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Abstract

This paper proposes a robust finite element method for a three-dimensional fourth-order

elliptic singular perturbation problem. The method uses the three-dimensional Morley ele-

ment and replaces the finite element functions in the part of bilinear form corresponding to

the second-order differential operator by a suitable approximation. To give such an approx-

imation, a convergent nonconforming element for the second-order problem is constructed.

It is shown that the method converges uniformly in the perturbation parameter.
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1. Introduction

Let Ω be a bounded polyhedral domain of Rn with 1 ≤ n ≤ 3. Denote the boundary of Ω

by ∂Ω. For f ∈ L2(Ω), we consider the following boundary value problem of the fourth-order

elliptic singular perturbation equation:







ε2∆2u− ∆u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω
= 0,

(1.1)

where ν = (ν1, · · · , νn)⊤ is the unit outer normal of ∂Ω, ∆ is the standard Laplacian operator

and ε is a small parameter satisfying 0 < ε ≤ 1. When ε→ 0 the differential equation formally

degenerates to the Poisson equation.

In the two-dimensional case, the Morley element was proposed in [9] for the plate bending

problem. The Morley element is convergent for fourth-order elliptic problems, but is divergent

for second-order problems (see, e.g., [5, 8, 13]). The Morley element and an C0 modified Morley

element for problem (1.1) were discussed in [10]. It was shown that the modified Morley element

is uniformly convergent with respect to ε while the Morley element does not converge when

ε→ 0. Two non-C0 nonconforming elements were proposed in [4] by the double set parameter

technique. These two elements were also proved to be uniformly convergent. A modified Morley

element method for problem (1.1) was proposed in [15]; it is convergent uniformly with respect

to ε. This method also uses the Morley element (or the rectangle Morley element), but the

linear approximation (or the bilinear approximation) of finite element functions is used in the

part of the bilinear form corresponding to the second-order differential term.

In this paper, we consider the three-dimensional case. The three-dimensional Morley element

can be found in [11] or in [14]. We will take a similar way used in [15] and propose a modified
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Morley element method for problem (1.1). We will use certain approximation of finite element

functions in the part of the bilinear form corresponding to the second-order differential term. It

will be shown that the modified method converges uniformly in the perturbation parameter ε.

The three-dimensional Morley element uses the integral averages of the function over all edges

as degrees of freedom instead of the function values at vertices. To given suitable approximation

of the finite element function, we need to construct a convergent nonconforming finite element

for the Poisson equation with the integral averages of the function over all edges as degrees of

freedom.

Problem (1.1) is a boundary value problem of a stationary linearizing form of the Cahn-

Hilliard equation. The modelling in material science makes use of the Cahn-Hilliard equations

in three dimensions (see, e.g., [2, 3, 6]). Besides the theoretical interest, our new finite element

method is expected to be useful in the computation of the Cahn-Hilliard equation.

The paper is organized as follows. The rest of this section lists some preliminaries. Section 2

describes a nonconforming finite element for the Poisson equation. Section 3 gives the detailed

descriptions of the modified Morley element method. Section 4 shows the uniform convergence

of the method.

Throughout this paper, we assume n = 3. For a nonnegative integer s, let Hs(Ω), ‖ · ‖s,Ω

and | · |s,Ω denote the usual Sobolev space, norm and semi-norm, respectively. Let Hs
0(Ω) be

the closure of C∞
0 (Ω) in Hs(Ω) with respect to the norm ‖ · ‖s,Ω and (·, ·) denotes the inner

product of L2(Ω). Define

a(v, w) =

∫

Ω

3
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v, w ∈ H2(Ω), (1.2)

b(v, w) =

∫

Ω

3
∑

i=1

∂v

∂xi

∂w

∂xi
, ∀v, w ∈ H1(Ω). (1.3)

The weak form of problem (1.1) is: find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (1.4)

Let u0 be the solution of following boundary value problem:

{

−∆u0 = f, in Ω,

u0|∂Ω = 0.
(1.5)

For a mesh size h, let Th be a triangulation of Ω consisting of tetrahedra. For each T ∈ Th,

let hT be the diameter of the smallest ball containing T and ρT be the diameter of the largest

ball contained in T . Let {Th} be a family of triangulations with h→ 0. Throughout the paper,

we assume that hT ≤ h ≤ ηρT , ∀T ∈ Th, with η a positive constant independent of h.

