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Abstract

Consider the diffraction of a time-harmonic wave incident upon a periodic chiral struc-

ture. The diffraction problem may be simplified to a two-dimensional one. In this paper,

the diffraction problem is solved by a finite element method with perfectly matched ab-

sorbing layers (PMLs). We use the PML technique to truncate the unbounded domain to a

bounded one which attenuates the outgoing waves in the PML region. Our computational

experiments indicate that the proposed method is efficient, which is capable of dealing

with complicated chiral grating structures.

Mathematics subject classification: 35Q60, 65L60, 78A45.
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1. Introduction

Consider a time-harmonic electromagnetic plane wave incident on a periodic chiral structure

which is periodic in x1- direction and invariant in x3- direction. The medium inside the structure

is chiral and separates two homogeneous regions. The scattering problem may be simplified to

a two-dimensional one. In this paper, we propose and analyze a finite element method with

perfectly matched absorbing layers for the scattering problem.

Recently, there has been a considerable interest in the study of scattering and diffraction by

chiral media. In general, the electromagnetic fields inside the chiral medium are governed by

Maxwell equations together with the Drude-Born-Fedorov equations in which the electric and

magnetic fields are coupled. The chiral media is characterized by the electric permittivity ε,

the magnetic permeability µ and the chirality measure β. On the other hand, periodic struc-

tures (gratings) have received increasing attentions through the years because of importance

applications in integrated optics, optical lenses, et al.

Scattering theory in chiral structures has recently received considerable attention in the

applied mathematical community. We refer to Ammari and Bao [1], Ammari and Nédélec [2]

for the existence and uniqueness to the scattering problem for bi-periodic chiral media. A

good introduction to the electromagnetic diffraction through chiral structures can be found in

Lakhtakia [3] and Lakhtakia, Varadan and Varadan [4] (non-periodic chiral structures).
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This work is a continuation of our recent analysis of diffraction problem of Zhang and Ma

[5]. In [5], we simplify the diffraction problem into a two-dimensional one and established the

well-posedness. We also propose a finite element method and give the numerical analysis for

the scattering problem.

The purpose of this paper is to develop efficient numerical methods for solving the scattering

problem. In doing so, the main difficulty is to truncate the domain into a bounded computa-

tional domain. The finite element method studied in [5] is based on variational formulation on

a bounded domain, with periodic condition in the x1-direction and the transparent boundary

condition on the top and bottom boundaries. The transparent boundary condition is obtained

by insisting that the solutions be composed of bounded outgoing plane waves, plus the incident

wave in the domain above the structure. The derived transparent boundary condition is repre-

sented as a quasi-differential operator and is nonlocal. In practical computations, the infinite

series must be truncated. In [6], for the wave scattering by periodic (achiral) structures, Chen

and Wu use perfectly matched layer (PML) technique to deal with the difficulty. In this paper,

we will develop the PML method to solve the scattering problem for chiral structures.

Under the assumption that the exterior solution is composed of outgoing waves only, the

basic idea of the PML technique is to surround the computational domain with a finite thickness

layer of a specially designed model medium, which would either slow down or attenuate all the

waves that propagate from inside the computational domain. Since the work of Berenger [7],

which proposed a PML for use with the time dependent Maxwell equations, various construc-

tions of PML absorbing layers have been proposed and studied in the literature. We refer to

Turkel and Yefet [8] for a review on various proposed models, and Lassas and Somersalo [9] for

the study of mathematical properties of the PML equations.

The layout of the paper is as follows. In the next section, we state the model problem and

a variational formulation. We discuss the energy distribution of diffracted waves in Section

3. In Section 4, we introduce our PML formulation, and establish the existence, uniqueness

and convergence of the PML formulation. Finally, in Section 5, we present several numerical

examples to illustrate the advantages of our method.

