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Abstract

In this paper, a nonmonotone method based on McCormick’s second-order Armijo’s
step-size rule [7] for unconstrained optimization problems is proposed. Every limit point
of the sequence generated by using this procedure is proved to be a stationary point with
the second-order optimality conditions. Numerical tests on a set of standard test problems
are presented and show that the new algorithm is efficient and robust.
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1. Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f(x) is a real-valued twice continuously differentiable function.
There are two classes of basic global approaches to solve problem (1.1): the line search

method and the trust region method. Most of these methods naturally require monotone
decrease of the objective values to guarantee the global convergence. However, this usually
slows the convergence rate of the minimization process, especially in the presence of steep-sided
valleys. Recently, several algorithms with nonmonotone techniques have been proposed both in
line search methods [5, 6, 11, 16], and trust region methods [3, 4, 10, 15]. Theoretical properties
and numerical tests show that the nonmonotone techniques are efficient and competitive [12].

In [7] McCormick modified Armijo’s rule and proposed a second-order Armijo’s step-size
rule, which includes second-order derivative information in the line-search. Using directions
of negative curvature, this method can handle the cases where the Hessian matrices are not
positive definite, so that the sequence generated by this method converges to a second-order
stationary point.

Nonmonotone techniques now are proved to be popular and efficient to deal with opti-
mization problems, especially for ill-conditioned optimization problems. In this paper, we will
combine the nonmonotone technique with the second-order Armijo’s step-size rule to form a
nonmonotone version of the second-order steplength method for unconstrained minimization.
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We first introduce some standard notations used throughout our paper:
1. The notation ‖ · ‖ denotes the Euclidean norm on Rn.
2. g(x) ∈ Rn is the gradient of f(x) evaluated at x, and H(x) ∈ Rn×n is the Hessian of

f(x) at x.
3. If {xk} is a sequence of points generated by an algorithm, we denote fk = f(xk), gk =

g(xk) and Hk = H(xk).
4. λmin(·) stands for the minimal eigenvalue of a matrix.
This paper is organized as follows. In section 2, we describe a nonmonotone algorithm

model with the second-order steplength rule and discuss how to determine the descent pair. In
section 3 we prove the global convergence which establishes that each limit point of the sequence
generated from our algorithm is the second-order stationary point. The numerical results by
solving a set of standard test problems are presented in section 4. Finally, in section 5, we give
the conclusions.

2. The Nonmonotone Second-order Steplength Method

First of all, we give the definitions of the indefinite point and the descent pair.

Definition 2.1. A point x is an indefinite point if H(x) has at least one negative eigenvalue.
Further, if x is an indefinite point, then d is a direction of negative curvature if dT H(x)d < 0.

Definition 2.2. If sT g(x) ≤ 0, dT g(x) ≤ 0, dT H(x)d < 0, then (s, d) is called a descent pair at
the indefinite point x; if x is not an indefinite point and sT g(x) < 0, dT g(x) ≤ 0, dT H(x)d = 0,
then (s, d) is called a descent pair with zero curvature direction.

Obviously, when H(x) is positive definite, d must be a zero vector and we only need to
consider the descent direction s.

MoCormick’s second-order Armijo’s step rule is to find the smallest nonnegative integer i(k)
from 0, 1, · · ·, when Hk is indefinite, such that

f(yk(i)) − f(xk) ≤ ρ2−i(sT
k gk +

1
2
dT

k Hkdk), (2.1)

where

yk(i) = xk + sk2−i + dk2−i/2, (2.2)

0 < ρ < 1 is a preassigned constant and (sk, dk) is a descent pair. Then set

xk+1 = yk(i(k)).

In fact, no matter whether Hk is indefinite or not, we can use the rule (2.1) in every iteration
because we can let dk be a zero vector whenever Hk is positive definite. Clearly, when Hk is
positive definite, the second-order step-size rule (2.1) is reduced to the classical Armijo’s step
rule. In the following, we will assume that the rule (2.1) is used in every iteration.

