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Abstract

By applying the generalized singular value decomposition and the canonical correlation

decomposition simultaneously, we derive an analytical expression of the optimal approxi-

mate solution bX, which is both a least-squares symmetric orthogonal anti-symmetric solu-

tion of the matrix equation AT XA = B and a best approximation to a given matrix X∗.
Moreover, a numerical algorithm for finding this optimal approximate solution is described

in detail, and a numerical example is presented to show the validity of our algorithm.
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1. Introduction

Denote the set of all symmetric (anti-symmetric) matrices in Rn×n by Sn×n(An×n), the set
of all orthogonal matrices in Rn×n by On×n, the n×n identity matrix by In, the transpose and
the Frobenius norm of a real matrix A by AT and ‖A‖, respectively. For A = (aij) ∈ Rn×m,
B = (bij) ∈ Rn×m, A ∗ B represents the Hadamard product of the matrices A and B, that
is, A ∗ B = (aijbij) ∈ Rn×m. Let SORn×n be the set of all real n × n symmetric orthogonal
matrices, i.e., SORn×n = {P |P = PT , P 2 = In, P ∈ Rn×n}.

Definition 1.1. Given P ∈ SORn×n and let X ∈ Sn×n.

(1) The matrix X is called symmetric orthogonal symmetric with respect to P if (PX)T = PX.

The set of all n× n symmetric orthogonal symmetric matrices is denoted by SSn×n
P ;

(2) The matrix X is called symmetric orthogonal anti-symmetric matrix with respect to P if
(PX)T = −PX. The set of all symmetric orthogonal anti-symmetric matrices is denoted
by SAn×n

P .

* Received January 24, 2005; final revised March 1, 2006; accepted June 29, 2006.
1) The Project supported by Scientific Research Fund of Hunan Provincial Education Department, by Na-

tional Natural Science Foundation of China (10171031), and by Natural Science Fundation of Hunan Province

(03JJY6028).



212 Y. LEI, A.P. LIAO AND L. ZHANG

The symmetric orthogonal (anti-)symmetric matrices play an important role in numerical
analysis and matrix theory. For example, the matrix X ∈ SSn×n

P (SAn×n
P ) can preserve the

symmetric (anti-symmetric) structure after applying a Householder transformation, because
the Householder matrix is symmetric and orthogonal. Let Jn = [en, en−1, . . . , e1], where ei

denote the ith column of In. It is easy to verify that Jn ∈ SORn×n. If P = Jn, then SSn×n
P

and SAn×n
P are a bi-symmetric matrix set [5, 12, 19] and a symmetric and skew anti-symmetric

matrix set [18, 22], respectively, which have been applied in various areas [18, 24], such as
information theory, linear system theory and numerical analysis. If P = In, then SSn×n

P is a
symmetric matrix set and SAn×n

P is trivial due to the fact that Sn×n ∩ An×n = {0}.
The symmetric orthogonal (anti-)symmetric matrices were initially considered by Zhou, Hu

and Zhang, associated with matrix equations and inverse eigenvalue problems, see [27]. Peng
[17] has investigated the symmetric orthogonal symmetric solution to the matrix equation

AT XA = B, (1.1)

which arose in an inverse problem of structural modification or the dynamic behaviour of a
structure [2, 3, 4, 7, 13, 14]. The symmetric skew anti-symmetric solution of (1.1) and its optimal
approximation were also obtained in [18] by using the generalized singular value decomposition
(GSVD). However, it may happen that the matrix equation (1.1) is inconsistent due to the
inaccuracies in the measured data. In this case, we may consider the solution of (1.1) in the
least-squares sense [6, 12, 21]. The purpose of this paper is to extend the results in [18] to the
least-squares problem with a symmetric orthogonal anti-symmetric constraint, which can be
described as follows:

Problem 1.1. Given matrices A ∈ Rn×m, B ∈ Sm×m, P ∈ SORn×n and X∗ ∈ Sn×n. Let

SE =

{
X | X ∈ SAn×n

P , ‖AT XA−B‖ = min
Y ∈SAn×n

P

‖AT Y A−B‖
}

. (1.2)

