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Abstract

The fast sweeping method is an efficient iterative method for hyperbolic problems.

It combines Gauss-Seidel iterations with alternating sweeping orderings. In this paper

several parallel implementations of the fast sweeping method are presented. These parallel

algorithms are simple and efficient due to the causality of the underlying partial different

equations. Numerical examples are used to verify our algorithms.
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1. Introduction

The fast sweeping method is an iterative method that combines Gauss-Seidel iteration with

alternating sweeping ordering. It was first introduced in [1] from the stochastic control point

of view and then in [11] from partial differential equation point of view. For Eikonal type

of equations it is fully analyzed and shown in [10] that the number of iteration is finite and

is independent of mesh size. The fast sweeping method has been developed for unstructured

meshes in [4] recently. The method has also been extended to more general Hamilton-Jacobi

equations [2, 3, 5, 7] and high-order methods [9].

The convergence mechanism for fast sweeping method is quite different from the general

framework of iterative methods. For most iterative methods, the convergence is due to some

contraction property of the iteration. The fact that the fast sweeping method can converge in a

finite number of iterations, e.g., for Eikonal equations which is a nonlinear hyperbolic boundary

value problem, is because of the causality of the partial differential equation: information

propagates along characteristics. With a systematic alternating ordering strategy all directions

of characteristics can be divided into a finite number of groups and each group of directions is

covered simultaneously by one of the orderings. Moreover, any characteristic can be covered

by a finite number of orderings [10]. From the discrete point of view, the discretized system of

nonlinear equations can be put into a triangular form if all nodes are ordered in an increasing

order according to their values, i.e., if we interpret the viscosity solution to the Eikonal equation

as the first arrival time for an expanding wave front later arrival time can be determined from

earlier arrival time. A triangular system can be solved one equation by one equation in one

sweep. Of course the problem is we do not know the solution so there is no such ordering a priori.
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That is why systematic alternating orderings are needed to cover all possible causality blindly.

In other words, with an appropriate upwind scheme that captures information propagation

along characteristics correctly, we can characterize all nodes into a few groups. All nodes

in each group have a similar dependence pattern on their neighbors. For example, using the

monotone upwind difference scheme (2.2) on a rectangular grid in two dimensions for an Eikonal

equation, all grid points can be divided into simply connected regions. In each region the value

at a grid point depends on two of its neighbors in the following four ways: (1) left and down

neighbors; (2) left and up neighbors; (3) right and down neighbors; (4) right and up neighbors.

Of course there are possible degenerate cases where a grid point may only depend on one of

its neighbors. In a degenerate case we can still classify it into one of the four cases above. For

example, if a grid point only depends on its left neighbor we can either classify it into case (1) or

(2). Using Gauss-Seidel iteration each connected region can be covered by one of the orderings

simultaneously when the ordering is in the upwind direction of the dependence pattern. For

example, the ordering i = 1 : I, j = 1 : J is the upwind direction for the dependence pattern

(1).

Since the fast sweeping method is an iterative method, a natural question is: can the fast

sweeping method be parallelized? The answer is yes and simple. This is again due to the

causality of the partial differential equation. We will present a few possible versions of parallel

implementations of the fast sweeping method in Section 2 and show their efficiencies in Section

3 using numerical examples. Note that a parallel algorithm based on fast marching method

(expanding front) was proposed in [8]. Although the above algorithm can achieve the optimal

complexity O(n/p), where n is the total number of grid points and p is the number of processors,

the algorithm works for a special discretization scheme. In addition a load balancing algorithm

is needed at each stage. Our domain decomposition based parallel algorithms is very simple to

implement and work for more general discretizations.