2. The Scattering Problem

Let us consider the propagation of time-harmonic electromagnetic waves. The electromag-

netic fields are governed by the time-harmonic (time dependence e−iωt) Maxwell’s equations

∇× E− iωB = 0, (2.1)

∇× H + iωD = 0, (2.2)

where E,H,D and B denote the electric field, the magnetic field, the electric and magnetic

displacement vectors in R
3, respectively. For chiral media, E,H,D and B satisfy with the

Drude-Born-Fedorov constitutive equations:

D = ε(x)(E + β(x)∇× E), (2.3)

B = µ(x)(H + β(x)∇× H), (2.4)
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where x = (x1, x2, x3), ε is the electric permittivity, µ is the magnetic permeability, and β is

the chirality admittance. To put equations (2.1)-(2.4) together, we deduce

∇× E = (γ(x))2β(x)E + iωµ

(

γ(x)

k(x)

)2

H, (2.5)

∇× H = (γ(x))2β(x)H − iωε

(

γ(x)

k(x)

)2

E, (2.6)

where

k(x) = ω
√

ε(x)µ(x), (γ(x))2 =
(k(x))2

1 − (k(x)β(x))2
.

Throughout, we make the additional assumption that (k(x)β(x))2 6= 1, x ∈ R
3.

We assume that the structure is periodic in the x1-direction of period Λ and constant in

the x3-direction. In other words, ε(x1 +nΛ, x2) = ε(x1, x2), µ(x1 +nΛ, x2) = µ(x1, x2), β(x1 +

nΛ, x2) = β(x1, x2), and the electromagnetic fields E and H depend only on x1 and x2. We

also make the general assumptions:

(1) For some fixed positive b and sufficiently small δ > 0,

ε(x1, x2) = ε1, µ(x1, x2) = µ1, β(x1, x2) = 0, for x2 ≥ b− δ,

ε(x1, x2) = ε2, µ(x1, x2) = µ2, β(x1, x2) = 0, for x2 ≤ −b+ δ,

where ε1, ε2, µ1 and µ2 are positive constants;

(2) ε(x), µ(x) and β(x) are real valued L∞ functions, ε(x) ≥ ε0, µ(x) ≥ µ0 and β ≥ 0, where

ε0 and µ0 are positive constants;

(3) d = 1 − kβ ≥ d0 > 0, for some positive constant d0.

Remark 2.1. The third condition is essential. Fortunately it appears to be common in the

literature and justifiable since β is generally small. The second assumption is a technical one.

For materials that absorb energy, analogous condition can be made properly.

We introduce some useful notations. Let

Γ1 = {x ∈ R
2; 0 < x1 < Λ, x2 = b}, Γ2 = {x ∈ R

2; 0 < x1 < Λ, x2 = −b},
Ω1 = {x ∈ R

2; 0 < x1 < Λ, x2 > b}, Ω2 = {x ∈ R
2; 0 < x1 < Λ, x2 < −b},

Ω = {x ∈ R
2; 0 < x1 < Λ, −b < x2 < b}.

Define the following space which includes all the quasi-periodic functions:

H1
qp(Ω) = {w ∈ H1(Ω) : w(0, x2) = e−iαΛw(Λ, x2) for − b < x2 < b}.

Similarly, we define the space H
1/2
qp (Γj). For convenience, we drop the subscript qp. For

f ∈ H1/2(Γj), define the operator Tj by

(Tjf)(x1) =
∑

n∈Z

iβn
j f

nei(αn+α)x1 , 0 < x1 < Λ , j = 1, 2,

where

fn =
1

Λ

∫ Λ

0

f(x)e−i(αn+α)x1dx1, βn
j = eiγj/2|ω2εjµj − (αn + α)2|1/2,

γj = arg(ω2εjµj − (αn + α)2), 0 ≤ γn ≤ 2π, αn = 2nπ/Λ,
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Fig. 2.1. Geometry of the grating problem.

for all n ∈ Z. We assume that ω2εjµj 6= |α + αn|2 for all n ∈ Z, j = 1, 2. This condition

excludes “resonances”.

Remark 2.2. In our case, for j = 1, 2, Im(εj) = 0 and Im(µj) = 0, then for n ∈ Z

βn
j =







√

ω2εjµj − |α+ αn|2, ω2εjµj > |α+ αn|2,

i
√

|α+ αn|2 − ω2εjµj , ω2εjµj < |α+ αn|2.

Thus βn
j (j = 1, 2) is real for at most finitely many n.

Consider a plane wave EI = s eiq·x,HI = p eiq·x incident on the structure, where

q = (α,−β1, 0) = ω
√
ε1µ1(sin θ,− cos θ, 0)

is the incident wave vector. The vectors s and p satisfy

s = (p × q)/ωε1, q · q = ω2ε1µ1, p · q = 0.

