maps or
normal maps [22].

Among numerous algorithms for solving systems of smooth equations, the Newton method,
quasi-Newton methods, Levenberg-Marquardt method and their variants are particularly useful
because of their fast local convergence property [5, 6, 7, 19]. A general way to enlarge the
convergence domain of the algorithm is to introduce some line search strategy such that the
generated iterates exhibits descent property for some merit function [11]. Solodov and Svaiter
[21] presented a Newton-type algorithm with a hybrid projection method for solving systems
of monotone equations. The algorithm is globally convergent. The study on the globally
convergent quasi-Newton method for solving nonlinear equations is relatively fewer. The major
difficulty is the lack of practical line search strategy. Griewank [8] proposed a globally convergent
Broyden’s method. By using a nonmonotone line search process, Li and Fukushima [13, 14]
proposed a Broyden’s method for solving nonlinear equations and a Gauss-Newton-based BFGS
method for solving symmetric nonlinear equations. Quite recently, Gu, Li, Qi and Zhou [9]
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introduced a norm descent line search technique and proposed a norm descent BFGS method
for solving symmetric equations with global convergence.

A common drawback of the above mentioned quasi-Newton methods is that they need to
compute and store an matrix at each iteration. This is computationally costly for large scale
problems. To overcome this drawback, Nocedal [18] proposed a limited memory BFGS method
(L-BFGS) for unconstrained optimization problems. Numerical results [4, 16] showed that the
L-BFGS method is very competitive due to its low storage. This technique has received much
attention in recent years, see, e.g., [1, 2, 3, 12, 17, 23] and references therein. However, as far
as we know, there seems no related work for solving nonlinear equations. The purpose of this
paper is to develop a L-BFGS method for solving nonlinear equations with monotone functions.
The method can be regarded as a combination of the L-BFGS method [18] and the projection
method [21]. Under some mild assumptions, we prove the global convergence of the method.

In Section 2, we state the steps of the method. In Section 3, we establish the global
convergence of the method. In Section 4, we report some preliminary numerical results.

2. Algorithm

In this section, we describe the details of the method. First, we briefly review the L-BFGS
method for solving the unconstrained optimization problem:

min f(x), x ∈ Rn,

where f : Rn → R is continuously differentiable. We denote by ∇f(x) the gradient of f at x.
The steps of the L-BFGS method [16] for solving the unconstrained optimization problem are
stated as follows.
Algorithm 1 (L-BFGS algorithm).

Step 1: Given initial point x0 ∈ Rn, integer m and a symmetric positive definite matrix
B0. Let k := 0.

Step 2: Compute dk by Bkdk = −∇f(xk), xk+1 = xk + αkdk, where αk satisfies some
line search.

Step 3: Let m̃ = min{k + 1, m}. Choose a symmetric and positive definite matrix B
(0)
k

and a set of increasing integers Lk = {j0, · · · , jm̃−1} ⊆ {0, · · · , k}. Update B
(0)
k m̃ times

using the pairs {yjl, sjl}m̃−1
l=0 , i.e., for l = 0, · · · , m̃ − 1 compute

B
(l+1)
k = B

(l)
k − B

(l)
k sjls

T
jlB

(l)
k

sT
jlB

(l)
k sjl

+
yjly

T
jl

yT
jlsjl

,

where sk = xk+1 − xk and yk = ∇f(xk+1) −∇f(xk). Set Bk+1 = B
(m̃)
k and k := k + 1.

Go to Step 2.

There are many possible choice of B
(0)
k in Step 3, for example, we can let B

(0)
k = B0.

To describe our method, let us recall the projection method [21] for solving the nonlinear
monotone equation (1.1). By the monotonicity of F , we have

〈F (zk), x̄ − zk〉 ≤ 0

for any x̄ satisfying F (x̄) = 0. Suppose we have obtained a direction dk. By performing some
kind of line search procedure along the direction dk, a point zk = xk + αkdk can be computed
such that

〈F (zk), xk − zk〉 > 0.
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Thus the hyperplane
Hk = {x ∈ Rn|〈F (zk), x − zk〉 = 0}

strictly separates the current iterate xk from zeros of the equation (1.1). Once the separating
hyperplane is obtained, the next iterate xk+1 is computed by projecting xk onto the hyperplane.

By means of the technique of L-BFGS method and the projection method, we state our
algorithm as follows.
Algorithm 2.