2. Parallel Algorithms For the Fast Sweeping Method

For simplicity we restrict our discussions to the computation for Eikonal equation in two

dimensions on rectangular grids. Extensions to unstructured meshes and higher dimensions is

straightforward. Assume we want to compute the positive viscosity solution of the following

boundary value problem

|∇u(x)| = f(x) x ∈ R2,

u(x) = 0 x ∈ Γ ⊂ R2,
(2.1)

where f(x) > 0. Denote xi,j to be a grid point in the computational domain Ω, h to be the

grid size and uh
i,j to be the numerical solution at xi,j . First we give a brief description of the

fast sweeping algorithm [10].

Discretization: At interior grid points Godunov type of upwind scheme is used to discretize

the partial differential equation (2.1) which results in the following system of nonlinear

equations
[(uh

i,j − uh
xmin)+]2 + [(uh

i,j − uh
ymin)+]2 = f2

i,jh
2

i = 2, · · · , I − 1, j = 2, · · · , J − 1,

(2.2)

where

uh
xmin = min(uh

i−1,j , uh
i+1,j), uh

ymin = min(uh
i,j−1, u

h
i,j+1)
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and

(x)+ =

{

x x > 0,

0 x ≤ 0.

Appropriate conditions are used at the boundary of the computational domain. For

example, one sided difference can be used at the outflow boundary, e.g., at a left boundary

point x1,j , a one sided difference is used in the x direction,

[(uh
1,j − uh

2,j)
+]2 + [(uh

1,j − uh
ymin)+]2 = f2

1,jh
2.

Initialization: To enforce the boundary condition, u(x) = 0 for x ∈ Γ ⊂ Rn, assign exact

values or interpolated values at grid points at or near Γ. These values are fixed in later

calculations. Assign large positive values at all other grid points. These values will be

updated later.

Gauss-Seidel iterations with alternating orderings: At each grid xi,j whose value is not fixed

during the initialization, compute the solution, denoted by u, of (2.2) from the current

values of its neighbors uh
i±1,j , u

h
i,j±1 and then update uh

i,j to be the smaller one between

u and its current value, i.e., unew
i,j = min(uold

i,j , u). We sweep the whole domain with four

alternating orderings repeatedly,

(1) i = 1 : I, j = 1 : J (2) i = I : 1, j = 1 : J

(3) i = I : 1, j = J : 1 (4) i = 1 : I, j = J : 1

One of the crucial point in the algorithm is that we update the value at a point if and only

if the new value is smaller than the old value. This updating rule comes from the fact that it is

better if it is smaller due to the causality of the partial differential equation, i.e., the physical

interpretation of first arrival time. When a grid value reaches the smallest possible value it is

the solution. It will not be changed in later iterations. This simple causality also allows us to

develop the following parallel algorithms for the fast sweeping method easily.

2.1. Parallel sweeping

We parallelize the fast sweeping algorithm by implementing sweepings with different order-

ings in parallel, i.e., we assign different sweepings to different CPUs and compute simultane-

ously. For example, in two dimensions, we start with the same initial guess and assign the

four Gauss-Seidel iterations with different orderings to four CPUs. After the first round, e.g.,

the four sweepings are finished, we get four solutions u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 from the four different

computations. We take the minimum value of these four solutions at each grid point

u(1) = min{u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 } (2.3)

and use this as our updated solution in the computation domain and start the second round

using four CPUs for different orderings. This process is continued until convergence.

Again, all directions of characteristics will be covered by one of the sweeping orderings.

Taking the minimum among the four simultaneously computed solutions will guarantee the

updated solution will get better after each iteration at all grid points. In another interpretation,

we can view the original version of fast sweeping method is multiplicative or sequential for the

four different orderings while this new version is additive or in parallel for the four different

orderings.
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2.2. Domain decomposition

In a standard domain decomposition setup we divide the whole computation domain into

subdomains and assign the computation (using the fast sweeping method) in different subdo-

mains to different CPUs. The two crucial issues for a domain decomposition method are:

1. how to communicate between computations in different subdomains?

2. is overlapping between adjacent subdomains needed?

