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Abstract

In this paper, we consider conductivity inclusions inside a homogeneous background

conductor. We provide a complete asymptotic expansion of the solution of such problems

in terms of small variations in the electrical conductivity of the inclusion. Our method is

based on a boundary integral perturbation theory. Our results are valid for both high and

low contrast inclusions.
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1. Introduction

An interesting problem arising in the study of photonic band gap structures concerns the

calculation of electrostatic properties of systems made by high contrast materials. By high

contrast, we mean that the electrical conductivity ratio is high. When the material contrast is

high, standard numerical procedures can become ill-conditioned. We refer to Tausch, White,

and Wang [10,11] and Greengard and Lee [6] for effective algorithms for this class of problems.

The Tausch-White-Wang approach is based on a perturbation theory while the method of

Greengard and Lee is a modification of the classical integral equation.

In this paper, we derive a complete asymptotic expansion of the solution of the conductivity

problem due to small variations in the conductivity ratio by a boundary integral perturbation

method. We provide error estimates for the approximation. Our results are valid for inclusions

with extreme conductivities (zero or infinite conductivity). In particular, our method may be

viewed as a different approach which can potentially simplify calculations for problems involving

highly conducting inclusions.

Consider a homogeneous conducting object occupying a bounded domain Ω ⊂ R
2, with a

connected Lipschitz boundary ∂Ω. We assume, for the sake of simplicity, that its conductivity is
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equal to 1. Let D with Lipschitz boundary be a conductivity inclusion inside Ω of conductivity

equal to some positive constant k 6= 1. Let uk be the solution of




∇ · (1 + (k − 1)χD)∇uk = 0 in Ω,

∂uk

∂ν

∣∣∣
∂Ω

= g ∈ L2
0(∂Ω),

∫

∂Ω

uk = 0,
(1.1)

where χD is the indicator function of D. We allow k to be 0 or +∞. If k = 0, the inclusion D

is insulated, and the equation in (1.1) is replaced with





∆u0 = 0 in Ω \D,

∂u0

∂ν

∣∣∣
∂D

= 0,
∂u0

∂ν

∣∣∣
∂Ω

= g,

∫

∂Ω

u0 = 0,

and if k = +∞, then D is a perfect conductor and the equation in (1.1) is replaced with




∆u∞ = 0 in Ω \D,

∇u∞ = 0 in D,

∂u∞
∂ν

∣∣∣
∂Ω

= g,

∫

∂Ω

u∞ = 0.

(1.2)

It was proved in [4, 7] that uk converges in W 1,2(Ω \ D) to u0 or u∞ as k → 0 or k → +∞.

Here the space W 1,2(Ω \D) is the set of functions f ∈ L2(Ω \D) such that ∇f ∈ L2(Ω \D).

The main result of this paper is a rigorous derivation, based on layer potential techniques, of a

complete asymptotic expansion of uk|∂Ω as k → +∞ or 0. In fact we will derive an asymptotic

formula of uk|∂Ω when k → k0.

This paper is organized as follows. In the next section we give an explicit asymptotic formula

of uk as k → +∞ or 0 when Ω is a disk and D is a concentric disk. In Section 3, we derive a

complete asymptotic formula for uk − uk0
on ∂Ω when k → k0. The formula is valid even when

k0 = 0 or +∞.

2. Explicit Formula

In this section, Ω is assumed to be the unit disk centered at the origin, and D to be the

concentric disk centered at the origin with radius α. Set

g(1, θ) =
∑

n∈Z\{0}

gne
inθ.

Write

uk =






a0 + b0 ln(r) +
∑

n∈Z\{0}

(anr
|n| + bnr

−|n|)einθ in Ω \D,

∑

n∈Z

cn
α|n|

r|n|einθ in D,

where the Fourier coefficients an, bn and cn are to be found.

Since g ∈ L2
0(∂Ω) and

∫
∂Ω
uk = 0, we have that a0 = b0 = 0. Using the continuity of uk

across the interface ∂D, we get c0 = 0. Then, for n ∈ Z \ {0}, we have





|n|an − |n|bn = gn,

anα
|n| + bnα

−|n| − cn = 0,

anα
|n| − bnα

−|n| − kcn = 0,
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which yields

an =
gn

|n|

(k + 1)α−|n|

(k + 1)α−|n| + (k − 1)α|n|
,

bn = −
gn

|n|

(k − 1)α|n|

(k + 1)α−|n| + (k − 1)α|n|
,

cn = 2
gn

|n|

1

α−|n|(k + 1) + α|n|(k − 1)
.