Then find X̂ ∈ SE such that

‖X̂ −X∗‖ = min
X∈SE

‖X −X∗‖. (1.3)

The minimization problem (1.3) arises in the structural modification and model updating
[8]. The initial analytical matrix X∗ is experimentally obtained from a practical measurement,
but it may not satisfy the structural requirement or the minimum residual requirement. Hence,
it is necessary to find the updated matrix X̂, which is not only a least-squares solution of matrix
equation (1.1) with given structural requirement, but also a best approximation to the initial
matrix X∗.

Similar to [12], the solution X̂ of Problem 1.1 can not be obtained by means of the canon-
ical correlation decomposition (CCD) of a matrix pair, and the difficulty lies in the fact that
the invariance of the Frobenius norm does not hold for general nonsingular matrices in CCD
(see, for instance, (8) and (19) in [12]). In order to overcome this difficulty, a method, based
on the projection theorem, GSVD and CCD, is adopted to solve Problem 1.1, and this ap-
proach has been applied successfully to find the least-squares solution of the matrix equations
(AXB, GXH) = (C, D) with minimum norm [15].

The outline of this paper is as follows. First, in Section 2, we will introduce several lemmas
which will be used in the latter sections. Then, we will discuss Problem 1.1 and give the
expression of its solution in Section 3. Finally, in Section 4, we will give the numerical algorithm
to compute the solution of Problem 1.1 and report our numerical experiments.
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2. Some Lemmas

As a preliminary, we briefly state the concepts of the GSVD and CCD, which are essential
tools for deriving the solution of Problem 1.1. We refer to [9, 10, 16, 20] for details.

The GSVD can be described as follows: Given A1 ∈ Rk×m and A2 ∈ R(n−k)×m, then there
exist orthogonal matrices U ∈ Ok×k, V ∈ O(n−k)×(n−k) and a nonsingular matrix M ∈ Rm×m

such that

A1 = U(Σ1, 0)M and A2 = V (Σ2, 0)M, (2.1)

where Σ1 = diag(Ir, S1, 0) and Σ2 = diag(0, S2, It−r−s) are block diagonal matrices (may not
be square) with the same column partitioning, and the diagonal matrices S1 and S2 are given
by{

S1 = diag(λ1, λ2, . . . , λs), 1 > λ1 ≥ λ2 ≥ . . . ≥ λs > 0,

S2 = diag(µ1, µ2, . . . , µs), 0 < µ1 ≤ µ2 ≤ . . . ≤ µs < 1, λ2
i + µ2

i = 1 (1 ≤ i ≤ s).

Here
t = rank(AT

1 , AT
2 ), r = t− rank(A2), s = rank(A1) + rank(A2)− t.

We further partition the nonsingular matrix

M−1 = ( M1 M2 M3 M4 ) ∈ Rm×m . (2.2)

compatibly with the block column partitioning of (Σ1, 0), e.g., M1 ∈ Rm×r, M2 ∈ Rm×s.
The CCD can be described as follows: Given A1 ∈ Rk×m and A2 ∈ R(n−k)×m, then

there exist nonsingular matrices EA1 ∈ Rk×k, EA2 ∈ R(n−k)×(n−k) and an orthogonal matrix
Q ∈ Om×m such that

AT
1 = Q(Π1, 0)E−1

A1
and AT

2 = Q(Π2, 0)E−1
A2

, (2.3)

where

Π1 =
(

Ξ1

Ξ2

)
and Π2 =

(
Ih

0

)

are block matrices with the same row partitioning, Ξ1 = diag(Ir′ , CA, 0) and Ξ2 = diag(0, SA, It′)
are block diagonal matrices (may not be square), and the diagonal matrices CA and SA are
given by{

CA = diag(α1, α2, . . . , αs′), 1 > α1 ≥ α2 ≥ . . . ≥ αs′ > 0,

SA = diag(β1, β2, . . . , βs′), 0 < β1 ≤ β2 ≤ . . . ≤ βs′ < 1, α2
i + β2

i = 1 (1 ≤ i ≤ s′).

