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Abstract

We study galvanic currents on a heterogeneous surface. In electrochemistry, the

oxidation-reduction reaction producing the current is commonly modeled by a nonlin-

ear elliptic boundary value problem. The boundary condition is of exponential type with

periodically varying parameters. We construct an approximation by first homogenizing

the problem, and then linearizing about the homogenized solution. This approximation

is far more accurate than both previous approximations or direct linearization. We es-

tablish convergence estimates for both the two and three-dimensional case and provide

two-dimensional numerical experiments.
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1. Introduction

A galvanic current is an electron transport process that occurs between anode and cathode.

When anode and cathode are placed in electrical contact, the difference in electrolytic voltage

rest potential results in an electron flow from anode to cathode. The anode undergoes oxidation,

i.e., the anode loses an electron, while the cathode undergoes reduction, i.e., the cathode gains

an electron. The anode is said to be corroded and the electron flow is known as a corrosion

current, or galvanic current. Rust is the result of a similar type of oxidation-reduction reaction

that occurs between different parts of the same surface. In fact, rust-causing current is very

similar to a galvanic current on a heterogeneous surface. See [14] for further discussion of the

subject.

Mathematically, such galvanic interactions can be modeled by the so-called Butler-Volmer

boundary conditions of exponential type. The potential is represented by a function φ over

a Euclidean domain Ω where a portion of its boundary, Γ, is electrochemically active and

composed of anodic and cathodic regions. The potential satisfies the Butler-Volmer boundary

conditions over both these regions, but with different material parameters in each region. More

specifically, we consider Ω to be a cylindrical domain with base some two-dimensional region.

The bottom base of the cylinder is a cathodic plane in which anodic islands are periodically

distributed throughout. We denote the anodic part of the bottom base of the cylinder as ∂ΩA

and the cathodic part as ∂ΩC , see Fig. 1.1. If we define the bottom base of the cylinder to be

* Received February 5, 2007; accepted July 19, 2007.



646 Y.S. BHAT AND S. MOSKOW

Γ, then the inert portion of the boundary is ∂Ω \Γ. Furthermore, Γ = ∂ΩA ∪ ∂ΩC , where ∂ΩA

and ∂ΩC are open sets such that ∂ΩA∩∂ΩC = ∅. The electrolytic voltage potential, φ, satisfies

the following nonlinear problem,

∆φ = 0 in Ω,

− ∂φ

∂n
= JA[eαaa(φ−VA) − e−αac(φ−VA)] on ∂ΩA,

− ∂φ

∂n
= JC [eαca(φ−VC) − e−αcc(φ−VC)] on ∂ΩC ,

− ∂φ

∂n
= 0 on ∂Ω \ {∂ΩA ∪ ∂ΩC},

(1.1)

where the transfer coefficients αaa, αac, αca, αcc are such that

αaa + αac = 1, αca + αcc = 1.

The anodic and cathodic polarization parameters JA and JC are positive constants and VA, VC

are the anodic and cathodic rest potentials respectively.

Fig. 1.1. The cylindrical domain, Ω, has a two-dimensional base, Γ, that is made up of anodic islands

periodically distributed in a cathodic plane.

This problem has been studied quite a bit in the electrochemistry community. For example,

in [12, 13] the authors compute finite element numerical solutions to (1.1). They observe

resulting currents for various anodic shapes. Within the applied mathematics community,

several aspects of the two dimensional homogeneous problem, including optimal control [9],

and singular solutions for negative polarization parameters [7, 11, 15] have been investigated.

In [6] we analyzed the periodically heterogeneous problem in two and three dimensions, and

suggested a linear correction term. Although the approximations were reasonable and could

be shown to converge in various norms, significant error remained in the approximation of the

boundary current.

In this paper we suggest a new approximation to (1.1) that consists of the constant solution

to the homogenized problem plus a linear correction that is essentially a linearization of (1.1)

about the homogenized solution. This approximation, while no more expensive to compute

than that of [6], is far more accurate. We demonstrate this both analytically and numerically.
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The approximation we present here differs from [6] in that the correction satisfies a Robin

boundary condition which more accurately models the microstructure than the previous Neu-

mann correction. Robin boundary conditions are known to be a good way to accurately model

periodic rough boundaries, see for example [1, 2, 10], where some difficult flow problems are

analyzed. Here the nonlinearity and the periodicity are together in the boundary condition,

and the Robin condition in the correction is obtained by a linearization of the model about the

homogenized solution.