Therefore, we have

uk(1, θ) =
∑

n∈Z\{0}

(an + bn)einθ

=
∑

n∈Z\{0}

gn

|n|

(k + 1)α−|n| − (k − 1)α|n|

(k + 1)α−|n| + (k − 1)α|n|
einθ.

In similar fashion we get

u∞(1, θ) =
∑

n∈Z\{0}

gn

|n|

α−|n| − α|n|

α|n| + α−|n|
einθ.

Then the following asymptotic expansion holds as k goes to +∞:

uk(1, θ) = u∞(1, θ) +

+∞∑

l=1

1

(k − 1)l
v(l)
∞ (θ),

where

v(l)
∞ (θ) = 2l+1(−1)l+1

∑

n∈Z\{0}

α−(l−1)|n|

(α|n| + α−|n|)l+1

gn

|n|
einθ. (2.1)

Similarly, we get the following asymptotic formula when k → 0:

uk(1, θ) = u0(1, θ) +
+∞∑

l=1

kl

(k − 1)l
v
(l)
0 (θ),

where

v
(l)
0 (θ) = 2l+1(−1)l+1

∑

n∈Z\{0}

α−(l−1)|n|

(α|n| − α−|n|)l+1

gn

|n|
einθ. (2.2)

3. The General Case

3.1. Representation formula

Let Γ(x) be the fundamental solution of the Laplacian ∆ in R
2: Γ(x) = 1/(2π) ln |x|. The

single and double layer potentials of the density function φ on D are defined by

SDφ(x) :=

∫

∂D

Γ(x− y)φ(y)dσ(y), x ∈ R
2, (3.1)

DDφ(x) :=

∫

∂D

∂

∂νy

Γ(x− y)φ(y)dσ(y), x ∈ R
2 \ ∂D. (3.2)
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For a function u defined on R
2 \ ∂D, we denote

∂

∂ν±
u(x) := lim

t→0+
〈∇u(x± tνx), νx〉, x ∈ ∂D,

if the limit exists.

The proof of the following trace formula can be found in [5]:

∂

∂ν±
SDφ(x) =

(
±

1

2
I + K∗

D

)
φ(x), (3.3)

(DDφ)|± =

(
∓

1

2
I + KD

)
φ(x), x ∈ ∂D, (3.4)

where

KDφ(x) =
1

2π

∫

∂D

〈y − x, νy〉

|x− y|2
φ(y)dσ(y)

and K∗
D is the L2-adjoint of KD. Let L2

0(∂D) := {f ∈ L2(∂D) :
∫

∂D
fdσ = 0}. The following

results are of importance to us. For proofs see [5] or [2, p. 17].

Lemma 3.1. The operator λI−K∗
D is invertible on L2

0(∂D) if |λ| ≥ 1
2 , and for λ ∈ (−∞,− 1

2 ]∪

(1
2 ,+∞), λI −K∗

D is invertible on L2(∂D).

Denote by SΩ,DΩ,KΩ, and K∗
Ω the layer potentials on Ω. Define the functions Hk(x), for

x ∈ R
2 \ ∂Ω, by

Hk(x) := DΩ(uk|∂Ω)(x) − SΩg(x), (3.5)

and introduce N(·, y) to be the Neumann function for ∆ in Ω corresponding to a Dirac mass

at y, that is, N is the solution to




∆xN(x, y) = −δy in Ω,

∂N

∂ν

∣∣
∂Ω

= −
1

|∂Ω|
,

∫

∂Ω

N(x, y)dσ(x) = 0 for y ∈ Ω.

Define the background voltage potential, U , to be the unique solution to




∆U = 0 in Ω,

∂U

∂ν

∣∣
∂Ω

= g,

∫

∂Ω

U = 0.
(3.6)

The following representation was proved in [1]:

uk(x) = U(x) −

∫

∂D

N(x, y)(λI −K∗
D)−1

(
∂Hk

∂ν

∣∣∣
∂D

)
(y)dσ(y), x ∈ ∂Ω, (3.7)

where λ = (k + 1)/(2(k − 1)).

Lemma 3.2. Let k0 6= 1 and λ0 = (k0 + 1)/(2(k0 − 1)). Let vk = uk − uk0
. Then, for any

x ∈ ∂Ω, we have

vk(x) +

∫

∂D

N(x, y)(λI −K∗
D)−1

(
∂

∂ν
DΩ(vk)

∣∣∣
∂D

)
(y)dσ(y)

=

∫

∂D

N(x, y)

[
− (λI −K∗

D)−1 + (λ0I −K∗
D)−1

](
∂Hk0

∂ν

∣∣∣
∂D

)
(y)dσ(y). (3.8)
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Proof. It follows from (3.7) that, for x ∈ ∂Ω,

uk(x) − uk0
(x) +

∫

∂D

N(x, y)(λI −K∗
D)−1

(
∂(Hk −Hk0

)

∂ν

∣∣∣
∂D

)
(y)dσ(y)

=

∫

∂D

N(x, y)

[
− (λI −K∗

D)−1 + (λ0I −K∗
D)−1

](
∂Hk0

∂ν

∣∣∣
∂D

)
(y)dσ(y).