Here
h = rank(A2), r′ = rank(A1) + rank(A2)− rank(AT

1 , AT
2 ),

s′ = rank(A2A
T
1 )− r′, t′ = rank(A1)− r′ − s′.

We further partition the orthogonal matrix

Q = ( Q1 Q2 Q3 Q4 Q5 Q6 ) ∈ Om×m (2.4)

compatibly with the row partitioning of Π1, e.g., Q1 ∈ Rm×r′ , Q2 ∈ Rm×s′ , Q3 ∈ Rm×(h−r′−s′).
Since P ∈ SORn×n, there exists an orthogonal matrix H ∈ On×n such that

P = H

(
Ik 0
0 −In−k

)
HT , k = rank(I + P ). (2.5)

In fact, the representation (2.5) is a spectral decomposition of the matrix P (see [11]). By
Definition 1.1 and the spectral decomposition of P , it is easy to prove that the structure of
SAn×n

P has special form described in the following lemma (see also [26]).
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Lemma 2.1.

SAn×n
P =

{
X|X = H

(
0 Y

Y T 0

)
HT , Y ∈ Rk×(n−k)

}
. (2.6)

Lemma 2.2. Given matrices D ∈ Ss×s and E ∈ Rs×s. Let Γ = diag(γ1, γ2, · · · , γs) and ∆ =
diag(δ1, δ2, · · · , δs) be given diagonal matrices of positive diagonal entries, satisfying γ2

j + δ2
j =

1 (j = 1, 2, · · · , s). Then there exists a unique matrix Ȳ ∈ Rs×s such that
F (Ȳ ) = ‖ΓȲ + Ȳ T Γ−D‖2 + ‖∆Ȳ − ET ‖2 + ‖Ȳ T ∆− E‖2 = min .

Moreover, the matrix Ȳ possesses the analytical expression
Ȳ = Φ ∗ [ΓD + ∆ET − Γ(DΓ + E∆)Γ], (2.7)

with
Φ = (φij) ∈ Rs×s, φij =

1
1− γ2

i γ2
j

, i, j = 1, 2, ..., s.

Proof. For matrices D = (dij) ∈ Ss×s, E = (eij) ∈ Rs×s and Y = (yij) ∈ Rs×s, we have

F (Y ) =
∑

i,j

[(γiyij + yjiγj − dij)2 + (δiyij − eji)2 + (yjiδj − eij)2].

It then follows from straightforward operations that F (Ȳ ) = min if and only if
ȳij + γiγj ȳji = γidij + δieji. (2.8)

Then (2.8) implies {
ȳij + γiγj ȳji = γidij + δieji,

ȳji + γiγj ȳij = γjdji + δjeij .

After suitable manipulations, we obtain

ȳij =
γidij + δieji − γi(γjdji + δjeij)γj

1− γ2
i γ2

j

. (2.9)

From (2.9) we immediately get (2.7).

3. The Solution of Problem 1.1

In order to find the solution X̂ of Problem 1.1, we first transform the least-squares prob-
lem (1.2) with respect to the inconsistent matrix equation (1.1) to a consistent one by applying
the projection theorem.

Theorem 3.1. Given matrices A ∈ Rn×m, B ∈ Sm×m and P ∈ SORn×n. Let X0 ∈ SE, and
define

B0 = AT X0A. (3.1)
Then the matrix equation

AT XA = B0 (3.2)
is consistent, and its symmetric orthogonal anti-symmetric solution set is the same as the least-
squares symmetric orthogonal anti-symmetric solution set SE of the matrix equation (1.1).

Proof. Let
L = {Z | Z = AT XA, X ∈ SAn×n

P }.
Then L is obviously a linear subspace of Sn×n. Because X0 is a least-squares solution of the
matrix equation (1.1) over SAn×n

P , from (3.1) we see that B0 ∈ L and
‖B0 −B‖ = ‖AT X0A−B‖ = min

X∈SAn×n
p

‖AT XA−B‖ = min
Z∈L

‖Z −B‖.
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Now, by applying the projection theorem we have

(B0 −B)⊥L or (B0 −B) ∈ L⊥.