We should also remark that while the correction is easier to compute since it is linear, it is

still inhomogeneous. So, for very small scales, it may be desirable to homogenize or otherwise

analytically approximate the correction term itself. See the techniques in [2, 5], for example.

The paper is organized as follows. In Section 2, we present the periodic model and its

homogenized limit as the periodic size ǫ → 0. Since direct linearization is common [12, 13, 15],

we also discuss what happens if one linearizes (1.1) directly. In Section 3, we briefly present the

results established in [6]. Section 4 contains the presentation of our new proposed approximation

and convergence estimates. Numerical experiments are presented in Section 5, and in Section 6

we discuss the results.

2. The Analytic Model, Homogenization and Direct Linearization

Mathematically, we study a periodic structure with period approaching zero. To model this

periodic structure, define

f(y, v) = λ(y)[eα(y)(v−V (y)) − e−(1−α(y))(v−V (y))],

where v ∈ R and y ∈ Y , the boundary period cell, which for simplicity we take to be the unit

square; Y = [0, 1] × [0, 1]. We assume that λ, α, and V are all piecewise smooth Y -periodic

functions and that there exist constants λ0, Λ0, α0, A0 and V0 such that:

0 < λ0 ≤ λ(y) ≤ Λ0, (2.1)

0 < α0 ≤ α(y) ≤ A0 < 1, (2.2)

|V (y)| ≤ V0. (2.3)

Consider the problem

∆uǫ = 0 in Ω,

−∂uǫ

∂n
= f(x/ǫ, uǫ) on Γ, (2.4)

−∂uǫ

∂n
= 0 on ∂Ω \ Γ.

One expects that as ǫ → 0 the solutions will converge to a solution of a problem with an averaged

boundary condition. In [6] we showed that uǫ converges to the solution of the homogenized

problem

∆u0 = 0 in Ω,

−∂u0

∂n
= f0(u0) on Γ, (2.5)

−∂u0

∂n
= 0 on ∂Ω \ Γ,
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where f0(v) is the cell average of f(y, v), that is,

f0(v) =

∫

Y

f(y, v)dy. (2.6)

Note that this problem is still nonlinear but now homogenous. We will look for a correction

that is linear. Linearization of (1.1) is commonly used [12], so we briefly discuss this before

proceeding. If one were to linearize the problem (2.4) directly we get

∆uL
ǫ = 0 in Ω,

−∂uL
ǫ

∂n
= λ(x/ǫ)(uL

ǫ − V (x/ǫ)) on Γ, (2.7)

−∂uL
ǫ

∂n
= 0 on ∂Ω \ Γ.

For large ǫ, this can yield a decent approximation, however as ǫ → 0 the direct linearization

converges to the wrong limit. One can show that the solution to (2.7) converges at least weakly

in L2(Ω) to uL
0 which satisfies

∆uL
0 = 0 in Ω,

−∂uL
0

∂n
= λuL

0 − b on Γ,

−∂uL
0

∂n
= 0 on ∂Ω \ Γ,

where λ and b are the averages

λ =

∫

Y

λ(y) dσy and b =

∫

Y

λ(y)V (y) dσy.

Clearly then

uL
0 = b/λ

and in general b/λ 6= u0. So, for small scale problems, the direct linearization approximation

is highly inaccurate, for example see Fig. 2.1. We discuss the precise parameters used here

in Section 5. One can see here that the linearized problem is converging to the wrong limit

potential as ǫ → 0.

3. Previously Established Estimates

We briefly discuss the existence and uniqueness of solutions to (2.4) and (2.5) and present

results from [6] which we will use in Section 4. Consider the energy functional

Eǫ(v) =
1

2

∫

Ω

|∇v|2 dx +

∫

Γ

F (
x

ǫ
, v)dσx, (3.1)

where

F (y, v) =
λ(y)

α(y)
eα(y)(v−V (y)) +

λ(y)

1 − α(y)
e−(1−α(y))(v−V (y)).