2. A Nonconforming Element for the Poisson Equation

For a subset B ⊂ R3 and a nonnegative integer r, let Pr(B) be the space of all polynomials

with degree not greater than r.

Given a tetrahedron T , its four vertices are denoted by aj , 1 ≤ j ≤ 4. The face of T opposite

aj is denoted by Fj , 1 ≤ j ≤ 4. The edge with ai and aj as its vertices, is denoted by Sij ,
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1 ≤ i < j ≤ 4. Denote the measures of T , Fi and Sij by |T |, |Fi| and |Sij | respectively. Let

λ1, · · · , λ4 be the barycentric coordinates of T . Define

q1 = (λ1 − λ3)(λ2 − λ4), q2 = (λ1 − λ2)(λ4 − λ3).

We define a nonconforming element (T, P s
T ,Φ

s
T ) for the Poisson equation by

1) T is a tetrahedron.

2) P s
T = P1(T ) + span{q1, q2}.

3) For v ∈ C0(T ),

Φs
T (v) = (φ12(v), φ13(v), φ14(v), φ23(v), φ24(v), φ34(v))

⊤

with

φij(v) =
1

|Sij |

∫

Sij

v, 1 ≤ i < j ≤ 4.

For 1 ≤ i < j ≤ 4, let 1 ≤ k < l ≤ 4 and {k, l} ∩ {i, j} = ∅, and define

pij =
2

3
(λi + λj) −

1

3
(λk + λl) + 2λiλj + 2λkλl −

∑

i1=i,j

∑

i2=k,l

λi1λi2 . (2.1)

Set

p̃ij =
2

3
(λi + λj) −

1

3
(λk + λl).

Then the following identities can be verified:

{

p12 = p̃12 + 2q1 + q2, p13 = p̃13 − q1 − 2q2, p14 = p̃14 − q1 + q2,

p23 = p̃23 − q1 + q2, p24 = p̃24 − q1 − 2q2, p34 = p̃34 + 2q1 + q2.
(2.2)

That is, pij ∈ P s
T , 1 ≤ i < j ≤ 4. Denote by δij the Kronecker delta. By directly computations,

we obtain
1

|Skl|

∫

Skl

pij = δikδjl, 1 ≤ i < j ≤ 4, 1 ≤ k < l ≤ 4. (2.3)

Hence, pij , 1 ≤ i < j ≤ 4, are the basis functions corresponding to the degrees of freedom. This

indicates that Φs
T is P s

T -unisolvent.

The interpolation operator Πs
T corresponding to (T, P s

T ,Φ
s
T ) is written as

Πs
T v =

∑

1≤i<j≤4

pijφij(v), ∀v ∈ C0(T ). (2.4)

For v ∈ L2(Ω) and v|T ∈ C0(T ), ∀T ∈ Th, define Πs
hv by

Πs
hv|T = Πs

T (v|T ), ∀T ∈ T h. (2.5)

By the interpolation theory (see, e.g., [5]) we obtain the following lemma.

Lemma 2.1. There exists a constant C independent of h such that

|v − Πs
T v|m,T ≤ Ch2−m|v|2,T , 0 ≤ m ≤ 2, ∀v ∈ H2(T ), (2.6)

is true for all T ∈ Th.
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By a direct computation we have the following lemma.

Lemma 2.2. Given a tetrahedron T , the following equality is true:

1

|Fi|

∫

Fi

p =
1

9

∑

1≤j<k≤4

j 6=i,k 6=i

1

|Sjk|

∫

Sjk

p, 1 ≤ i ≤ 4, ∀p ∈ P s
T . (2.7)

By the above two lemmas and some relevant mathematical theories (see, e.g., [5, 8, 12])

we can verify that this element is convergent for the boundary value problem of the three-

dimensional Poisson equation.

3. Modified Morley Element Method

The Morley element can be described by (T, PM
T ,ΦM

T ) with

1) T is a tetrahedron.

2) PM
T = P2(T ).

3) ΦM
T is the vector of degrees of freedom whose components are:

1

|Sij |

∫

Sij

v, 1 ≤ i < j ≤ 4;
1

|Fj |

∫

Fj

∂v

∂ν
, 1 ≤ j ≤ 4

for v ∈ C1(T ).