In order to satisfy (2.1) for a finite integer i(k), it is sufficient that

sT
k gk < 0

whenever gk �= 0, and
dT

k Hkdk < 0

whenever gk = 0. Such a descent pair (sk, dk) does not exist only when xk is a second-order
stationary point. In this case the algorithm will be terminated.

In [7], it is supposed that the second-order step-size rule is used in conjunction with a non-
ascent algorithm. In fact, this is not necessary, and it may cause severe loss of efficiency. We
can relax the accepting condition on yk(i). Let

f(xl(k)) = max
0≤j≤m(k)

f(xk−j), (2.3)
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where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k− 1)+1, M}, k ≥ 1, and M is a nonnegative integer.
We modify (2.1) as follows:

f(yk(i)) − f(xl(k)) ≤ ρ2−i(sT
k gk +

1
2
dT

k Hkdk), (2.4)

that is to say, we only need to find the smallest nonnegative integer i(k) from 0, 1, · · ·, such that
(2.4) is satisfied, then set xk+1 = yk(i(k)). Since f(xk) ≤ f(xl(k)), we can easily deduce that
(2.4) is more relaxed, and when M = 0, (2.4) is reduced to (2.1).

Now we describe the nonmonotone second-order steplength algorithm as follows.

Algorithm 2.3.(NSOSM)

Step 0. Given x0 ∈ Rn, M > 0, 0 < ρ < 1, set k = 0, m(0) = 0, and compute
f0 = f(x0).

Step 1. Compute gk, Hk. If the stopping criterion holds, stop.

Step 2. Compute the descent pair (sk, dk) and f(xl(k)), set i = 0.

Step 3. Compute pk = 2−isk + 2−i/2dk and f(xk + pk).

Step 4. If f(xk + pk) > f(xl(k)) + ρ2−i(sT
k gk + 1

2dT
k Hkdk), set i = i+ 1, go to Step 3.

Step 5. Set xk+1 = xk + pk, m(k + 1) = min[m(k) + 1, M ], k = k + 1, go to Step 1.

In order to make sure that the limit point of {xk} is a second-order point, stronger conditions
on the descent pair (sk, dk) must be imposed. Now we discuss how to compute the descent pair
(sk, dk) in Step 2.

We introduce a stable factorization method for general symmetric matrices, which was
presented by Bunch and Parlett [2]. The method factorizes the Hessian matrix Hk into the
following form

PHkPT = LDkLT , (2.5)

where P is a permutation matrix, L a unit lower triangular matrix and Dk a block diagonal
matrix with 1× 1 and 2× 2 diagonal blocks. If Hk is positive definite, Dk is just diagonal. The
factorization has the following properties (see [2] and [14] ):
Property 1. Dk and Hk have the same inertia.
Property 2. There exist positive constants a1, a2, a3 and a4 which are independent of Hk,
such that

a1 ≤ ‖L‖ ≤ a2, a3 ≤ ‖L−1‖ ≤ a4; (2.6)

Property 3. Suppose that Hk is not positive definite and let µk and λk be the most negative
eigenvalues of Hk and Dk, respectively. Then the following relation holds:

λk‖L‖2 ≤ µk ≤ λk/‖L−1‖2. (2.7)

Based on the Bunch-Parlett factorization, we can determine the descent pair. We get the
spectral decomposition of Dk in (2.5) as follows:

Dk = UΛkUT ,

where Λk = diag(λ(k)
1 , λ

(k)
2 , · · · , λ(k)

n ), and U is an orthogonal matrix. Then set

λ̄
(k)
j = max{|λ(k)

j |, εn max
1≤i≤n

|λ(k)
i |, ε},

Λ̄k = diag(λ̄(k)
1 , · · · , λ̄(k)

n ),
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where ε is a relative machine precision, and set

D̄k = U Λ̄kUT .