In [6] the following result is established in arbitrary dimension. For n = 2, this result had been

previously established for the homogeneous case in [9, 15].
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Fig. 2.1. The direct linearization approximation and the original on the boundary Γ, ǫ = 1/5, ǫ = 1/25

respectively.

Theorem 3.1 (Existence and Uniqueness of the Minimizer) Let Eǫ be defined by (3.1),

where λ, α, and V satisfy (2.1)-(2.3). Then there exists a unique function uǫ ∈ H1(Ω) satisfying

Eǫ(uǫ) = min
u∈H1(Ω)

Eǫ(u).

Similarly, if we define the energy functional

E0(v) =
1

2

∫

Ω

|∇v|2 dx +

∫

Γ

F0(v) dσx, (3.2)

where

F0(v) =

∫

Y

F (y, v)dy,

then we are able to conclude a similar result about u0 using techniques similar to those used in

the proof of Theorem 3.1. Furthermore, the solution u0 is a constant. Note that (2.1), (2.2),

(2.3) and (2.6) imply that if v > V0 then f0(v) > 0 and if v < −V0 then f0(v) < 0. Since f0(v)

is continuous, by the Intermediate Value Theorem there exists a constant K ∈ (−V0, V0) such

that f0(K) = 0. Now note that clearly u0 = K is a classical solution of (2.5), and so we see

that u0 is a constant. Note that this argument holds in any dimension.

In [6] we defined a correction, which we call wǫ here, to satisfy

∆wǫ = 0 in Ω,

−∂wǫ

∂n
=

1

ǫ
(f(

x

ǫ
, u0) − f0(u0)) + eǫ on Γ, (3.3)

−∂wǫ

∂n
= 0 on ∂Ω \ Γ,

∫

Γ

wǫ dσx = 0, (3.4)

where

eǫ =
1

ǫ

∫

Γ

(f0(u0) − f(x/ǫ, u0))dσx.

The constant eǫ is added to ensure the existence of the solution. Additionally, if uǫ and u0 are

in L∞(Γ), define

Dǫ = max
{

‖uǫ‖L∞(Γ), ‖u0‖L∞(Γ)

}

(3.5)
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and

Mǫ = sup
(y,w)∈Y ×[−Dǫ,Dǫ]

∂f

∂v
(y, w). (3.6)

Note that by definition 0 < Mǫ < 2Λ0e
V0eDǫ . Then assuming Dǫ is finite, the following

convergence result can be established.

Fig. 3.1. Two-dimensional analogue.

Proposition 3.1. Let n = 2 or 3 and let uǫ, u0 be minimizers of (3.1), (3.2) respectively, and

let wǫ be the solution to (3.3). Assume also that uǫ ∈ C0(Ω̄). Then there exist constants C1

and C2 independent of ǫ such that

‖uǫ − u0 − ǫwǫ‖H1(Ω) ≤ C1ǫ(Mǫ + C2),

where Mǫ is defined by (3.6). Furthermore, there exists a constant D1 independent of ǫ such

that,

‖wǫ‖L2(Γ) ≤ D1.

Remark 3.1. We do not know that Dǫ is finite in general for n = 3 but seems to be a physically

reasonable assumption to make. When the material is layered, i.e., when the dependence of

f on y is only in one direction, the problem reduces to one in two dimensions. In the two-

dimensional case the domain Ω is a unit square and Γ is the right side of the square, that is

Γ = {(x1, x2) ∈ Ω : x1 = 1}, (see Fig. 3.1). When n = 2, using an Orlicz estimate, we have

f(x/ǫ, uǫ) ∈ L2(Ω) if uǫ ∈ H1(Ω). Then problem (2.4) and standard regularity theory imply

uǫ ∈ H3/2(Ω). Thus, by the Trace Theorem , we have uǫ ∈ H1(Γ) independent of ǫ. Finally,

using the Sobolev Imbedding Theorem we have uǫ ∈ C0(Γ). Thus, we can show Dǫ is bounded

independently of ǫ when n = 2. See [6] for more details.