We are interested in quasi-periodic solutions of equations (2.5) and (2.6). We shall insist that

the electromagnetic fields E and H are composed of only bounded outgoing plane waves, plus

the incident incoming wave above the structure.

Let E = (e1, e2, e)
T ,H = (h1, h2, h)

T . Then, e1, e2, h1 and h2 can be expressed in terms of

e and h, and two coupled equations for e and h can be achieved. Denoting by ψ the component

e or h, it follows from the knowledge of the fundamental solution inside Ω1 and Ω2, ψ can be

expressed as a sum of plane waves:

ψ |Ω1
= ψI +

∑

n∈Z

an
1 e

i(αn+α)x1+iβn
1 x2 , ψ |Ω2

=
∑

n∈Z

an
2 e

i(αn+α)x1−iβn
2 x2 . (2.7)

We also have boundary conditions on Γj for e and h. Then, the scattering problem is simplified

to a two-dimensional one (see [5]):

−∇ ·
(

1

µ
∇e
)

+ iω∇ · (β∇h) − ω2ε
γ2

k2
e− iωγ2βh = 0, in Ω, (2.8)

−∇ ·
(

1

ε
∇h
)

− iω∇ · (β∇e) − ω2µ
γ2

k2
h+ iωγ2βe = 0, in Ω, (2.9)

(T1 −
∂

∂ν
)e = 2iβ1s3e

iαx1−iβ1b, (T1 −
∂

∂ν
)h = 2iβ1p3e

iαx1−iβ1b, on Γ1, (2.10)

(T2 −
∂

∂ν
)e = 0, (T2 −

∂

∂ν
)h = 0, on Γ2. (2.11)
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Let u = (e , h)T and v = (p , q)T . Define the following sesquilinear form

A(u, v) =

∫

Ω

1

µ
∇e · ∇p̄ dx+

∫

Ω

1

ε
∇h · ∇q̄ dx− iω

∫

Ω

β∇h · ∇p̄ dx+ iω

∫

Ω

β∇e · ∇q̄ dx

−iω
∫

Ω

γ2βh p̄ dx+ iω

∫

Ω

γ2βe q̄ dx−
∫

Ω

γ2

µ
e p̄ dx−

∫

Ω

γ2

ε
h q̄ dx

−
2
∑

j=1

1

µj

∫

Γj

Tj(e) p̄ dx1 −
2
∑

j=1

1

εj

∫

Γj

Tj(h) q̄ dx1. (2.12)

The weak formulation of the scattering problem then reads as follows: Given incoming plane

wave eI = s3e
iαx1−iβ1x2 and hI = p3e

iαx1−iβ1x2 , seek u ∈ H1(Ω) ×H1(Ω), such that

A(u, v) = − 1

µ1

∫

Γ1

2iβ1 eI p̄ dx1 −
1

ε1

∫

Γ1

2iβ1 hI q̄ dx1, ∀ v ∈ H1(Ω) ×H1(Ω). (2.13)

The following result is concerned with existence and uniqueness of solutions to (2.13). We refer

to Zhang and Ma [5] for a proof.

Theorem 2.1. For all but possibly a discrete set of frequencies ω, the variational problem

(2.13) admits a unique solution u in H1(Ω) ×H1(Ω).

3. Energy Distribution

In this section we study the energy distribution for the diffraction problem. The result

will be used in Section 5 for verifying the accuracy of our algorithm. In general, the energy is

distributed away from the grating structure through the propagating plane waves which consist

of propagating reflected modes in Ω1 and transmitted modes in Ω2. It is measured by the

coefficients of each term in (2.7).

According to the simple calculation in [10], the coefficients of propagating reflected plane

waves are










rn
e = e(n)(b)e−iβn

1 b, n 6= 0, n ∈ Λ+
1 ,

r0e = e(0)(b)e−iβ1b − s3e
−2iβ1b, n = 0,











rn
h = h(n)(b)e−iβn

1 b, n 6= 0, n ∈ Λ+
1 ,

r0h = h(0)(b)e−iβ1b − p3e
−2iβ1b, n = 0,

where Λ+
1 = {n ∈ Z; Im(βn

1 ) = 0}. Hence, the energy of each reflected mode may be defined

by
βn

1 |rn
e |2

β1
,

βn
1 |rn

h |2
β1

(3.1)

and the total energy of all reflected modes is given by

er =
∑

n∈Λ+

1

βn
1 |rn

e |2
β1

, hr =
∑

n∈Λ+

1

βn
1 |rn

h |2
β1

.