For each Th, let Vh and Vh0 be the corresponding finite element spaces associated with

the Morley element for the discretization of H2(Ω) and H2
0 (Ω), respectively. This defines two

families of finite element spaces {Vh} and {Vh0}. It is known that Vh 6⊂ H2(Ω) and Vh0 6⊂ H2
0 (Ω).

Let Πh be the interpolation operator corresponding to the Morley element and Th.

We define, for v, w ∈ L2(Ω) and v|T , w|T ∈ H2(T ), ∀T ∈ Th,

ah(v, w) =
∑

T∈Th

∫

T

3
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, (3.1)

bh(v, w) =
∑

T∈Th

∫

T

3
∑

i=1

∂v

∂xi

∂w

∂xi
. (3.2)

The standard finite element method for problem (1.4) corresponding to the Morley element is:

find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(uh, vh) = (f, vh), ∀vh ∈ Vh0. (3.3)

We consider the following modified Morley element method: find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(Πs
huh,Π

s
hvh) = (f,Πs

hvh), ∀vh ∈ Vh0. (3.4)

Problem (3.4) has a unique solution when ε > 0. When ε = 0, the problem degenerates to

bh(Πs
huh,Π

s
hvh) = (f,Πs

hvh), ∀vh ∈ Vh0. (3.5)

Although the solution of problem (3.5) is not unique yet, Πs
huh is uniquely determined. Actually,

Πs
huh is the exact finite element solution for problem (1.5) given in the previous section.
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Now we consider two examples. Let Ω = [−1, 1]3 and

u1(x) = (1 − x2
1)

2(1 − x2
2)

2(1 − x2
3)

2,

u2(x) = (1 + cosπx1)(1 + cosπx2)(1 + cosπx3).

Let i ∈ {1, 2}. For ε ≥ 0, set f = ε2∆2ui −∆ui. Then ui is the solution of problem (1.1) when

ε > 0, and is the solution of problem (1.5) when ε = 0.

We first divide Ω into 12 tetrahedral elements with h = 2 as shown in Fig. 3.1. Then we

use the global regular refinement strategy provided in [1] to get the mesh sequence.

1
0.5

0
-0.5

-1
-1

-1

-0.5

0

-0.5

0.5

1

0 0.5 1

Fig. 3.1. The initial mesh.

Define

‖|vh‖|ε,h =
(

ε2ah(vh, vh) + bh(Πs
hvh,Π

s
hvh)

)1/2
, ∀vh ∈ Vh0.

Different values of ε and h are chosen to demonstrate the behaviors of the following relative

error of the modified Morley element method,

Eε,h =
‖|Πhu− uh‖|ε,h

‖|Πhu‖|ε,h
, (3.6)

where uh is the solution of problem (3.4).

Let g = ∆2ui. Then ui is the solution of the following boundary value problem of biharmonic

equation,






∆2u = g, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω
= 0.

(3.7)

For comparison, we also consider the error of the finite element solution to problem (3.7). Let

ũh ∈ Vh0 be the solution of the following problem,

ah(ũh, vh) = (g,Πs
hvh), ∀vh ∈ Vh0. (3.8)

In this situation, the relative error Ẽh is represented by

Ẽ2
h =

ah(Πhu− ũh,Πhu− ũh)

ah(Πhu,Πhu)
. (3.9)
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For the modified Morley element method in the case of f = ε2∆2u1 − ∆u1 and g = ∆2u1,

Eε,h and Ẽh, corresponding to some ε and h, are listed in Table 3.1. In the case that f =

ε2∆2u2 − ∆u2 and g = ∆2u2, Eε,h and Ẽh are listed in Table 3.2.

From Tables 3.1 and 3.2 we see that the modified Morley element method converges for all

ε ∈ [0, 1]. More precisely, the result shows that Eε,h is linear with respect to h as well as E0,h

and Ẽh are.