For every X ∈ SAn×n
P , we know that (AT XA−B0) ∈ L. It then follows that

‖AT XA−B‖2 = ‖(AT XA−B0) + (B0 −B)‖2
= ‖AT XA−B0‖2 + ‖B0 −B‖2,

which implies that the conclusion of this theorem holds.
From Theorem 3.1, we easily see that the optimal approximate solution X̂ of the consis-

tent matrix equation (3.2) to a given matrix X∗ over SAn×n
P is nothing but the solution of

Problem 1.1. Therefore, solving Problem 1.1 essentially reduces to find B0, and the crux of
finding B0 is to derive a least-squares solution X0 of the matrix equation (1.1) over SAn×n

P .
The following theorem give the general expression of these least-squares solutions.

Theorem 3.2. Given matrices A ∈ Rn×m, B ∈ Sm×m and P ∈ SORn×n. Let the spectral
decomposition of P be (2.5), and partition the matrix AT H into

AT H = (AT
1 , AT

2 ) ∈ Rm×n, A1 ∈ Rk×m, A2 ∈ R(n−k)×m. (3.3)

Decompose the matrix pair (AT
1 , AT

2 ) by using CCD as (2.3), and denote

B′ = (B′
ij)6×6, B′

ij = QT
i BQj , i, j = 1, 2, · · · , 6, (3.4)

where the matrices Qi (i = 1, 2, . . . , 6) are given by (2.4). Then the set SE in Problem 1.1 can
be expressed as

SE =
{

X|X = H

(
0 Y

Y T 0

)
HT

}
, (3.5)

where

Y = EA1




1
2B′

11 + R B′
12 − (B′

15)
T CAS−1

A B′
13 Y14

S−1
A (B′

15)
T Y22 Y23 Y24

(B′
16)

T (B′
26)

T (B′
36)

T Y34

Y41 Y42 Y43 Y44


 ET

A2
, (3.6)

with

Y22 = K ∗ [CAB′
22 + SA(B′

25)
T − CA(B′

22CA + B′
25SA)CA],

Y23 = CAB′
23 + SA(B′

35)
T . (3.7)

Here
K = (kij) ∈ Rs′×s′ , kij =

1
1− α2

i α
2
j

, i, j = 1, 2, ..., s′,

R ∈ As′×s′ is an arbitrary anti-symmetric matrix and the other unknown matrix blocks are
arbitrary.

Proof. Partition the matrix E−1
A1

Y E−T
A2

compatibly to the block column partitioning of
(ΣA1 , 0) and (ΣA2 , 0), respectively, into

E−1
A1

Y E−T
A2

= (Yij)4×4. (3.8)

By Lemma 2.1 we know the matrix X ∈ SAn
P is of the form (2.6), and from (3.3) and (2.3) we

have

‖AT XA−B‖2 =
∥∥∥∥(AT

1 , AT
2 )

(
0 Y

Y T 0

)(
A1

A2

)
−B

∥∥∥∥
2

= ‖(Π1, 0)E−1
A1

Y E−T
A2

(Π2, 0)T + (Π2, 0)E−1
A2

Y T E−T
A1

(Π1, 0)T −QT BQ‖2.
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After substituting (2.3), (3.4) and (3.8) into the equation above, we know that the minimization
problem min

X∈SAn×n
P

‖AT XA−B‖ is reduced to solving the following six minimization problems:

‖Y12 + Y T
21CA −B′

12‖2 + ‖Y T
21SA −B′

15‖2 = min, (3.9)

‖Y13 −B′
13‖2 = min, ‖Y3i − (B′

i6)
T ‖2 = min i = 1, 2, 3, (3.10)