Similarly, the coefficients of each propagating transmitted mode are

tne = e(n)(−b)e−iβn
2 b, tnh = h(n)(−b)e−iβn

2 b, n ∈ Λ+
2 ,
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where Λ+
2 = {n ∈ Z; Im(βn

2 ) = 0}. The energy of each transmitted mode is defined by

µ1β
n
2 |tne |2
µ2β1

,
ε1β

n
2 |tnh|2
ε2β1

(3.2)

and the total energy of all transmitted modes is given by

et =
∑

n∈Λ+

2

µ1β
n
2 |tne |2
µ2β1

, ht =
∑

n∈Λ+

2

ε1β
n
2 |tnh|2
ε2β1

.

Remark 3.1. To indicate the physical nature of each propagating mode, we introduce new

notations rn
e , r

n
h , tne and tnh for coefficients an

j in (2.7).

Remark 3.2. In optics literature, the numbers of (3.1) and (3.2) are called reflected and

transmitted efficiencies, respectively. They represent the proportion of energy distributed in

each propagating mode. The sum of reflected and transmitted efficiency is referred to as grating

efficiency.

The following result states that in the case of no energy absorption the total energy is

conserved, i.e., the incident energy is the same as the total energy of the propagating waves.

Theorem 3.1. Assume that ε(x), ε1, ε2, µ(x), µ1, µ2 are real and positive, and β(x) ≥ 0.

Then
1

µ1
(er + et) +

1

ε1
(hr + ht) =

1

µ1
|s3|2 +

1

ε1
|p3|2. (3.3)

Proof. By taking p = e, q = h in (2.15), we deduce that
∫

Ω

1

µ
|∇e|2 dx+

∫

Ω

1

ε
|∇h|2 dx−

∫

Ω

γ2

µ
|e|2 dx−

∫

Ω

γ2

ε
|h|2 dx

+2ω Im

(
∫

Ω

β∇h · ∇ē dx
)

+ 2ω Im

(
∫

Ω

γ2βh ē dx

)

−
2
∑

j=1

1

µj

∫

Γj

Tj(e) ē dx1 −
2
∑

j=1

1

εj

∫

Γj

Tj(h) h̄ dx1

= − 1

µ1

∫

Γ1

2iβ1s3e
iαx1−iβ1bē dx1 −

1

ε1

∫

Γ1

2iβ1p3e
iαx1−iβ1bh̄ dx1. (3.4)

Taking the imaginary part of (3.4), we get

1

µ1

∑

n∈Λ+

1

βn
1 |e(n)|2 +

1

µ2

∑

n∈Λ+

2

βn
2 |e(n)|2 +

1

ε1

∑

n∈Λ+

1

βn
1 |h(n)|2 +

1

ε2

∑

n∈Λ+

2

βn
2 |h(n)|2

= Im

(

1

µ1

∫

Γ1

2iβ1s3e
iαx1−iβ1bē dx1 +

1

ε1

∫

Γ1

2iβ1p3e
iαx1−iβ1bh̄ dx1

)

. (3.5)

The proof is completed by noticing that

|r0e |2 = |e(0)(b)|2 + |s3|2 − 2Re{s3e−iβ1bē(0)},

|r0h|2 = |h(0)(b)|2 + |p3|2 − 2Re{p3e
−iβ1bh̄(0)}.

Remark 3.3. From Maxwell equations, it is easy to see
µ1

ε1
|p3|2 + |s3|2 = |s1|2 + |s2|2 + |s3|2 = |s|2,

(er + et) +
µ1

ε1
(hr + ht) = Er + Et,
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where Er and Et are the energy of reflected and transmitted electric fields, respectively. Thus,

the total energy is conserved, i.e.,

Er + Et = |s|2. (3.6)

4. PML Formulation

In this section we shall introduce variational formulations for the scattering problem using

the PML technique.