Table 3.1:

ǫ\h 2 1 2−1 2−2 2−3 2−4

0 0.5800 0.2942 0.1654 0.08072 0.03969 0.01960

2−10 0.5800 0.2942 0.1654 0.08071 0.03966 0.01958

2−8 0.5802 0.2943 0.1654 0.0805 0.03923 0.01874

2−6 0.5844 0.2950 0.1651 0.07802 0.03429 0.01276

2−4 0.6492 0.3082 0.1680 0.06994 0.02814 0.01234

2−2 1.438 0.5122 0.2923 0.1426 0.06951 0.03398

1 3.565 0.8335 0.4097 0.1959 0.09494 0.04634

∞ (Biharmonic) 4.195 0.8872 0.4243 0.2021 0.09781 0.04773

Table 3.2:

ǫ\h 2 1 2−1 2−2 2−3 2−4

0 0.7717 0.3048 0.1778 0.08484 0.04107 0.02009

2−10 0.7717 0.3048 0.1778 0.08483 0.04105 0.02003

2−8 0.7721 0.3049 0.1777 0.08466 0.04063 0.01920

2−6 0.7776 0.3054 0.1777 0.08226 0.03570 0.01316

2−4 0.8643 0.3140 0.1822 0.07345 0.02838 0.01209

2−2 1.919 0.4598 0.2949 0.1401 0.06752 0.03288

1 4.788 0.7376 0.4012 0.1907 0.09203 0.04484

∞ (Biharmonic) 5.646 0.7877 0.4144 0.1966 0.09480 0.04618

4. Convergence Analysis

In this section, we discuss the convergence properties of the modified Morley element meth-

ods given in the previous section.

We introduce the following mesh-dependent norm ‖ · ‖m,h and semi-norm | · |m,h:

‖v‖m,h =
(

∑

T∈Th

‖v‖2
m,T

)1/2

, |v|m,h =
(

∑

T∈Th

|v|2m,T

)1/2

,

for v ∈ L2(Ω) that v|T ∈ Hm(T ), ∀T ∈ Th.

Let u and uh be the solutions of problems (1.4) and (3.4), respectively.

Lemma 4.1. There exists a constant C independent of h and ε such that for any vh ∈ Vh0,

there exists wh ∈ H1
0 (Ω) satisfying

‖vh − wh‖0,Ω + h|vh − wh|1,h ≤ Ch2|vh|2,h, (4.1)
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‖Πs
hvh − wh‖0,Ω + h|Πs

hvh − wh|1,h ≤ Ch|Πs
hvh|1,h. (4.2)

Proof. Let vh ∈ Vh0. For T ∈ Th, denote by Π1
T the linear interpolation operator with

function values at all vertices of T as degrees of freedom. Define Π1
hv by

Π1
hv|T = Π1

T (v|T ), ∀T ∈ T h,

for a function v ∈ L2(Ω) and v|T ∈ C0(T ), ∀T ∈ Th. By the interpolation theory, the following

inequality is true:

|Πs
hvh − Π1

hΠs
hvh|m,h ≤ Ch2−m|Πs

hvh|2,h, 0 ≤ m ≤ 1. (4.3)

Given a set B ⊂ Rn, let Th(B) = {T ∈ Th |B ∩ T 6= ∅ } and Nh(B) the number of the

elements in Th(B). Now we define wh ∈ H1
0 (Ω) as follows: for any T ∈ Th,

i) wh|T ∈ P1(T ).

ii) if the vertex ai of T is in Ω then

wh(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

(Πs
hvh|T ′)(ai).

Thus, wh is well defined. We will show that

|Πs
hvh − wh|m,h ≤ Ch2−m|Πs

hvh|2,h, 0 ≤ m ≤ 1. (4.4)

By the affine technique, we can show that

|p|2m,T ≤ Ch3−2m
4

∑

i=1

|p(ai)|
2, ∀p ∈ P1(T ), m = 0, 1. (4.5)

Set ϕ = Π1
hΠs

hvh − wh and ψ = Πs
hvh. Obviously, ϕ|T ∈ P1(T ), ∀T ∈ Th. For T ∈ Th, let

ϕT = ϕ|T and ψT = ψ|T .

If the vertex ai of T is in Ω then by the definition of wh,

ϕ(ai) = ψT (ai) −
1

Nh(ai)

∑

T ′∈Th(ai)

ψT ′(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

(

ψT (ai) − ψT ′(ai)
)

.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and F̃j = Tj ∩ Tj+1

is a common face of Tj and Tj+1 and ai ∈ F̃j , 1 ≤ j < J . By the inverse inequality, we have

∣

∣ψT (ai) − ψT ′(ai)
∣

∣

2
=

∣

∣

∣

J−1
∑

j=1

(

ψTj
(ai) − ψTj+1

(ai)
)

∣

∣

∣

2

≤ C

J−1
∑

j=1

∣

∣ψTj
(ai) − ψTj+1

(ai)
∣

∣

2
≤ Ch−2

J−1
∑

j=1

∣

∣ψTj
− ψTj+1

∣

∣

2

0,F̃j
.