‖Y11 + Y T
11 −B′

11‖2 = min, ‖Y T
23SA −B′

35‖2 + ‖CAY23 −B′
23‖2 = min, (3.11)

‖CAY22 + Y T
22CA −B′

22‖2 + ‖Y T
22SA −B′

25‖2 + ‖SAY22 − (B′
25)

T ‖2 = min . (3.12)

It follows from (3.9) and (3.10) that

Y21 = S−1
A (B′

15)
T ; Y12 = B′

12 −B′
15CAS−1

A ;

Y13 = B′
13; Y3i = (B′

i6)
T , i = 1, 2, 3. (3.13)

Following (3.11) and Lemma 2.1 in [23], we have

Y11 =
1
2
B′

11 + R, ∀R ∈ As′×s′ ; Y23 = CAB′
23 + SA(B′

35)
T . (3.14)

From Lemma 2.2, we know that the solution of (3.12) can be expressed as

Y22 = K ∗ [CAB′
22 + SA(B′

25)
T − CA(B′

22CA + B′
25SA)CA]. (3.15)

By combining (3.13)-(3.15), we arrive at (3.6), and from Lemma 2.1 we obtain (3.5).
By Theorem 3.2, we know that the matrix X0 ∈ SE can be expressed as

X0 = H

(
0 Y

Y T 0

)
HT , (3.16)

where Y is given by (3.6). Following (3.1), (3.3) and (3.16), we have

B0 = AT H

(
0 Y

Y T 0

)
HT A = (AT

1 , AT
2 )

(
0 Y

Y T 0

)(
A1

A2

)

= AT
1 Y A2 + AT

2 Y T A1. (3.17)

Substituting the matrices A1, A2 in (2.3) and Y in (3.6) into (3.17), after obvious manipulations
we can immediately get the expression of the matrix B0 defined in (3.1) as follows:

B0 = Q




B′
11 B′

12 B′
13 0 B′

15 B′
16

(B′
12)

T CAY22 + Y T
22CA CAY23 0 Y T

22SA B′
26

(B′
13)

T Y T
23CA 0 0 Y T

23SA B′
36

0 0 0 0 0 0
(B′

15)
T SAY22 SAY23 0 0 0

(B′
16)

T (B′
26)

T (B′
36)

T 0 0 0




QT , (3.18)

where Y22 and Y23 are given by (3.7).

Remark 3.1. The result (3.18) shows that the matrix B0 given in Theorem 3.1 is unique.
Furthermore, we can conclude that

‖B0 −B‖ = min
X∈SAn×n

P

‖AT XA−B‖.

Obviously, we can not obtain the optimal approximate solution X̂ to a given matrix X∗ by
using (3.5) in the sense of the Frobenius norm due to that the matrices EA1 and EA2 in (3.6)
may not be orthogonal. But Problem 1.1 can be transformed to the problem of finding the
optimal approximate solution of the consistent matrix equation (3.2) over SAn×n

P , where B0 is
determined by (3.18). Hence, similar to [18], we can obtain the solution X̂ of Problem 1.1 by
using GSVD.
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Theorem 3.3. Assume the conditions of Theorem 3.2. Decompose the matrix pair (A1, A2) by
GSVD as (2.1) and define

M−T B0M
−1 = (B̃ij)4×4, B̃ij = MT

i B0Mj i, j = 1, 2, 3, 4, (3.19)

where the matrices Mi (i = 1, 2, 3, 4) are given by (2.2). Partition the matrices HT X∗H and
UT X∗

12V into

HT X∗H =
(

X∗
11 X∗

12

X∗T
12 X∗

22

)
k

n− k

n n− k

,

UT X∗
12V =




Z∗11 Z∗12 Z∗13

Z∗21 Z∗22 Z∗23

Z∗31 Z∗32 Z∗33




r

s

k − r − s

n− k + r − t s t− r − s

. (3.20)