Thanks to (3.5), we get

Hk(x) −Hk0
(x) = DΩ(uk|∂Ω − uk0

|∂Ω)(x), x ∈ Ω,

and hence the proof is complete.

3.2. Derivation of the asymptotic expansion

Now, we expand (λI −K∗
D)−1 as k goes to k0, i.e., with respect to λ− λ0:

(λI −K∗
D)−1 =

+∞∑

n=0

(−1)n(λ− λ0)
n(λ0I −K∗

D)−n−1. (3.9)

Note that the series on the right-hand side of (3.9) converges absolutely as an operator on

L2
0(∂D) as long as λ− λ0 is small enough. Thus (3.8) reads, for any x ∈ ∂Ω,

vk(x) +

+∞∑

n=0

(−1)n(λ− λ0)
n

∫

∂D

N(x, y)(λ0I −K∗
D)−n−1(∇DΩ(vk)|∂D · ν)(y)dσ(y)

=

+∞∑

n=1

(−1)n+1(λ− λ0)
n

∫

∂D

N(x, y)(λ0I −K∗
D)−n−1

(
∂Hk0

∂ν

∣∣∣
∂D

)
(y)dσ(y),

or equivalently, (
I +

+∞∑

n=0

(λ− λ0)
nTn

)
(vk) =

+∞∑

n=1

(λ− λ0)
nFn, (3.10)

where

Tn(v)(x) = (−1)n

∫

∂D

N(x, y)(λ0I −K∗
D)−n−1(∇DΩ(v)|∂D · ν)(y)dσ(y), x ∈ ∂Ω,

and

Fn(x) = (−1)n+1

∫

∂D

N(x, y)(λ0I −K∗
D)−n−1

(
∂Hk0

∂ν

∣∣∣
∂D

)
(y)dσ(y).

Note that, since ∂D is away from ∂Ω, we have

‖Tnv‖W 2
1
2

(∂Ω) ≤ C‖(λ0I −K∗
D)−n−1(∇DΩ(v)|∂D · ν)‖L2(∂D)

≤ CCn+1
0 ‖∇DΩ(v)‖L2(∂D) ≤ C1C

n+1
0 ‖v‖L2(∂Ω), (3.11)

where C0 is the operator norm of (λ0I−K∗
D)−1 on L2

0(∂Ω) and C and C1 are positive constants

independent of n. Here W 2
1
2

(∂Ω) is the set of functions f ∈ L2(∂Ω) such that

∫

∂Ω

∫

∂Ω

|f(x) − f(y)|2

|x− y|2
dσ(x) dσ(y) < +∞.
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Likewise, we have

‖Fn‖W 2
1
2

(∂Ω) ≤ CCn+1
0

∥∥∥∥
∂Hk0

∂ν

∥∥∥∥
L2(∂D)

.

Note that ∥∥∥∥
∂Hk0

∂ν

∥∥∥∥
L2(∂D)

≤ C(‖uk0
‖L2(∂Ω) + ‖g‖L2(∂Ω)) ≤ C′‖g‖L2(∂Ω),

for some C′, and hence we get

‖Fn‖W 2
1
2

(∂Ω) ≤ CCn+1
0 ‖g‖L2(∂Ω), (3.12)

for some constant C independent of n. If ∂Ω is C1,β, β > 0, then we get in the same way

‖Tnv‖C1(∂Ω) ≤ CCn+1
0 ‖v‖L2(∂Ω), (3.13)

‖Fn‖C1(∂Ω) ≤ CCn+1
0 ‖g‖L2(∂Ω). (3.14)

We need the following lemma, which was proved in [3].

Lemma 3.3. If ∂Ω is Lipschitz, then the operator I + T0 is invertible on L2
0(∂Ω). If ∂Ω is

C1,β for some β > 0, then it is invertible on C1
0(∂Ω), where C1

0(∂Ω) denotes the collection of

f ∈ C1(∂Ω) with
∫

∂Ω
f = 0.

We seek a solution vk to (3.10) in the form

vk(x) =

+∞∑

n=0

(λ− λ0)
nv

(n)
k0

(x).