Step 0: Given initial point x0 ∈ Rn, integer m > 0 and constants β ∈ (0, 1), σ ∈ (0, 1)
and ε > 0. Choose B0 = I (the identity matrix). Let k := 0.

Step 1: Compute dk by

Bkdk = −F (xk). (2.1)

Stop if dk = 0.

Step 2: Determine steplength αk = βmk such that mk is the smallest nonnegative integer
m satisfying

−〈F (xk + βmdk), dk〉 ≥ σβm‖dk‖2. (2.2)

Let zk = xk + αkdk.

Step 3: Compute

xk+1 = xk − 〈F (zk), xk − zk〉
‖F (zk)‖2

F (zk). (2.3)

Step 4: Compute Bk+1 by the following modified L-BFGS update process. Let m̃ =
min{k + 1, m}. Choose B

(0)
k = B0 = I. Choose a set of increasing integers Lk =

{j0, · · · , jm̃−1} ⊆ {0, · · · , k}. Update B
(0)
k m̃ times using the pairs {yjl, sjl}m̃−1

l=0 , i.e., for
l = 0, · · · , m̃ − 1, update

B
(l+1)
k+1 =

⎧⎨
⎩

B
(l)
k − B

(l)
k

sjls
T
jlB

(l)
k

sT
jl

B
(l)
k

sjl

+
yjly

T
jl

yT
jl

sjl
, if

yT
jlsjl

‖sjl‖2 ≥ ε,

B
(l)
k , otherwise,

(2.4)

where sk = xk+1 − xk and yk = F (xk+1) − F (xk). Set Bk+1 = B
(m̃)
k , k := k + 1. Go to

Step 1.

Remarks.

(i) In updating B
(l)
k , we used the cautious update rule proposed by Li and Fukushima [15].

An advantage of this update is that the generated matrices Bk are symmetric and positive
definite for all k.

(ii) Let H
(l+1)
k = (B(l+1)

k )−1, θ
(l)
k = 1/yT

jlsjl and V
(l)
k = I − θ

(l)
k yjls

T
jl. It is not difficult to

derive the inverse update formula of (2.4):

H
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⎧⎨
⎩

V
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T
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H
(l)
k , otherwise.
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If we assume that F is Lipschitz continuous, i.e., there exists a constant L > 0 such that

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn, (2.5)

then it is not difficult to show that the sequences {‖Bk‖} and {‖B−1
k ‖} are bounded.

That is, there exists a constant µ > 0, such that

‖Bk‖ ≤ µ, ‖B−1
k ‖ ≤ µ. (2.6)

(iii) In Algorithm 2, we can get dk by computing HkF (xk) which can be obtained by a recursive
formula described in [18]. So if B

(0)
k = I, we need not store Bk or compute Hk directly.

(iv) When m = 1, the L-BFGS method reduces to the memoryless BFGS method [20] with
the cautious update rule.

(v) The line search (2.2) is a little different from that of [21]. It is not difficult to see from
(ii) that it is well-defined.

3. Convergence Property

In order to obtain global convergence, we need the following lemma [21].

Lemma 3.1. Let F be monotone and assume x, y ∈ Rn satisfy 〈F (y), x − y〉 > 0. Let

x+ = x − 〈F (y), x − y〉
‖F (y)‖2

F (y).

Then for any x̄ ∈ Rn satisfying F (x̄) = 0, it holds that

‖x+ − x̄‖2 ≤ ‖x − x̄‖2 − ‖x+ − x‖2.

Now we establish the convergence theorem for Algorithm 2.

Theorem 3.2. Suppose that F is monotone and Lipschitz continuous. Let {xk} be generated
by Algorithm 2. Suppose further that the solution set of (1.1) is not empty. Then for any x̄
satisfying F (x̄) = 0, it holds that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2.

In particular, {xk} is bounded. Furthermore, it holds that either {xk} is finite and the last
iterate is a solution, or the sequence is infinite and lim

k→∞
‖xk+1 − xk‖ = 0. Moreover, {xk}

converges to some x̄ satisfying F (x̄) = 0.

Proof. We first note that if the algorithm terminates at some iteration k, then dk = 0. By
the positive definiteness of Bk, we have F (xk) = 0. This means that xk is a solution of (1.1).