The direction sk can be obtained by solving

(PT LD̄kLT P )s = −gk. (2.8)

Let zk be the unit eigenvector of Dk corresponding to the minimal eigenvalue λk. Clearly, the
direction

tk = |min{λk, 0}| 12 PT L−T zk (2.9)

satisfies tTk Hktk = λk|min{λk, 0}| ≤ 0. This shows that tk is a direction of nonpositive curva-
ture. To make it a non-ascent direction, we can choose

dk =
{ −tk, gT

k tk > 0,
tk, gT

k tk ≤ 0.
(2.10)

The matrix Hk is positive semidefinite if and only if λk is nonnegative because of Property 1 of
the Bunch-Parlett factorization. So, when Hk is positive semidefinite, dk determined by (2.10)
is a zero vector.

3. Convergence Analysis

In this section, we will discuss the convergence properties of Algorithm 2.3. The following
assumption is required.

Assumption 3.1. The level set L(x0) = {x | f(x) ≤ f(x0)} is bounded and f(x) is twice
continuously differentiable in L(x0).

Lemma 3.2. Suppose that Assumption 3.1 holds, and the descent pair (sk, dk) is determined
by (2.8) and (2.10), then

dT
k Hkdk = λk|min{0, λk}|, (3.1)

and there exist constants 0 < c1 ≤ 1, c2 > 0 and c3 > 0, such that

− sT
k gk

‖sk‖‖gk‖ ≥ c1, when gk �= 0, (3.2)

c3‖gk‖ ≥ ‖sk‖ ≥ c2‖gk‖. (3.3)

Proof. Because (3.1) and (3.3) are obvious, we only need to prove (3.2). Since f : Rn → R
and x0 satisfy Assumption 3.1, the compactness of L(x0) and the continuity of H(x) imply
that {Hk} are uniformly bounded. Thus, there exist two positive scalars ε ≤ M such that
0 < ε ≤ λi(D̄k) ≤ M(i = 1, 2, · · · , n), where λi(D̄k) is any eigenvalue of D̄k. Set

H̄k = PT LD̄kLT P,

and let y be corresponding normalized eigenvector of λmin(H̄k). Then set z = LT Py. So, we
have y = P−1L−T z and ‖y‖ ≤ ‖L−T‖‖z‖ ≤ a4‖z‖ following from Property 2 of Bunch-Parlett
factorization. Thus ‖z‖ ≥ 1

a4
, and

λmin(H̄k) = yT H̄ky = yT PT LD̄kLT Py = zT D̄kz ≥ ε

a2
4

.

As a result,

−sT
k gk = sT

k PT LD̄kLT Psk = sT
k H̄ksk ≥ ε‖sk‖2

a2
4

. (3.4)
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On the other hand, from(2.8), we obtain

‖gk‖ ≤ ‖PT LD̄kLT P‖‖sk‖ ≤ a2
2M‖sk‖. (3.5)

Thus

−sT
k gk ≥ ε

a2
2a

2
4M

‖sk‖‖gk‖ ∆= c1‖sk‖‖gk‖, (3.6)

It is obvious that 0 < c1 ≤ 1. So (3.2) has been proved.
The first of the following lemmas follows easily from the proof of Theorem in [5], so we omit

the proof.

Lemma 3.3. Suppose that Assumption 3.1 holds and {xk} is generated by Algorithm 2.3. Then
the sequence {xk} remains in L(x0), and {f(xl(k))} is nonincreasing and convergent.

Lemma 3.4. Algorithm 2.3 cannot cycle infinitely between Step 3 and Step 4.