Then the solution X̂ of Problem 1.1 can be expressed as

X̂ = H

(
0 Ŷ

Ŷ T 0

)
HT with Ŷ = U




Z∗11 B̃12S
−1
2 B̃13

Z∗21 Ŷ22 S−1
1 B̃23

Z∗31 Z∗32 Z∗33


 V T , (3.21)

where

Ŷ22 =
1
2
S−1

1 B̃22S
−1
2 + W ∗ [S1S

−1
2 (

1
2
S−1

2 B̃22S
−1
1 − Z∗T22 )

−(
1
2
S−1

1 B̃22S
−1
2 − Z∗22)S1S

−1
2 ], (3.22)

with

W = (wij) ∈ Rs×s, wij =
λjµ

2
i µj

λ2
i µ

2
j + λ2

jµ
2
i

, i, j = 1, 2, ..., s.

Proof. From (3.17), we know that the problem of finding the symmetric orthogonal anti-
symmetric solution of the consistent matrix equation (3.2) is reduced to finding Ỹ ∈ Rk×(n−k)

such that

AT
1 Ỹ A2 + AT

2 Ỹ T A1 = B0. (3.23)

Therefore, from Theorem 2.1 in [25] and Lemma 2.1, we can obtain a new expression of the set
SE in Problem 1.1 as follow:

SE =

{
X|X = H

(
0 Ỹ

Ỹ T 0

)
HT

}
with Ỹ = U




Y11 B̃12S
−1
2 B̃13

Y21 Ỹ22 S−1
1 B̃23

Y31 Y32 Y33


 V T , (3.24)

where Ỹ22 = 1
2S−1

1 B̃22S
−1
2 + GT − S2S

−1
1 GS1S

−1
2 , and G,Yi1, Y3j , (i, j = 1, 2, 3) are arbitrary.

Obviously, the set SE is nonempty and is a closed convex subset of the Hilbert space Rn×n.
It follows from the optimal approximation theorem [1] that there exists a unique matrix X̂ ∈ SE
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satisfying (1.3). For all X ∈ SE , it follows from (3.20) and (3.24) that
‖X −X∗‖2 = ‖HT XH −HT X∗H‖2

=

∥∥∥∥∥

(
0 Ỹ

Ỹ T 0

)
−

(
X∗

11 X∗
12

X∗T
12 X∗

22

)∥∥∥∥∥

2

= ‖ −X∗
11‖2 + ‖UT Ỹ V − UT X∗

12V ‖2 + ‖V T Ỹ T U − V T X∗T
12 U‖2 + ‖ −X∗

22‖2

= ‖X∗
11‖2 +

∥∥∥∥∥∥




Y11 − Z∗11 B̃12S
−1
2 − Z∗12 B̃13 − Z∗13

Y21 − Z∗21 Ỹ22 − Z∗22 S−1
1 B̃23 − Z∗23

Y31 − Z∗31 Y32 − Z∗32 Y33 − Z∗33




∥∥∥∥∥∥

2

+

∥∥∥∥∥∥




Y T
11 − Z∗T11 Y T

21 − Z∗T21 Y T
31 − Z∗T31

S−1
2 B̃T

12 − Z∗T12 Ỹ T
22 − Z∗T22 Y T

32 − Z∗T32

B̃T
13 − Z∗T13 B̃T

23S
−1
1 − Z∗T23 Y T

33 − Z∗T33




∥∥∥∥∥∥

2

+ ‖X∗
22‖2.

Hence, ‖X −X∗‖ = min if and only if

Yi1 = Z∗i1, Y3j = Z∗3j , i, j = 1, 2, 3, (3.25)

and

‖Ỹ22 − Z∗22‖
= ‖1

2
S−1

1 B̃22S
−1
2 + GT − S2S

−1
1 GS1S

−1
2 − Z∗22‖ = min, ∀ G ∈ Rs×s. (3.26)

By making use of Lemma 2.2 in [25] we know that the solution of (3.26) is

Ŷ22 =
1
2
S−1

1 B̃22S
−1
2 + W ∗ [S1S

−1
2 (

1
2
S−1

2 B̃22S
−1
1 − Z∗T22 )

−(
1
2
S−1

1 B̃22S
−1
2 − Z∗22)S1S

−1
2 ].