Suppose that dk �= 0 for all k. Then an infinite {xk} is generated. It follows from (2.2) that

〈F (zk), xk − zk〉 = −αk〈F (zk), dk〉 ≥ σα2
k‖dk‖2 > 0. (3.1)

Let x̄ be any point such that F (x̄) = 0. By (2.3), (3.1) and Lemma 3.1, we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2. (3.2)

Hence the sequence {‖xk − x̄‖} is decreasing and convergent. In particular, the sequence {xk}
is bounded, and

lim
k→∞

‖xk+1 − xk‖ = 0. (3.3)
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By (2.1) and (2.6), it holds that {dk} is bounded and so is {zk}. Since F is continuous,
there exists a constant C > 0 such that ‖F (zk)‖ ≤ C.

We obtain from (2.3) and (3.1) that

‖xk+1 − xk‖ =
〈F (zk), xk − zk〉

‖F (zk)‖ ≥ σ

C
α2

k‖dk‖2.

From the last inequality and (3.3), we get

lim
k→∞

αk‖dk‖ = 0. (3.4)

If lim infk→∞ ‖dk‖ = 0, it follows from (2.1) and (2.6) that lim infk→∞ ‖F (xk)‖ = 0. By
the continuity of F and the boundedness of {xk}, it is clear that the sequence {xk} has some
accumulation point x̂ such that F (x̂) = 0. We also have from (3.2) that the sequence {‖xk− x̂‖}
converges. Therefore, {xk} converges to x̂.

If lim infk→∞ ‖dk‖ > 0, it follows from (2.1) and (2.6) that lim infk→∞ ‖F (xk)‖ > 0. By
(3.4), it must hold that

lim
k→∞

αk = 0.

We have from (2.2)
−〈F (xk + βmk−1dk), dk〉 < σβmk−1‖dk‖2. (3.5)

Since {xk} and {dk} are bounded, we can choose a subsequences {xk}K and {dk}K having
limits x̂ and d̂. Taking limit in (3.5) as k → ∞ with k ∈ K, we obtain

−〈F (x̂), d̂〉 ≤ 0.

However, it is not difficult to deduce from (2.1) and (2.6) (by further taking subsequence if
necessary) that

−〈F (x̂), d̂〉 > 0.

This yields a contradiction. Consequently, lim infk→∞ ‖F (xk)‖ > 0 is not possible. The proof
is complete.

4. Numerical Results

In this section, we report some numerical results with the proposed method. We test the
performance of Algorithm 2 on the following three problems with various sizes.
Problem 1. The elements of function F are given by

Fi(x) = 2xi − sin |xi|, i = 1, 2, · · · , n.

Problem 2. The elements of function F are given by

Fi(x) = 2xi − sin(xi), i = 1, 2, · · · , n.

Problem 3. The elements of function F are given by F1(x) = 2x1 + sin(x1) − 1,

Fi(x) = −2xi−1 + 2xi + sin(xi) − 1, i = 2, · · · , n − 1,

and Fn(x) = 2xn + sin(xn) − 1.
Problems 1 and 2 are similar. The difference is that Problem 1 is not differentiable at x = 0

while Problem 2 is smooth everywhere.
We first test the performance of Algorithm 2 on Problem 3 with different dimensions. The

results are listed in Table 1 where the numbers stand for the total number of iterations. The
parameters are same as that of Algorithm 2 on Problems 1 and 2 below. The results in the
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table show that Algorithm 2 terminates successfully for all initial points. Moreover, the initial
points do not affect the number of iterations very much.

Table 1: Test results for Problem 3 using Algorithm 2

xT
0 (0.1, · · · , 0.1) (1, · · · , 1) (1, 1/2, · · · , 1/n) (0, · · · , 0) (−0.1,−0.1, · · · ,−0.1) (−1,−1, · · · ,−1)

n=10 26 23 27 28 28 31

n=100 222 233 222 221 228 218

n=500 1077 1092 1084 1073 1074 1077

n=1000 2003 2017 2011 2000 2001 2007

n=2000 3180 3191 3186 3177 3177 3184

n=3000 3881 3889 3885 3877 3877 3884

Table 2: Test results for Problems 1 and 2 using Algorithm 2 and INM method

Algorithm 2 for P1 INM for P1 Algorithm 2 for P2 INM for P2

init n iter time iter time iter time iter time

x1 100 28 0.2 108 2.204 28 0.2 108 1.422
x2 100 13 0.1 16 1.522 13 0.12 16 0.762
x3 100 11 0.12 9 0.741 11 0.12 9 1.492
x4 100 14 0.07 108 0.852 28 0.21 120 0.782
x5 100 10 0.26 7 0.11 11 0.14 16 0.11
x6 100 13 0.251 17 0.18 13 0.12 29 0.19