We assume that the variational problem (2.13) has a unique solution. Then the general

theory in Babuška and Aziz [11, Chap.5] implies that there exists a constant λ > 0 such that

the following inf-sup condition holds:

sup
06=v∈H1(Ω)×H1(Ω)

|A(w, v)|
||v||1

≥ λ ||w||1, ∀ w ∈ H1(Ω) ×H1(Ω). (4.1)

To simply the notation, || · ||l will be used for the norm || · ||Hl×Hl .

Now we turn to the introduction of absorbing PML layers. We surround our computational

domain Ω with two PML layers of thickness δ1 and δ2 in Ω1 and Ω2, respectively. Let s(x2) =

s1(x2) + is2(x2) be the model medium property which satisfies

s1, s2 ∈ C(R), s1 ≥ 1, s2 ≥ 0, and s(x2) = 1 for − b ≤ x2 ≤ b. (4.2)

Following the general idea in designing PML absorbing layers, we introduce the PML regions

ΩPML
1 = {(x1, x2) : 0 < x1 < Λ, b < x2 < b+ δ1},

ΩPML
2 = {(x1, x2) : 0 < x1 < Λ, − b− δ2 < x2 < −b},

and the PML differential operators

L1 :=
∂

∂x1

(

1

µ(x)
s(x2)

∂

∂x1

)

+
∂

∂x2

(

1

µ(x)

1

s(x2)

∂

∂x2

)

+ ω2ε(x)

(

γ(x)

k(x)

)2

s(x2),

L2 :=
∂

∂x1

(

1

ε(x)
s(x2)

∂

∂x1

)

+
∂

∂x2

(

1

ε(x)

1

s(x2)

∂

∂x2

)

+ ω2µ(x)

(

γ(x)

k(x)

)2

s(x2).

The PML equations in the PML region are

L1(ê− eI) = 0 in ΩPML
1 , L1ê = 0 in ΩPML

2 , (4.3)

L2(ĥ− hI) = 0 in ΩPML
1 , L2ĥ = 0 in ΩPML

2 . (4.4)

Define the differential operator

L =

(

L1 L

−L L2

)

,

where

L = −iω∇ · (β(x)∇) + iω(γ(x))2β(x).

Let D = {(x1, x2) : 0 < x1 < Λ,−b− δ2 < x2 < b + δ1}. Due to the assumption (4.2), we can

now formulate the PML model which we are going to solve in this paper:

Lû = −g in D, (4.5)
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with the quasi-periodic boundary condition û(0, x2) = e−iαΛû(Λ, x2) for −b− δ2 < x2 < b+ δ1,

and the Dirichlet condition

û = uI on ΓPML
1 = {(x1, x2) : 0 < x1 < Λ, x2 = b+ δ1},

û = 0 on ΓPML
2 = {(x1, x2) : 0 < x1 < Λ, x2 = −b− δ2}.

Here û = (ê, ĥ)T , uI = (eI, hI)
T , and

g =

{

−LuI in ΩPML
1 ,

0 elsewhere.

Define the space

H1
qp(D) = {w ∈ H1(D) : wα = we−iαx1 is periodic in x1 with period Λ}.

For convenience, we also drop the subscript qp. Introduce the following sesquilinear form

A
D

(u, v) =

∫

D

(

1

µ(x)
s(x2)

∂e

∂x1

∂p̄

∂x1
+

1

µ(x)

1

s(x2)

∂e

∂x2

∂p̄

∂x2
− γ2(x)

µ(x)
s(x2)e p̄

)

dx

+

∫

D

(

1

ε(x)
s(x2)

∂h

∂x1

∂q̄

∂x1
+

1

ε(x)

1

s(x2)

∂h

∂x2

∂q̄

∂x2
− γ2(x)

ε(x)
s(x2)h q̄

)

dx

+ iω

∫

D

β(x)∇e · ∇q̄ dx+ iω

∫

D

γ2(x)β(x)e q̄ dx

− iω

∫

D

β(x)∇h · ∇p̄ dx− iω

∫

D

γ2(x)β(x)h p̄ dx.