Now, after substituting this Ŷ22 and Yi1, Y3j (i, j = 1, 2, 3) in (3.25) into (3.24), we get (3.21).

4. Numerical Algorithm and Example

Based on Theorem 3.3, we establish a direct algorithm for finding the solution of Problem 1.1
as follows:

1) Input matrices A, B, X∗ and P ;
2) Form the spectral decomposition of P as (2.5), and determine the matrices A1 and

A2 by (3.3);
3) Find the CCD of the matrix pair (AT

1 , AT
2 ) as (2.3), and determine the matrices

B′
ij by (3.4);

4) Compute the matrix B0 by (3.18);
5) Find the GSVD of the matrix pair (A1, A2) as (2.1), and determine the matrices

B̃ij by (3.19);
6) Compute the matrix Ŷ22 by (3.22), and determine the matrix blocks Z∗ij by (3.20);
7) Compute the solution X̂ of Problem 1.1 by (3.21).

Example 4.1. Let

A =
(

toeplitz(1 : k) Ik

ones(k) Ik

)
, P =

1√
2

( −Ik −Jk

−Jk Ik

)
,

where toeplitz(1 : k) denotes Toeplitz matrix of order k with its first rows being (1, 2, . . . , k);
and ones(k) denotes the matrix of order k whose all elements are one.
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For convenience, we construct the matrix X ∈ SAn×n
P by Lemma 2.1 with Y = ones(k),

and B = AT [X + ε · ones(2k)]A, where ε is an arbitrary nonnegative number. If we take
X∗ = X, then the matrix X is exactly the unique solution of Problem 1.1 when ε = 0 due to
the nonsingularity of the matrix A. Moreover, we can theoretically show that the solution X̂

of Problem 1.1 approaches to X as ε goes to zero. Our numerical results are listed in Table 1.

Table 1: Numerical results for Example 4.1

k ε ‖ bX −X‖ ‖AT XA−B‖ ‖AT bXA−B‖ ‖B −B0‖
10 1 74.0568 2.8658e+4 2.8097e+4 2.8097e+4

10e-2 0.7406 286.5800 280.9744 280.9744

10e-4 0.0074 2.8658 2.8097 2.8097

10e-6 7.4059e-5 0.0287 0.0281 0.0281

50 10e-2 0.5556 4.5257e+5 4.5256e+5 4.5256e+5

10e-4 0.0056 4.5257e+3 4.5256e+3 4.5256e+3

10e-6 5.5565e-5 45.2573 45.2563 45.2563

10e-8 5.5565e-7 0.4526 0.4526 0.4526

100 10e-4 0.0069 1.3037e+5 1.3037e+5 1.3037e+5

10e-6 6.8580e-5 1.3037e+3 1.3037e+3 1.3037e+3

10e-8 6.8581e-7 13.0374 13.0374 13.0374

10e-10 6.8581e-9 0.1304 0.1304 0.1304

The example shows that the distance between B and B0 goes to zero as X̂ approaches X,
and from the results in Table 1, we can also conclude

‖AT XA−B‖ ≥ ‖AT X̂A−B‖ = ‖B −B0‖.
These features are in accordance with the theory established in this paper. Therefore, the
above-described algorithm is valid for solving Problem 1.1.

References

[1] J.P. Aubin, Appliced Functional Analysis, John Wiley & Sons, Inc, 1979.

[2] A. Berman, Mass matrix correction using an incomplete set of measure model, AIAA J., 17

(1979), 1147-1148.

[3] A. Berman and E. J. Nagy, Improvement of a large analytical model using test data, AIAA J.,

21 (1983), 1168-1173.

[4] H. Dai and P. Lancaster, Linear matrix equations from an inverse problem of vibration theory,

Linear Algebra Appl., 246 (1996), 31-47.

[5] H. Dai, Computing a nearest p-symmetric nonnegative definite matrix under linear restriction, J.

Comput. Math., 22 (2004), 671-680.