On each edge of F̃j , the integral average of ψTj
is equal to the one of ψTj+1

by the definition of

ψ. Hence
∣

∣ψTj
− ψTj+1

∣

∣

2

0,F̃j
≤ Ch3

(

|ψ|22,Tj
+ |ψ|22,Tj+1

)

.
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Then
∣

∣

∣
ψT (ai) − ψT ′(ai)

∣

∣

∣

2

≤ Ch

J
∑

j=1

|ψ|22,Tj
.

Since Nh(T ) is bounded, we get

|ϕ(ai)|
2 ≤ Ch

∑

T ′∈Th(T )

|ψ|22,T ′ . (4.6)

If the vertex ai of T is on ∂Ω then there exists T ′ ∈ Th(ai) with a face F of T ′ belonging to

∂Ω and ai ∈ F . By the definition of wh,

|ϕ(ai)| = |ψT (ai) − ψT ′(ai) + ψT ′(ai)|

≤ |ψT (ai) − ψT ′(ai)| + |ψT ′(ai)|.

Since the integral average of ψT ′ on each edge of F vanishes,

|ψT ′(ai)|
2 ≤ Ch−2|ψT ′ |20,F ≤ Ch|ψ|22,T ′

by the inverse inequality. By similar analysis for |ψT (ai) − ψT ′(ai)|, we conclude that (4.6) is

also true in this case.

Combining (4.5) and (4.6), we obtain

h2m|ϕ|2m,T ≤ Ch4
∑

T ′∈Th(T )

|ψ|22,T ′ .

Summing the above inequality over all T ∈ Th gives

h2m|ϕ|2m,h ≤ Ch4
∑

T∈Th

∑

T ′∈Th(T )

|ψ|22,T ′ .

Consequently,

h2m|ϕ|2m,h ≤ Ch4|ψ|22,h. (4.7)

Inequality (4.4) follows from (4.7) and (4.3).

We obtain (4.2) by (4.4) and the inverse inequality, and (4.1) by (4.4) and Lemma 2.1. This

completes the proof of Lemma 4.1.

Lemma 4.2. There exists a constant C independent of h and ε such that for any vh ∈ Vh0,

| bh(Πs
hu,Π

s
hvh) + (∆u,Πs

hvh)| ≤ Ch|u|2,Ω|Π
s
hvh|1,h, (4.8)

| ah(u, vh) − (∆2u,Πs
hvh)| ≤ C(h|u|3,Ω + h2‖∆2u‖0,Ω)|vh|2,h, (4.9)

when u ∈ H3(Ω).

Proof. Let vh ∈ Vh0. By Green’s formula,

bh(Πs
hu,Π

s
hvh) + (∆u,Πs

hvh)

= bh(Πs
hu− u,Πs

hvh) +
∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh.
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Given T ∈ Th and a face F of T , and let P 0
F be the orthogonal projection operator from L2(F )

to P0(F ). By Lemma 2.2, we have

∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh =
∑

T∈Th

∑

F⊂∂T

∫

F

(∂u

∂ν
− P 0

F

∂u

∂ν

)

(Πs
hvh − P 0

F Πs
hvh).

By the interpolation theory and the Schwarz inequality we obtain

∣

∣

∣

∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh

∣

∣

∣
≤ Ch|u|2,Ω|Π

s
hvh|1,h. (4.10)

On the other hand,

|bh(Πs
hu− u,Πs

hvh)| ≤ Ch|u|2,Ω|Π
s
hvh|1,h.

Hence (4.8) follows.

Now let φ ∈ H1(Ω). Let i, j ∈ {1, 2, 3}. It is known that the integral average of ∂
∂xj

vh on F

is continuous through F and vanishes when F ⊂ ∂Ω. Then Green’s formula gives

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+
∂φ

∂xi

∂vh

∂xj

)

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xj
νi =

∑

T∈Th

∑

F⊂∂T

∫

F

φ
∂vh

∂xj
νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

φ
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

(φ − P 0
Fφ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νi.