Define H1
E(D) = {w ∈ H1(D), w = 0 on ΓPML

1 ∪ ΓPML
2 }. Then the weak formulation of the

PML model reads as follows: Find û ∈ H1(D) × H1(D) such that û = uI on ΓPML
1 , û = 0

on ΓPML
2 , and

A
D

(û, v) =

∫

D

g v̄ dx, ∀ v ∈ H1
E(D) ×H1

E(D). (4.6)

To prove the existence and uniqueness of the above problem and derive an error estimate

between û and u, we first find an equivalent formulation of (4.6) in the domain Ω. Similar to

the arguments in [6], we deduce that

û = uI +
∑

n∈Z

ζn
1 (x2)

ζn
1 (b)

û(n)
α (b)ei(αn+α)x1 in ΩPML

1 ,

û =
∑

n∈Z

ζn
2 (x2)

ζn
2 (−b) û

(n)
α (−b)ei(αn+α)x1 in ΩPML

2 , (4.7)

where

ζn
1 (x2) = exp{−iβn

1

∫ b+δ1

x2

s(τ)dτ} − exp{iβn
1

∫ b+δ1

x2

s(τ)dτ},

ζn
2 (x2) = exp{−iβn

2

∫ x2

−b−δ2

s(τ)dτ} − exp{iβn
2

∫ x2

−b−δ2

s(τ)dτ}.

Introduce the following Dirichlet to Neumann operator TPML
j in [6]

(

TPML
j f

)

(x1) =
∑

n∈Z

iβn
j coth(−iβn

j σj)f
nei(αn+α)x1 , (4.8)
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where coth(τ) = (eτ + e−τ )/(eτ − e−τ ) and

σ1 =

∫ b+δ1

b

s(τ)dτ, σ2 =

∫ −b

−b−δ2

s(τ)dτ. (4.9)

Then we know easily from (4.7) that

∂(û− uI)

∂ν
− TPML

1 (û− uI) = 0 on Γ1,
∂û

∂ν
− TPML

2 û = 0 on Γ2. (4.10)

This motivates us to introduce the sesquilinear form

A
PML

(u, v) =

∫

Ω

1

µ
∇e · ∇p̄ dx+

∫

Ω

1

ε
∇h · ∇q̄ dx− iω

∫

Ω

β∇h · ∇p̄ dx

+iω

∫

Ω

β∇e · ∇q̄ dx− iω

∫

Ω

γ2βh p̄ dx + iω

∫

Ω

γ2βe q̄ dx−
∫

Ω

γ2

µ
e p̄ dx

−
∫

Ω

γ2

ε
h q̄ dx−

2
∑

j=1

1

µj

∫

Γj

TPML
j (e) p̄ dx1 −

2
∑

j=1

1

εj

∫

Γj

TPML
j (h) q̄ dx1, (4.11)

and introduce the following variational problem: Find ̟ ∈ H1(Ω) ×H1(Ω) such that

A
PML

(̟, v) = − 1

µ1

∫

Γ1

iβ1(1 + coth(−iβ1σ1)) eI p̄ dx1

− 1

ε1

∫

Γ1

iβ1(1 + coth(−iβ1σ1))hI q̄ dx1, ∀ v ∈ H1(Ω) ×H1(Ω), (4.12)

where we have used the fact that

∂uI

∂ν
− TPML

1 uI = −iβ1(1 + coth(−iβ1σ1))uI on Γ1.

Then we have the following lemma, which establishes the relation of this variational problem

to the PML model problem (4.6).

Lemma 4.1. Any solution û of the problem (4.6) restricted to Ω is a solution of (4.12). Con-

versely, any solution ̟ of the problem (4.12) can be uniquely extended to the whole domain D

to be a solution of (4.6).

Proof. This proof is standard based on the construction given in (4.7). We omit the details.

Let ∆n
j = |k2

j − (αn + α)2|1/2 and Uj = {n : k2
j > (αn + α)2}, j = 1, 2. Then we have

βn
j = ∆n

j for n ∈ Uj, and βn
j = i∆n

j for n /∈ Uj. Let

∆−
j = min{∆n

j : n ∈ Uj}, ∆+
j = min{∆n

j : n /∈ Uj}. (4.13)

The following lemmas play a key role in the subsequent analysis. We refer to Chen and Wu [6]

for the proof.