The answer to the second question is no. We only require two adjacent subdomains to share

a common boundary. Again due to the simple causality of the partial differential equation the

communication between adjacent subdomains is extremely simple. We call the shared boundary

between adjacent subdomains an internal boundary. At an internal boundary we have multiple

values from those subdomains that share the internal boundary. The communication among

the subdomains is to take the minimum value at the internal boundary after each update. In

another word, we use the simple causality for first arrival time, the smaller one is the better

one. By this updating rule we always have a uniquely defined solution in the whole domain and

the solution is monotonically decreasing at all grid points. This simple communication between

adjacent subdomains guarantees that we only pass correct information from one subdomain to

its adjacent subdomains.

Of course there could be several different implementations for this domain decomposition

algorithm.

• We can iterate the fast sweeping method in each subdomain until it converges before we

communicate among subdomains. However, this may cost unnecessary extra computa-

tions since information from other subdomains has not been passed through yet. Another

extreme is to exchange information after one sweeping in each subdomain. However, one

sweeping in a particular order may not be enough to propagate useful information in all

directions in each subdomain and may cost too many unnecessary communications. A

good compromise would be to finish four different sweepings in each subdomain before

exchange of information at internal boundaries.

• We can have additive version, i.e., computations in each subdomain are done simultane-

ously, or multiplicative version, i.e., computations in each subdomain are done sequen-

tially. For the multiplicative version, again we can sweep the subdomains in different

orderings which may accelerate information propagation in different directions through

subdomains and hence improve the convergence speed.

Here we give a concrete example to describe these two versions. Suppose the whole

computation domain Ω is decomposed into four subdomains, Ωi, i = 1, 2, 3, 4, as shown in

Fig. 2.1. First we initialize the solution as in the fast sweeping algorithm described above.

For the additive version, we compute the solution in each subdomain simultaneously using

the fast sweeping algorithm. After the computation is completed in each subdomain we

have two values at Γ12, Γ13, Γ24, Γ34 and four values at the point O. We just define the

updated solution at these internal boundaries to be the minimum one from all possible

values. Then we start next iteration in all subdomains. This procedure is repeated until

convergence. For the multiplicative version it is even simpler since the most updated value

at each grid point is always used. For example, after the computation is finished in Ω1,

the updated values at the internal boundary Γ12 shared by Ω1 and Ω2 will be involved

and updated during the following computation in Ω2.
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Fig. 2.1. An example of domain decomposition.

Use the same arguments from [10] we can easily see

1. The above parallel algorithms will converge since the scheme is monotone. The solution

at all grid points are decreasing and getting better with iterations.

2. The above parallel algorithms converges in a finite number of iterations and is indepen-

dent of grid size since the fast sweeping algorithm in each subdomain converges in a

finite number of iterations and information propagates through all subdomains in a finite

number of communications through internal boundaries.

Remark 1. Since information may need to propagate through subdomains, the number of

iterations may depend on the number of subdomains for the additive version. For a fixed domain

decomposition configuration the number of iterations needed for convergence is independent of

grid size because the convergence of fast sweeping method in each subdomain is independent of

grid size. For the multiplicative version if we sweep the subdomains in different orderings the

number of iterations is also independent of the number of subdomains.

Remark 2. In the additive version of domain decomposition computations in some subdomains

may be unnecessary at the beginning because there is no part of the boundary Γ in them or

no correct information has been passed to them yet. In practice one could delay computations

in those subdomains that do not contain any part of Γ. However, to design the best ordering

of the subdomains so that no unnecessary computation is done in a subdomain before correct

information has been passed through one needs to know the solution.

Remark 3. Our parallel algorithms are based on the hyperbolic causality which is totally

different from elliptic problems. These algorithms work for convex Hamilton-Jacobi equations

[5] where solution is always increasing (or decreasing) along characteristics.

3. Numerical Examples

In this section we use numerical tests to verify the proposed parallel algorithms. The

discretization is as described in (2.2). The numerical errors are the same as those shown in [10].