Proof. Since gT
k dk ≤ 0, gT

k sk + 1
2dT

k Hkdk < 0 and 0 < ρ < 1, then for sufficiently large i we
have

f(xk + 2−isk + 2−i/2dk)

= f(xk) + 2−igT
k sk + 2−i/2gT

k dk +
1
2
2−idT

k Hkdk + o(2−i)

≤ f(xk) + 2−igT
k sk +

1
2
2−idT

k Hkdk + o(2−i)

≤ f(xl(k)) + 2−i(gT
k sk +

1
2
dT

k Hkdk) + o(2−i)

< f(xl(k)) + ρ2−i(gT
k sk +

1
2
dT

k Hkdk). (3.7)

It follows from (3.7) that Algorithm 2.3 cannot cycle infinitely between Step 3 and Step 4.
Now we are in a position to state our main theorem.

Theorem 3.5. Suppose that Assumption 3.1 holds and that {xk} is an infinite sequence gener-
ated from Algorithm 2.3. Then every limit point x̄ of the sequence is a second order stationary
point, i.e. g(x̄) = 0 and the Hessian matrix H(x̄) is at least positive semidefinite.

Proof. For convenience, we denote 2−i(k) by αk. For k > M , it follows from (2.4), (3.2),
(3.3) and (3.1) that

f(xl(k)) ≤ f(xl(l(k)−1)) + ραl(k)−1[sT
l(k)−1gl(k)−1 +

1
2
dT

l(k)−1Hl(k)−1dl(k)−1]

≤ f(xl(l(k)−1)) + ραl(k)−1[−c1c2‖gl(k)−1‖2 +
1
2
λl(k)−1|min{λl(k)−1, 0}|].

By Lemma 3.3, {f(xl(k))} admits a limit for k → ∞. Taking the limit we obtain

lim
k→∞

ραl(k)−1[−c1c2‖gl(k)−1‖2 +
1
2
λl(k)−1|min{λl(k)−1, 0}|] = 0. (3.8)

Since αl(k)−1 > 0,−c1c2‖gl(k)−1‖2 ≤ 0 and λl(k)−1|min{λl(k)−1, 0}| ≤ 0, it follows from (3.8)
that

lim
k→∞

αl(k)−1‖gl(k)−1‖2 = 0, lim
k→∞

αl(k)−1λl(k)−1|min{λl(k)−1, 0}| = 0, (3.9)

which implies that

lim
k→∞

αl(k)−1‖gl(k)−1‖ = 0, lim
k→∞

α
1
2
l(k)−1|min{λl(k)−1, 0}| 12 = 0. (3.10)
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Combining with (3.3), (2.9) and (2.10), we obtain that

lim
k→∞

αl(k)−1‖sl(k)−1‖ = 0, lim
k→∞

α
1
2
l(k)−1‖dl(k)−1‖ = 0, (3.11)

so that
lim

k→∞
‖xl(k) − xl(k)−1‖ = 0.

By the uniform continuity of f(x) on L(x0), we find that

lim
k→∞

f(xl(k)−1) = lim
k→∞

f(xl(k)). (3.12)

Let l̂(k) = l(k + M + 2). By induction as [5], we can show that for any given j

lim
k→∞

αl̂(k)−j‖sl̂(k)−j‖ = 0, lim
k→∞

α
1
2

l̂(k)−j
‖dl̂(k)−j‖ = 0, (3.13)

and then

lim
k→∞

f(xl̂(k)−j) = lim
k→∞

f(xl(k)). (3.14)

Now for any k,

xk+1 = xl̂(k) −
l̂(k)−k−1∑

j=1

αl̂(k)−jsl̂(k)−j −
l̂(k)−k−1∑

j=1

α
1
2

l̂(k)−j
dl̂(k)−j ,

it follows that
lim

k→∞
‖xk+1 − xl̂(k)‖ = 0.