From the Schwarz inequality and the interpolation theory we obtain

∣

∣

∣

∑

T∈Th

∑

F⊂∂T

∫

F

(φ− P 0
Fφ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νi

∣

∣

∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ− P 0
Fφ‖0,F

∥

∥

∥

∂vh

∂xj
− P 0

F

∂vh

∂xj

∥

∥

∥

0,F

≤ C
∑

T∈Th

h|φ|1,T |vh|2,T ≤ Ch|φ|1,Ω|vh|2,h.

Consequently, we obtain that for any φ ∈ H1(Ω), vh ∈ Vh0, i, j ∈ {1, 2, 3},

∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+
∂φ

∂xi

∂vh

∂xj

)∣

∣

∣
≤ Ch|φ|1,Ω|vh|2,h. (4.11)
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Let wh ∈ H1
0 (Ω) be as in (4.1) and (4.2). Then

ah(u, vh) − (∆2u,Πs
hvh)

= (∆2u,wh − Πs
hvh) +

3
∑

i=1

∑

T∈Th

∫

T

∂∆u

∂xi

∂(wh − vh)

∂xi

+

3
∑

i=1

∑

T∈Th

∫

T

(

∆u
∂2vh

∂x2
i

+
∂∆u

∂xi

∂vh

∂xi

)

+
∑

1≤i6=j≤3

∑

T∈Th

∫

T

( ∂2u

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3u

∂x2
i ∂xj

∂vh

∂xj

)

−
∑

1≤i6=j≤3

∑

T∈Th

∫

T

(∂2u

∂x2
i

∂2vh

∂x2
j

+
∂3u

∂x2
i ∂xj

∂vh

∂xj

)

. (4.12)

We obtain (4.9) from (4.12), (4.11), (4.1) and Lemma 2.1.

Theorem 4.1. There exists a constant C independent of h and ε such that

ε‖u− uh‖2,h + ‖u− Πs
huh‖1,h ≤ Ch(|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω) (4.13)

when u ∈ H3(Ω).

Proof. Let ϕh = Πhu. Then

ε‖u− uh‖2,h + ‖u− Πs
huh‖1,h

≤ ε‖u− ϕh‖2,h + ‖u− Πs
hϕh‖1,h + ε‖uh − ϕh‖2,h + ‖Πs

h(uh − ϕh)‖1,h. (4.14)

Set vh = uh − ϕh. From (3.4) and (1.1), we derive that

ε2ah(vh, vh) + bh(Πs
hvh,Π

s
hvh)

= ε2ah(u− ϕh, vh) + bh(Πs
h(u− ϕh),Πs

hvh)

+ε2
(

(∆2u,Πs
hvh) − ah(u, vh)

)

−
(

(∆u,Πs
hvh) + bh(Πs

hu,Π
s
hvh)

)

.

By the interpolation theory, Lemma 2.1, (4.8) and (4.9), we have

ε2ah(vh, vh) + bh(Πs
hvh,Π

s
hvh)

≤ Ch
(

|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω

)(

ε|vh|2,h + |Πs
hvh|1,h

)

.

Since

ε2‖vh‖
2
2,h + ‖Πs

hvh‖
2
1,h ≤ C

(

ε2ah(vh, vh) + bh(Πs
hvh,Π

s
hvh)

)

we obtain that

ε‖uh − ϕh‖2,h + ‖Πs
h(uh − ϕh)‖1,h ≤ Ch

(

|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω

)

. (4.15)

The theorem follows from the interpolation theory, (4.14) and (4.15).

Similar to Lemma 5.1 in [10], we can prove the following lemma.

Lemma 4.3. If Ω is convex, then there exists a constant C independent of ε such that

ε−1/2|u− u0|1,Ω + ε1/2|u|2,Ω + ε3/2|u|3,Ω ≤ C‖f‖0,Ω (4.16)

for all f ∈ L2(Ω).
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Lemma 4.4. There exists a constant C independent of ε and h such that

‖v‖0,∂T ≤ C
(

h−1/2‖v‖0,T + ‖v‖
1/2
0,T ‖v‖

1/2
1,T

)

, (4.17)
∑

F⊂∂T

‖v − P 0
F v‖0,F ≤ C‖v‖

1/2
0,T |v|

1/2
1,T , (4.18)

for all v ∈ H1(T ) and T ∈ Th.