Here we only want to demonstrate the convergence behavior of different parallel algorithms.

We present four examples to test our algorithms. Contour plots of the solutions are shown

in Fig. 3.1. In all examples the computation domain is the unit square Ω = [0, 1]× [0, 1].
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Example 0. Compute the distance function to the center point (0.5,0.5).

Example 1. Compute the distance function to 100 random points in the unit square, see Fig.

3.1(a).

Example 2. Compute the distance function to four circles, centered at (0.2, 0.2), (0.2, 0.8),

(0.8, 0.2), and (0.8, 0.8) with radius 0.15, see Fig. 3.1(b).

Example 3. Compute the distance function to the lower-left corner with five ring obstacles,

see Fig. 3.1(c). In the five rings the propagation speed is zero, i.e., f(x, y) = 1 outside the rings

and f(x, y) = ∞ inside the rings (in actual implementation those grid points inside the rings

are explicitly marked and their values are never computed).

Example 4. Compute the solution to a shape from shading problem in [6], see Fig. 3.1(d). In

the Eikonal equation (2.1) we have

f(x, y) = 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2. (3.1)

and values are prescribed at five isolated points.

u(
1

4
,
1

4
) = u(

3

4
,
3

4
) = u(

1

4
,
3

4
) = u(

3

4
,
1

4
) = 1, u(

1

2
,
1

2
) = 2.

u(x, y) = 0 is prescribed at the boundary of the unit square. The solution for this problem is

the shape function, which has the brightness I(x, y) = 1/
√

1 + f(x, y)2 under vertical lighting.

See [6] for details.

First we show the convergence results for the original fast sweeping method for reference.

Table 3.1 gives the number of sweeping needed for convergence to machine zero on different grid

size. Here each sweeping is one iteration that goes through all grid points in the computation

domain with a particular ordering. We see a finite number of iterations independent of mesh

size for each example when the grid is refined. Here are a few remarks to clarify some of the

examples. For Example 0, the distance function to a single point, exact four sweepings are

needed. For Example 1, the distance to 100 random points, more than four sweepings are

needed for full convergence. However as explained in [10], after four sweepings the solution is

as accurate as the fully converged solution. Interactions of characteristics at shocks may need

more iterations and minor modifications to settle down. For Example 3, distance to a point

with five ring obstacles, the number of sweepings settles down after the complicated geometric

configuration can be resolved by the grid.

Table 3.1: Number of sweepings for the original fast sweeping algorithm.

example 0 example 1 example 2 example 3 example 4

h=1/100 4 8 4 18 8

h=1/200 4 8 4 18 8

h=1/300 4 9 4 16 8

h=1/400 4 8 4 16 8

h=1/500 4 9 4 16 8

Now we present the number of iterations needed for convergence for different parallel al-

gorithms. Table 3.2 shows the results for the parallel sweeping algorithm described in Section

2.1. In the table one iteration includes four sweepings through the computation domain with

different orderings in parallel. A communication among the four sweepings, i.e., taking the
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(c) distance to a point with five ring obstacle (d) shape from shading

Fig. 3.1. Numerical results for Examples 1-4.

minimum values, are done after each iteration. The numerical results clearly show that the

number of iterations are independent of mesh size. For Example 0, the distance to a single

point, each sweeping gets the correct solution in a corresponding quadrant independent of

other sweepings, e.g., grid points in the first quadrant get the correct value in the sweeping

with ordering i = 1 : I, j = 1 : J since they all depend on their left and down neighbors. After

four sweepings are finished a single communication among them will get the correct solution in

the whole domain. In general if the characteristics are straight lines, sweepings with different

orderings are almost independent of each other and the parallel sweeping algorithm should be

as efficient as the original fast sweeping algorithm. However if the characteristics are curved

then different orderings implemented sequentially may propagate information faster on a curved

characteristics than different orderings implemented in parallel.