Since {f(xl(k))} admits a limit, it follows from the uniform continuity of f(x) on L(x0) that

lim
k→∞

f(xk) = lim
k→∞

f(xl̂(k)) = lim
k→∞

f(xl(k)). (3.15)

Also from (2.4), (3.2), (3.3) and (3.1), we have

f(xk+1) ≤ f(xl(k)) + ραk[sT
k gk +

1
2
dT

k Hkdk]

≤ f(xl(k)) + ραk[−c1c2‖gk‖2 +
1
2
λk|min{0, λk}|]. (3.16)

Using the same arguments employed for proving (3.9), we obtain

lim
k→∞

αk‖gk‖2 = 0, lim
k→∞

αkλk|min{0, λk}| = 0. (3.17)

Now let x̄ be any limit point of {xk}, i.e., there exists a subsequence {xk}K1 ⊂ {xk}, such
that

lim
k∈K1,k→∞

xk = x̄.

Then by (3.17), either

lim
k∈K1,k→∞

‖gk‖ = 0, lim
k∈K1,k→∞

λk|min{0, λk}| = 0, (3.18)

or there exists K2 ⊂ K1, such that

lim
k∈K2,k→∞

αk = 0, (3.19)

which is just
lim

k∈K2,k→∞
2−i(k) = 0.
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In the first case, (3.18) implies g(x̄) = 0 and λ̄ ≥ 0 by continuity, where λ̄ is the limit of the
minimal eigenvalue sequence of {Dk}, i.e.,

lim
k∈K1,k→∞

λmin(Dk) ≥ 0.

By the properties of Bunch-Parlett factorization, it follows that λmin(H(x̄)) ≥ 0, so H(x̄) is at
least positive semidefinite.

In the second case, from the definition of i(k), there exists an index k̄ such that for k ≥ k̄
and k ∈ K2,

f [yk(i(k) − 1)] > f(xl(k)) + ρ2−[i(k)−1][sT
k gk +

1
2
dT

k Hkdk]

≥ f(xk) + ρ2−[i(k)−1][sT
k gk +

1
2
dT

k Hkdk]. (3.20)

Since yk(i(k) − 1) = xk + sk2−[i(k)−1] + dk2−[i(k)−1]/2, expanding the left hand side of (3.20)
by using Taylor’s theorem, and making incorporation such that the appropriate terms are
incorporated in o(2−[i(k)−1]), we have that

o(2−[i(k)−1]) > (ρ − 1)2−[i(k)−1][sT
k gk +

1
2
dT

k Hkdk]

≥ (ρ − 1)2−[i(k)−1][−c1c2‖gk‖2 +
1
2
λk|min{0, λk}|]. (3.21)

Dividing both sides of (3.21) by (1 − ρ)2−[i(k)−1] and taking limit as k → ∞, k ∈ K2, we have

0 ≥ c1c2‖g(x̄)‖ − 1
2
λ̄|min{0, λ̄}|. (3.22)

Since each term on the right-hand side of (3.22) is nonnegative, we obtain that g(x̄) = 0 and
λ̄ ≥ 0, which also means that x̄ is a second-order stationary point. Combining the above two
cases establishes our theorem.

Remark 3.6. (1) By the continuity of H(x), if there are infinitely many matrices which are not
positive semidefinite during the iteration, then the Hessian matrix H(x̄) is positive semidefinite
with at least one eigenvalue equal to 0. (2)Assume the sequence {xk} generated from Algorithm
2.3 converges to x∗ which is a strong local minimizer. Then the convergence rate is quadratic.

4. Numerical Experiment

In this section, Algorithm 2.3 (NSOSM) is tested on a set of standard test problems which
are from [1, 8]. A MATLAB program is coded to perform the experiments. The iteration
terminates when

‖gk‖ ≤ 10−5, λmin(Hk) ≥ 0, (4.1)

or

f(xl(k)) − f(xk+1) ≤ 10−20 max {10−10, | f(xl(k)) |}. (4.2)

That is, when one of (4.1) and (4.2) is satisfied, the iteration terminates. In the program the
parameter ρ is set as 0.001.