Proof. Let T̂ be the reference tetrahedron. From [7] we know that

‖v̂‖0,∂T̂ ≤ C‖v̂‖
1/2

0,T̂
‖v̂‖

1/2

1,T̂
, ∀v̂ ∈ H1(T̂ ). (4.19)

Then we obtain (4.17) by the affine technique.

Now let T ∈ Th and let P 0
T be the orthogonal projection operator from L2(T ) to P0(T ). For

each F̂ ⊂ ∂T̂ and v̂ ∈ H1(T̂ ), we have by (4.19) and the interpolation theory,

‖v̂ − P 0
F̂
v̂‖0,F̂ ≤ ‖v̂ − P 0

T̂
v̂ − P 0

F̂
(v̂ − P 0

T̂
v̂)‖0,F̂

≤ C‖v̂ − P 0
T̂
v̂‖

1/2

0,T̂
‖v̂ − P 0

T̂
v̂‖

1/2

1,T̂
≤ ‖v̂‖

1/2

0,T̂
|v̂|

1/2

1,T̂
.

Consequently, we obtain (4.18) by the affine technique.

Theorem 4.2. If Ω is convex, then there exists a constant C independent of h and ε such that

ε‖u− uh‖2,h + ‖u− Πs
huh‖1,h ≤ Ch1/2‖f‖0,Ω. (4.20)

Proof. From the interpolation theory, it is true that

‖u− Πhu‖
2
2,h ≤ C|u|2,Ω‖u− Πhu‖2,h ≤ Ch|u|2,Ω|u|3,Ω.

By Lemma 4.3, we have

ε‖u− Πhu‖2,h ≤ Ch1/2‖f‖0,Ω. (4.21)

Similar to (4.4) in [10], we can show that

‖v − Πs
hv‖

2
1,h ≤ Ch|v|1,Ω|v|2,Ω, ∀v ∈ H2

0 (Ω). (4.22)

Using (4.22), we obtain

‖u− u0 − Πs
h(u− u0)‖2

1,h ≤ Ch|u − u0|1,Ω|u− u0|2,Ω,

and we have, by the interpolation theory,

‖u0 − Πs
hu

0‖1,h ≤ Ch|u0|2,Ω.

By Lemma 4.3 and the following inequalities,

‖u0‖2,Ω ≤ C‖f‖0,Ω,

‖u− Πs
hu‖1,h ≤ ‖u− u0 − Πs

h(u− u0)‖1,h + ‖u0 − Πs
hu

0‖1,h,
(4.23)

we have

‖u− Πs
hu‖1,h ≤ Ch1/2‖f‖0,Ω. (4.24)
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Set vh = uh − Πhu. Lemma 2.2 and Green’s formula give

bh(Πs
hu, Πs

hvh) + (∆u,Πs
hvh) = bh(Πs

hu− u,Πs
hvh)

+
∑

T∈Th

∑

F⊂∂T

∫

F

(∂(u− u0)

∂ν
− P 0

F

∂(u− u0)

∂ν

)

(Πs
hvh − P 0

F Πs
hvh)

+
∑

T∈Th

∑

F⊂∂T

∫

F

(∂u0

∂ν
− P 0

F

∂u0

∂ν

)

(Πs
hvh − P 0

F Πs
hvh).

By the Schwarz inequality and the interpolation theory, we have

| bh(Πs
hu,Π

s
hvh) + (∆u,Πs

hvh)| ≤ C
∑

T∈Th

(

|u− Πs
hu|1,T + h|u0|2,T

+h1/2
∑

F⊂∂T

∣

∣

∣

∂(u− u0)

∂ν
− P 0

F

∂(u− u0)

∂ν

∣

∣

∣

0,F

)

|Πs
hvh|1,T .

It follows from (4.24), (4.18), (4.23) and Lemma 4.3 that

| bh(Πs
hu,Π

s
hvh) + (∆u,Πs

hvh)| ≤ Ch1/2‖f‖0,Ω‖Π
s
hvh‖1,h. (4.25)

Now let φ ∈ H1(Ω) and i, j ∈ {1, 2}. From the proof of Lemma 4.2, we have

∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+
∂φ

∂xi

∂vh

∂xj

)∣

∣

∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ− P 0
Fφ‖0,F

∥

∥

∥

∂vh

∂xj
− P 0

F

∂vh

∂xj

∥

∥

∥

0,F
.