Lemma 4.2. For any ϕ, ψ ∈ H1(Ω), we have
∣

∣

∣

∣

∣

∫

Γj

(Tjϕ− TPML
j ϕ)ψ̄dx1

∣

∣

∣

∣

∣

≤Mj‖ϕ ‖L2(Γj)‖ψ ‖L2(Γj),

where

Mj = max

(

2∆−
j

e2σI
j ∆−

j − 1
,

2∆+
j

e2σR
j ∆+

j − 1

)

and σR
j , σ

I
j are the real and imaginary parts of σj defined in (4.9), namely, σj = σR

j + iσI
j .
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Lemma 4.3. For any ψ ∈ H1(Ω), we have

||ψ||L2(Γj) ≤ ||ψ||H1/2(Γj) ≤ Ĉ||ψ||H1(Ω),

with Ĉ =
√

1 + (2b)−1. Here if ψ(x1,±b) =
∑

n∈Z ψ
(n)
α (±b)ei(αn+α)x1 on Γj, then

‖ψ ‖H1/2(Γj) =

(

Λ
∑

n∈Z

(1 + |αn + α|2)1/2|ψ(n)
α (±b)|2

)1/2

.

From the above two lemmas, we can obtain the following theorem.

Theorem 4.1. Let λ > 0 be the constant in the inf-sup condition (4.1) and

(M1 +M2)Ĉ
2/χ < λ,

where χ = min
j=1,2

{µj, εj}. Then the PML variational problem has a unique solution û. Moreover,

we have the following error estimate:

|||u− û|||Ω:= sup
06=v∈H1(Ω)×H1(Ω)

|A(u − û, v)|
||v||1

≤ (ĈM1/χ)||û− uI||L2(Γ1)×L2(Γ1) + (ĈM2/χ)||û||L2(Γ2)×L2(Γ2). (4.14)

Proof. By Lemma 4.1 we only need to show that the variational problem (4.12) has a unique

solution. The key point is to show the inf-sup condition for the sesquilinear form A
PML

defined

in (4.11). From Lemmas 4.2 and 4.3 and the assumption (M1 +M2)Ĉ
2/χ < λ, we have

|APML

(u, v)| ≥ |A(u, v)| −
2
∑

j=1

{

1

µj

∣

∣

∣

∣

∣

∫

Γj

(Tje− TPML
j e)p̄dx1

∣

∣

∣

∣

∣

+
1

εj

∣

∣

∣

∣

∣

∫

Γj

(Tjh− TPML
j h)q̄dx1

∣

∣

∣

∣

∣

}

≥ |A(u, v)| −
2
∑

j=1

(

Mj

µj
||e||L2(Γj)||p||L2(Γj) +

Mj

εj
||h||L2(Γj)||q||L2(Γj)

)

≥ |A(u, v)| − Ĉ2

χ

2
∑

j=1

Mj

(

||e||H1(Ω)||p||H1(Ω) + ||h||H1(Ω)||q||H1(Ω)

)

≥ |A(u, v)| − Ĉ2

χ
(M1 +M2)||u||1||v||1, ∀u, v ∈ H1(Ω) ×H1(Ω).

By (2.10), (2.11), (4.11), (4.12) and Lemma 4.1, we conclude that for any v ∈ H1(Ω) ×H1(Ω)

A(u − û, v)=− 1

µ1

∫

Γ1

2iβ1 eI p̄ dx1 −
1

ε1

∫

Γ1

2iβ1 hI q̄ dx1 +
1

µ1

∫

Γ1

iβ1(1 + coth(−iβ1σ1)) eI p̄ dx1

+
1

ε1

∫

Γ1

iβ1(1 + coth(−iβ1σ1))hI q̄dx1 +A
PML

(û, v) −A(û, v)

=
1

µ1

∫

Γ1

(T1 − TPML
1 )(ê− eI)p̄ dx1 +

1

µ2

∫

Γ2

(T2 − TPML
2 )êp̄ dx1

+
1

ε1

∫

Γ1

(T1 − TPML
1 )(ĥ− hI)q̄ dx1 +

1

ε2

∫

Γ2

(T2 − TPML
2 )ĥq̄ dx1. (4.15)

This completes the proof of the theorem upon using Lemmas 4.2 and 4.3.

From the classical FEM theory, it is readily to achieve the convergence for the finite element

approximation of the PML problems (4.6). We omit the details here.
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Fig. 5.1. The real part of electric field Re(e) and magnetic field Re(h) for Example 1.