We run the program with M = 0 (monotone second-order steplength method) and M =
10 (nonmonotone second-order steplength method). The numerical results are listed in the
following table. We denote the size of problems by n, the number of function evaluations by
NF , the number of gradient evaluations by NG, the number of indefinite Hk appearing in the
iteration of our algorithm by NI. We observe that for most problems, NF and NG of the
nonmonotone second-order steplength method are less than those of the monotone case.
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As another reference, in the last two columns we list the performance of nonmonotone line
search algorithm (NMLS) proposed in [5]. The parameters are as follows: c1 = 10−5, c2 =
105, γ = 10−3, σ = 0.5, and the iteration terminates when ‖gk‖ ≤ 10−5. The parameters c1 and
c2 are used to make the descent direction gradient-related, which ensures the global convergence.
We can see from the table that the performance of the two methods are comparable. Our
algorithm sometimes needs more function and gradient evaluations, but it can go past a saddle
point in principle, even if the starting point is just the saddle point. This is the main merit
of our algorithm. In addition, our algorithm is robust and efficient for ill-conditioned problems
though it is only an initial generalization of McCormick’s work [7]. So, we believe that the
further research on this topic will be necessary and worthwhile.

Table of numerical results

NSOSM NMLS
M = 0 M = 10 M = 10

Test functions n NF NG NI NF NG NI NF NG

Gaussian 3 2 2 0 2 2 0 2 2

Powell Badly Sc. 2 898 887 3 877 872 6 – –

Box 3-Dimen. 3 20 16 1 28 25 10 9 9

Var. Dimen. 10 15 15 0 15 15 0 31 10

6 12 12 0 12 12 0 12 12
Watson 9 13 13 0 13 13 0 13 13

12 13 13 0 13 13 0 13 13

4 39 31 0 17 17 0 17 17
Penalty I 10 41 34 0 24 24 0 24 24

4 7 7 0 7 7 0 7 7
Penalty II 10 135 103 0 19 19 0 19 19

Brown-Dennis 4 9 9 0 9 9 0 84 12

Gulf R.and D. 3 43 32 6 42 34 6 50 39

20 45 16 4 34 19 3 12 9
Trigonometric 40 32 11 2 42 17 5 32 22

60 62 14 5 96 22 10 28 18

Table of numerical results (continued)

NSOSM NMLS
M = 0 M = 10 M = 10

Test functions n NF NG NI NF NG NI NF NG

2 29 22 0 16 12 0 16 12
Ex.Ros. 10 29 22 0 16 12 0 16 12

20 29 22 0 16 12 0 16 12

Sc.Ros. c = 104 2 114 81 0 17 12 0 287 38
c = 106 2 517 349 0 15 10 0 – –

4 16 16 0 16 16 0 16 16
Ex.Powell 16 17 17 0 17 17 0 17 17

Beale 2 16 9 3 47 35 19 25 18

Wood 4 63 39 2 29 29 1 33 30

Cube 2 37 27 0 22 11 1 17 12

Sc.Cube c = 104 2 167 109 1 26 9 1 739 102
c = 106 2 705 483 1 33 9 1 – –

Note: “–” denotes that when NF reaches 1000, the algorithm fails to reach the minimum.
If this is the case, then we terminate the iteration.
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5. Conclusions

In this paper, we propose a nonmonotone second-order steplength method for unconstrained
optimization problems. The new method is an improvement of the second-order steplength algo-
rithms. We have proved that every limit point of the new algorithm is a second-order stationary
point. From the theoretical discussion and numerical experiments, we can see that the new algo-
rithm shows the robustness and efficiency for ill-conditioned optimization problems, especially
around saddle points. Our work is only an initial and direct generalization of McCormick’s
paper [7]. Furthermore, we may consider the nonmonotone second-order Goldstein rule, the
nonmonotone second-order Wolfe rule, and the general nonmonotone second-order rule for op-
timization, along with some advanced approaches to compute the descent pair (sk, dk). We
believe that further research on this topic will be necessary and worthwhile.
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