By the interpolation theory and (4.17), we have

∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+
∂φ

∂xi

∂vh

∂xj

)
∣

∣

∣
≤ Ch1/2‖φ‖

1/2
0,Ω‖φ‖

1/2
1,Ω|vh|2,h. (4.26)

Let wh ∈ H1
0 (Ω) such that (4.1) and (4.2) are true. If ε ≤ h, then by Green’s formula we get

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)

∂xi
=

∑

T∈Th

∫

∂T

φ
∂(wh − vh)

∂xi
νi −

∑

T∈Th

∫

T

φ
∂2(wh − vh)

∂x2
i

.

By the Schwarz inequality, (4.1) and (4.17), we obtain

∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)

∂xi

∣

∣

∣

≤
∑

T∈Th

‖φ‖0,∂T

∥

∥

∥

∂(wh − vh)

∂xi

∥

∥

∥

0,∂T
+

∑

T∈Th

‖φ‖0,T |wh − vh|2,T

≤ C
(

h1/2‖φ‖
1/2
0,Ω‖φ‖

1/2
1,Ω + ‖φ‖0,Ω

)

|vh|2,h.

Hence when ε ≤ h,

ε2
∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)

∂xi

∣

∣

∣
≤ Ch1/2

(

ε2‖φ‖
1/2
0,Ω‖φ‖

1/2
1,Ω + ε3/2‖φ‖0,Ω

)

|vh|2,h. (4.27)
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When ε > h, by the Schwarz inequality and (4.1) we have,

ε2
∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)

∂xi

∣

∣

∣
≤ Chε2|φ|1,Ω|vh|2,h ≤ Ch1/2ε5/2|φ|1,Ω|vh|2,h. (4.28)

It follows from (1.1) and (1.5) that

ε2(∆2u,wh − Πs
hvh) = (∆(u− u0), wh − Πs

hvh). (4.29)

When ε > h, we have by (4.2) and Lemma 2.2,

|(∆(u − u0), wh − Πs
hvh)| ≤ Ch|u− u0|2,Ω|Π

s
hvh|1,h

≤ Ch1/2ε1/2|u− u0|2,Ω|Π
s
hvh|1,h.

By Lemma 4.3 and (4.23) we get that

|ε2(∆2u,wh − Πs
hvh)| ≤ Ch1/2‖f‖0,Ω|Π

s
hvh|1,h, for ε > h. (4.30)

On the other hand, we have

(∆(u− u0), wh − Πs
hvh)

=

3
∑

j=1

∑

T∈Th

(

∫

∂T

∂(u− u0)

∂xj
(wh − Πs

hvh)νj −

∫

T

∂(u− u0)

∂xj

∂(wh − Πs
hvh)

∂xj

)

.

Then

|(∆(u − u0), wh − Πs
hvh)|

≤
3

∑

j=1

∑

T∈Th

(∥

∥

∥

∂(u− u0)

∂xj

∥

∥

∥

0,∂T
‖wh − Πs

hvh‖0,∂T + ‖u− u0‖1,T ‖wh − Πs
hvh‖1,T

)

.

By (4.17), (4.2) and the Schwarz inequality, we obtain

|(∆(u − u0), wh − Πs
hvh)|

≤ C
(

h1/2‖u− u0‖
1/2
1,Ω‖u− u0‖

1/2
2,Ω + ‖u− u0‖1,Ω

)

|Πs
hvh|1,h.

From Lemma 4.3 and (4.29) we get

|ε2(∆2u,wh − Πs
hvh)| ≤ C

(

h1/2 + ε1/2
)

‖f‖0,Ω|Π
s
hvh|1,h.

That is, (4.30) is also true when ε ≤ h.

From Lemma 4.3, (4.12), (4.26)-(4.28) and (4.30) we obtain

ε2| ah(u, vh) − (∆2u,Πs
hvh)| ≤ Ch1/2‖f‖0,Ω

(

ε|vh|2,h + |Πs
hvh|1,h

)

. (4.31)

Combining (4.21), (4.24), (4.25), (4.31) and the proof of Theorem 4.1, we complete the proof

of the theorem.
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