average 100 14.8333 0.16683 44.1667 0.93483 17.3333 0.15167 49.6667 0.793

x1 500 30 0.721 232 22.483 30 0.721 232 22.011
x2 500 14 0.34 30 3.976 14 0.29 30 3.415
x3 500 11 0.24 8 1.543 11 0.23 8 1.863
x4 500 15 0.44 232 21.201 30 0.671 245 23.013
x5 500 11 0.44 9 0.952 11 0.21 19 1.633
x6 500 13 0.47 30 2.633 14 0.42 43 4.016

average 500 15.6667 0.44183 90.1667 8.798 18.3333 0.42367 96.1667 9.3252

x1 1000 30 1.602 325 104.931 30 1.642 325 105.371
x2 1000 14 0.811 37 13.47 14 0.761 37 12.859
x3 1000 11 0.611 8 4.176 11 0.501 8 3.374
x4 1000 16 1.021 325 104.01 30 1.543 338 106.633
x5 1000 11 0.761 11 3.675 12 0.651 20 6.399
x6 1000 14 0.882 40 12.968 14 0.751 53 16.664

average 1000 16 0.948 124.3333 40.5383 18.5 0.97483 130.1667 41.8833

x1 2000 31 6.119 456 573.104 31 5.929 456 576.649
x2 2000 14 2.634 51 66.425 14 2.844 51 66.175
x3 2000 11 2.174 7 11.416 11 2.224 7 11.977
x4 2000 16 3.145 457 571.832 31 5.938 470 589.818
x5 2000 12 2.383 11 14.131 12 2.443 22 27.8
x6 2000 14 2.894 52 65.034 14 2.824 67 84.312

average 2000 16.3333 3.2248 172.3333 216.9903 18.8333 3.7003 178.8333 226.1218

We then compare performance of Algorithm 2 with the Inexact Newton Method (INM) in
[21] on Problems 1 and 2 with different initial points. The results are listed in Table 2 where
x1 = (10, 10, · · · , 10)T , x2 = (1, 1, · · · , 1)T , x3 = (1, 1/2, · · · , 1/n)T , x4 = (−10,−10, · · · ,−10)T ,
x5 = (−0.1,−0.1, · · · ,−0.1)T , x6 = (−1,−1, · · · ,−1)T . The parameters in Algorithm 2 are
specified as follows. We set β = 0.6, σ = 0.1, ε = 0.1, m = 1. For INM method in [21],
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we set µk = ‖F (xk)‖, ρk = 0, β = 0.6, λ = 0.01. We use ‖F (xk)‖ < 10−4 as the stopping
criterion. The algorithms were coded in MATLAB and run on Personal Computer with 400GHZ
CPU processor. The meaning of the columns in Table 2 is stated as follows. ”n” denotes the
dimension of the problem, ”init” stands for the initial point, ”iter” stands for the total number
of iterations, ”time” stands for CPU time in seconds, ”average” is the average iteration and
CPU time respectively.

The results in Table 2 show that in most cases Algorithm 2 performs better than the INM
method. In particular, for initial points x1 and x4, which are far away from the solution of
Problems 1 and 2, the performance of Algorithm 2 is much better than that of the INM method.

5. Conclusions

We have proposed a limited memory BFGS method for solving nonlinear monotone equations
and proved its global convergence. We have presented some preliminary numerical results to
show its efficiency. The proposed method is globally convergent even if the Jacobian matrix
of the equation is not symmetric. As demonstrated in Section 4, the method works well for
Problems 1 and 2. On the other hand, we found that the performance of the method was
not so satisfactory for Problem 3. We note that the Jacobian matrices in Problems 1 and 2
are symmetric and positive semi-definite, while in Problem 3, the Jacobian matrix is positive
definite but not symmetric. This may show that the L-BFGS method is more suitable for
solving symmetric equations. As pointed out by an anonymous referee, nonsymmtric quasi-
Newton methods such as the Broyden’s rank one method may work better when used for solving
nonsymmetric equations. We refer to some recent papers [8, 13] for the study of Broyden’s
method.
Acknowledgment. The authors would like to thank the referees for their helpful comments
on the paper.
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