Table 3.3 shows the convergence results for the multiplicative domain decomposition algo-

rithm described in Section 2.2, i.e., computations in the subdomains are done successively. In

our numerical tests four sweepings with different orderings are performed in each subdomain

before moving to the next subdomain. The communication among subdomains are only through

the shared internal boundaries. In the table one iteration includes one pass through all subdo-

mains and the computation in each subdomain is composed of four sweepings. First we fix the
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Table 3.2: Number of iterations for the parallel sweeping algorithm. Each iteration includes four

sweepings of different orderings in parallel.

example 0 example 1 example 2 example 3 example 4

h=1/100 1 4 2 8 3

h=1/200 1 4 2 9 3

h=1/300 1 4 2 8 3

h=1/400 1 4 2 8 3

h=1/500 1 4 2 8 4

Table 3.3: Number of iterations for multiplicative domain decomposition algorithm. One iteration con-

tains one pass through all subdomains and the computation in each subdomain includes four sweepings.

example 0 example 1 example 2 example 3 example 4

h=1/100 2 4 2 9 4

h=1/200 2 4 2 9 4

h=1/300 2 4 2 9 4

h=1/400 2 4 2 9 4

h=1/500 2 4 2 9 4

(a) The computation domain is decomposed into 2x2 subdomains.

example 0 example 1 example 2 example 3 example 4

h=1/100 6 4 4 12 6

h=1/200 6 4 4 12 6

h=1/300 6 4 4 12 7

h=1/400 6 4 4 12 7

h=1/500 6 4 4 12 7

(b) The computation domain is decomposed into 5x5 subdomains.

2x2 4x4 8x8 16x16

use different ordering of the subdomains 11 12 12 13

use fixed ordering of the subdomains 9 12 16 27

(c) The computation domain is decomposed into different number of subdomains.

The grid size is h=1/400.

ordering of the subdomains, i.e., the order in which the subdomains are went through in each

iteration is the same. Table 3.3 (a) and (b) show the results for 2x2 and 5x5 subdomains re-

spectively. To converge in the whole computation domain information needs to propagate both

in each subdomain and among subdomains. More subdomains may result in more iterations.

However, using the sweeping idea we can also sweep the subdomains in different orderings in

different iterations. In this way information also propagates through subdomains efficiently.

Table 3.3 (c) compared the multiplicative domain decomposition algorithm on Example 3 with

and without different orderings for the subdomains. When sweeping the subdomains with dif-

ferent orderings the number of iterations is almost independent of the number of subdomains.

While the number of iterations increases when the number of subdomains increases with the

ordering of subdomains fixed.

Finally we show the convergence results for the additive domain decomposition algorithm,

i.e., computations in the subdomains are done in parallel. In our numerical tests four sweepings

with different orderings are performed in each subdomain. The communication among subdo-

mains are only through the shared internal boundaries as described in 2.2. In the table one
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Table 3.4: Number of iterations for the additive domain decomposition algorithm. One iteration

contains computations in all subdomains in parallel and the computation in each subdomain includes

four sweepings.

example 0 example 1 example 2 example 3 example 4

h=1/100 4 4 2 13 5

h=1/200 4 4 2 13 5

h=1/300 4 4 2 13 5

h=1/400 4 5 2 13 5

h=1/500 4 5 2 13 5

(a) The computation domain is decomposed into 2x2 subdomains.

example 0 example 1 example 2 example 3 example 4

h=1/100 6 5 4 22 7

h=1/200 6 5 4 23 7

h=1/300 6 5 4 23 7

h=1/400 6 6 4 23 7

h=1/500 6 6 4 23 7

(b) The computation domain is decomposed into 5x5 subdomains.

iteration includes simultaneous computations in all subdomains and the computation in each

subdomain is composed of four sweepings. Since computations in all subdomains are done in

parallel there is no ordering for the subdomains. Table 3.4 (a) and (b) shows the results for

2x2 and 5x5 subdomains respectively. We see that more subdomains may need more iterations

to converge.
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