[6] Y.-B. Deng, X.-Y. Hu and L. Zhang, The symmetric and symmetric positive semidefinite solutions

of linear matrix equation BT XB = D on linear manifolds, Numer. Math. J. Chineses Univ., 12

(2003), 186-192.

[7] Y.-B. Deng and X.-Y. Hu, On solution of the linear matrix equation AXAT + BY BT = C, J.

Comput. Math., 23 (2005), 17-26.

[8] M.I. Friswell and J.E. Mottershead, Finite Element Model Updating in Strctual Dynamics, Kluwer

Academic Publication, 1995.

[9] G.H. Golub and H. Zha, Perturbation analysis of the canonical correlations of matrix pairs, Linear

Algebra Appl., 210 (1994), 3-28.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,

Baltimore and London, 1996.



220 Y. LEI, A.P. LIAO AND L. ZHANG

[11] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2rd ed., Academic Press, New York,

1985.

[12] A.-P. Liao and Z.-Z. Bai, Least-squares solutions of the matrix equation AT XA = D in bisym-

metric matrix set, Math. Numer. Sinica, 24 (2002), 9-20 (in Chinese).

[13] A.-P. Liao and Z.-Z. Bai, The constrained solutions of two matrix equations, Acta Math. Sinica,

18 (2002), 671-678.

[14] A.-P. Liao and Z.-Z. Bai, Least-squares solution of AXB = D over symmetric positive semidefinite

matrices X, J. Comput. Math., 21 (2003), 11-18.

[15] A.-P. Liao and Y. Lei, Least-squares solution with the minimum-norm for the matrix equation

(AXB, GXH) = (C, D), J. Comput. Math. Appl., 50 (2005), 539-549.

[16] C.C. Paige and M.A. Saunders, Towards a generalized singular value decomposition, SIAM J.

Numer. Anal., 18 (1981), 398-405.

[17] Y.-X. Peng, X.-Y. Hu and L. Zhang, The symmetric and ortho-symmetric solutions of linear

matrix equation AT XA = B and its optimal approximation, Numer. Math. J. Chinese Univ., 25

(2003), 372-377 (in Chinese).

[18] Z.-Y. Peng, X.-Y. Hu and L. Zhang, One kind of inverse problems for symmetric and skew

anti-symmetric matrices, Numer. Math. J. Chinese Univ., 25 (2002), 144-152 (in Chinese).

[19] Z.-Y. Peng, X.-Y. Hu and L. Zhang, The nearest bisymmetric solutions of linear matrix equations,

J. Comput. Math., 22 (2004), 873-880.

[20] G.W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.

[21] D.-X. Xie, Least-squares solutions of XT AX = B over positive semidefinite matrices, J. Comput.

Math., 21 (2003), 167-174.

[22] D.-X. Xie, Y.-P. Sheng and X.-Y. Hu, The least-squares solutions of inconsistent matrix equation

over symmetric and antipersymmetric matrices, Appl. Math. Letters, 16 (2003), 589-598.

[23] G.-P. Xu, M.-S. Wei and D.-S. Zheng, On solutions of matrix equation AXB +CY D = F , Linear

Algebra Appl., 279 (1998), 93-109.

[24] Z. Xu, K.-Y. Zhang and Q. Lu, Fast Algorithms of matrices of Toeplitz Form, Northwest Industry

Univ. Press, 1999 (in Chinese).

[25] Y.-X. Yuan, The minimum norm solutions of two classes of matrix equations Numer. Math. J.

Chinese Univ., 24 (2002), 127-134 (in Chinese).

[26] F.-Z. Zhou, X.-Y. Hu and L. Zhang, The inverse problems for symmetric orthogonal anti-

symmetric matrices, Acta Math. Sci. Ser. A, 24 (2004), 543-550 (in Chinese).

[27] F.-Z. Zhou, X.-Y. Hu and L. Zhang, The solvability conditions for the inverse problems of sym-

metric ortho-symmetric matrices, Appl. Math. Comput., 154 (2004), 153-166.