Table 5.1: The comparison between numerical and exact solutions for Example 1. Nk is the number

of nodal points. ek = ||e − êh||H1(Ω), hk = ||h − ĥh||H1(Ω), εk = ||(e, h) − (êh, ĥh)||1, εr,k is relative

estimate.

k Nk ek hk εk εr,k

0 28 2.5738 2.2288 3.4047 0.7251

1 93 0.7846 0.6333 1.0082 0.2181

2 337 0.3120 0.1706 0.3556 0.0769

3 1281 0.1392 0.0779 0.1595 0.0345

4 4993 0.0684 0.0382 0.0783 0.0169

5 19713 0.0341 0.0190 0.0390 0.0084

5. Implementation and Numerical Examples

The implementation of the algorithm in this section is based on the PDE toolbox of MAT-

LAB. We use the a posteriori error estimate from Theorem 4.1 to determine the PML param-

eters. We choose the PML medium property as the power function (see [6]), and we need to

specify only the thickness δj of the layers and the medium parameters σj . In our implemen-

tation we choose δj and σj such that MjΛ
1/2 ≤ 10−8, which makes the PML error negligible

compared with the finite element discretization errors. We use uniform mesh and linear element

in the Finite Element Method.

In this following, we present computational results for a set of test problems. In general, we

assume the medium is non-magnetic, i.e., µ = 1.

Example 1. We consider the simplest periodic chiral structure, a homogeneous chiral slab.

Assume that plane waves

eI = eik1(x1 sin θ−x2 cos θ), hI =
1

2
eik1(x1 sin θ−x2 cos θ)

are incident on the slab (x2 = 0 and x2 = d), which separates two homogeneous media whose

dielectric coefficients are ε1 and ε2, respectively. In this situation, exact solutions are available

(see [12]), which allow us to test the accuracy of the numerical algorithm.

In our experiment, the parameters are chosen as β = 0.2, ε = 1/2, ε1 = ε2 = 1, ω = 2,

d = −1/2, θ = π/6 and δ = 1. Table 5.1 compares the numerical solutions and exact solutions,

and indicates that ||u − ûh||1 ≈ CN
−1/2
k . Fig. 5.1 shows the graphs of the real part of the

electric field e and magnetic field h.
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Fig. 5.3. Grating efficiency of Example 2.

Example 2. We consider the chiral grating with period Λ = 2 whose surface has corners, as

shown in Fig. 5.2. Assume that plane waves

eI = eik1(x1 sin θ−x2 cos θ), hI = 0

are incident at θ = π/4 on the structure.

The parameters are chosen as ε = 2.25, ε1 = ε2 = 1, ω = π, β = 0.1. The thickness of

the PML layers δ = 1. The grating efficiency of the reflected and transmitted waves as well as

the total grating efficiency are displayed in Fig. 5.3. It is evident from the figure that the total

energy is conserved. Figs. 5.4-5.6 show the real part, the imaginary part and amplitude of the

electric field and magnetic field. Comparison with the achiral grating problem in which h = 0,

it is clear from the Figures that the magnetic field is no longer trivial. This is so-called ‘Optical

Activity’.
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Fig. 5.4. The real part of electric field Re(e) and magnetic field Re(h) for Example 2.
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Fig. 5.5. The imaginary part of electric field Im(e) and magnetic field Im(h) for Example 2.
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Fig. 5.6. The amplitude of electric field |e| and magnetic field |h| for Example 2.

Example 3. Finally, we consider a chiral grating with two sharp angles indicated in Fig. 5.7.

The parameters are taken as follows: β1 = 0.2, β2 = 0.1, ε1 = 2.56, ε2 = 4.84, ε0 = ε3 = 1,

ω = 2.5, and Λ = 1. The incident plane waves are

eI = (4/5)eik1(x1 sin θ−x2 cos θ), hI = (3/5)eik1(x1 sin θ−x2 cos θ)

with θ = π/6. We take δ = Λ = 1. The grating efficiency of the reflected and transmitted

waves as well as the total grating efficiency are displayed in Fig. 5.8. The amplitudes of the

electric field and magnetic field are illustrated in Fig. 5.9.
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