Substituting the above expansion of vk into (3.10), we obtain

+∞∑

n=0

(λ− λ0)
nv

(n)
k0

(x) +

+∞∑

n=0

(λ− λ0)
n

(
n∑

p=0

Tpv
(n−p)
k0

)
(x)

=

+∞∑

n=1

(λ − λ0)
nFn(x), x ∈ ∂Ω. (3.15)

By equating powers of λ− λ0, we find that v
(0)
k0

= 0 and, for any n ≥ 1,

(I + T0)v
(n)
k0

+

n∑

p=1

Tpv
(n−p)
k0

= Fn.

Using Lemma 3.3, it follows that

v
(n)
k0

= (I + T0)
−1
(
−

n∑

p=1

Tpv
(n−p)
k0

+ Fn

)
. (3.16)

Using (3.11) and (3.12), one can show inductively that

‖v
(n)
k0

‖W 2
1
2

(∂Ω) ≤ C2C
n+1
0 n‖g‖L2(∂Ω), n = 1, 2, . . . ,

for some constant C2 independent of n. The same estimates with the W 2
1
2

-norm replaced with

the C1(∂Ω)-norm holds if ∂Ω is C1,β. Since

λ− λ0 =
k0 − k

(k − 1)(k0 − 1)
,

we finally arrive at the following theorem.



250 H. AMMARI, H. KANG AND H. ZRIBI

Theorm 3.1. Let C0 be the operator norm of (λ0I−K∗
D)−1 on L2

0(∂D). Let 0 ≤ k0 6= 1 ≤ +∞.

The following asymptotic expansion holds uniformly and absolutely if |k − k0| ≤ C < 1/2C0 on

∂Ω:

uk(x) = uk0
(x) +

+∞∑

n=1

[
k0 − k

(k − 1)(k0 − 1)

]n

v
(n)
k0

(x), (3.17)

where the functions v
(n)
k0

are defined by the recursive formula (3.16). The convergence of the

series is in W 2
1
2

(∂Ω) if ∂Ω is Lipschitz, and in C1(∂Ω) if ∂Ω is C1,β.

In the most significant case, k0 = 0 or +∞, the formula takes the following form:

uk(x) = u0(x) +

+∞∑

n=1

kn

(k − 1)n
v
(n)
0 (x), (3.18)

and

uk(x) = u∞(x) +

+∞∑

n=1

1

(k − 1)n
v(n)
∞ (x). (3.19)

Moreover, if we interchange the conductivities of Ω \D and D, the boundary perturbations

in the voltage potentials are given by

+∞∑

n=1

1

(k − 1)n
v
(n)
0 if k → +∞ and

+∞∑

n=1

kn

(k − 1)n
v(n)
∞ if k → 0,

where v
(n)
0 and v

(n)
∞ are defined by (3.16). This is related to the Keller-Mendelson inversion

theorem [8,9].

Now, if we consider the case when Ω is the unit disk centered at the origin, and D is the

concentric disk centered at the origin with radius α then, using

K∗
Dφ(x) =

1

4πα

∫

∂D

φ(y) dσ(y), KΩψ(x) =
1

4π

∫

∂Ω

ψ(y) dσ(y),

and

N(x, y) = −2Γ(x− y) modulo constants, ∀ x ∈ ∂Ω, y ∈ ∂D,

we easily obtain from Theorem 3.1 the explicit formulae (2.1) and (2.2) for v
(n)
∞ and v

(n)
0 , n ≥ 1.

The formula (3.17) holds for all k0 6= 1. In low contrast case, i.e., k0 = 1, we can get the

asymptotic formula trivially. In fact, if k0 = 1, then Hk0
= U , the background potential. Define

T̃n(v)(x) :=

∫

∂D

N(x, y)(K∗
D)n

(
∂DΩv

∂ν

∣∣∣
∂D

)
(y)dσ(y), x ∈ ∂Ω,

F̃n(x) := −

∫

∂D

N(x, y)(K∗
D)n

(
∂U

∂ν

∣∣∣
∂D

)
(y)dσ(y), x ∈ ∂Ω,

and let the functions ṽ(n) on ∂Ω, for n ∈ N, be given by

ṽ(0)(x) = 0, ṽ(n)(x) = −

n−1∑

p=0

T̃pṽ
(n−p−1)(x) + F̃n−1(x), n ≥ 1.

Then we easily get that

uk(x) = U(x) +

+∞∑

n=1

2n(k − 1)n

(k + 1)n
ṽ(n)(x), x ∈ ∂Ω.
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The above asymptotic expansion holds uniformly and absolutely on ∂Ω if |k − 1| ≤ C < 1/2×

the operator norm of K∗
D on L2

0(∂D). The convergence of the series is in W 2
1
2

(∂Ω) if ∂Ω is

Lipschitz, and in C1(∂Ω) if ∂Ω is C1,β , β > 0.
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