4. A Robin Boundary Condition

In Fig. 5.1 we plot for certain sample parameters our approximations from [6]. Note that this

previously developed approximation is slightly shifted away from uǫ. In this section we present
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an alternative correction term to wǫ. Define u
(1)
ǫ to satisfy the Robin boundary condition

problem

∆u(1)

ǫ = 0 in Ω,

−∂u(1)
ǫ

∂n
=

1

ǫ
(f(

x

ǫ
, u0) − f0(u0)) + u(1)

ǫ

∂f

∂v
(x/ǫ, u0) on Γ, (4.1)

−∂u(1)
ǫ

∂n
= 0 on ∂Ω \ Γ.

Before we develop rigorous estimates or provide numerical data, let us give some motivation

for (4.1). Assuming

uǫ ≈ u0 + ǫu(1)

ǫ ,

we have

u(1)

ǫ ≈ 1

ǫ
(uǫ − u0),

which motivates the ideal boundary condition

−∂u(1)
ǫ

∂n
=

1

ǫ
(f(x/ǫ, uǫ) − f0(u0)). (4.2)

So, by using

f(x/ǫ, uǫ) ≈ f(x/ǫ, u0) (4.3)

we obtain the Neumann boundary condition

−∂wǫ

∂n
= (f(x/ǫ, u0) − f0(u0))/ǫ,

which was used in [6]. Here we take (4.3) a step further by using the next term in the Taylor

approximation of f in the second variable:

f(x/ǫ, uǫ) ≈ f(x/ǫ, u0) +
∂f

∂v
(x/ǫ, u0)(uǫ − u0).

Now, since

ǫu(1)

ǫ ≈ (uǫ − u0),

we get

f(x/ǫ, uǫ) ≈ f(x/ǫ, u0) + ǫ
∂f

∂v
(x/ǫ, u0)u

(1)

ǫ

which if we substitute into (4.2) yields the Robin boundary condition (4.1). One can obtain

improved convergence estimates using the new correction. In particular, we show that we have

O(ǫ3/2) convergence when n = 3, where just as in [6], the constant depends on Dǫ (recall that

by definition there exists a constant C such that 0 < Mǫ < CeDǫ). We also show that we have

O(ǫ2−δ) for any δ > 0 convergence when n = 2, without any additional assumptions. Before

we present the proposition, for the sake of notation, let us define

Cǫ = max
{

Dǫ, Mǫ

}

, (4.4)

where Dǫ and Mǫ are defined by (3.5) and (3.6).
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Proposition 4.1. Let n = 3 and let uǫ, u0 be minimizers of (3.1), (3.2) respectively, and let

u(1)
ǫ be the solution to (4.1). Assume also that uǫ ∈ C0(Ω̄). Then there exists constants C and

D independent of ǫ such that

‖uǫ − u0 − ǫu(1)

ǫ ‖H1(Ω) ≤ ǫ3/2CC̃ǫ,

where C̃ǫ = [Cǫ + D]3 and Cǫ is defined by (4.4).

Proof. Let

zǫ = uǫ − u0 − ǫu(1)

ǫ ,

since uǫ is continuous, by the variational form of (2.4) and (2.5), we have that for any v ∈ H1(Ω),

∫

Ω

∇zǫ · ∇v dx =

∫

Ω

∇uǫ · ∇v dx −
∫

Ω

∇u0 · ∇v dx − ǫ

∫

Ω

∇u(1)

ǫ · ∇v dx

= −
∫

Γ

f(x/ǫ, uǫ)vdσx +

∫

Γ

f(x/ǫ, u0)vdσx + ǫ

∫

Γ

∂f

∂v
(x/ǫ, u0)u

(1)

ǫ vdσx.

Consequently,

∫

Ω

∇zǫ · ∇v dx +

∫

Γ

[f(x/ǫ, uǫ) − f(x/ǫ, u0)]vdσx − ǫ

∫

Γ

∂f

∂v
(x/ǫ, u0)u

(1)

ǫ vdσx = 0. (4.5)

Now note that u0 and uǫ are defined pointwise on Γ. So, by Taylor’s Theorem, using Lagrange’s

form of the remainder term we have that for each fixed ǫ and x ∈ Γ there exists ξx
ǫ between

u0(x) and uǫ(x) such that

f(
x

ǫ
, uǫ) − f(

x

ǫ
, u0) =

∂f

∂v
(
x

ǫ
, u0)(uǫ − u0) +

1

2

∂2f

∂v2
(
x

ǫ
, ξx

ǫ )(uǫ − u0)
2.

By subtracting and adding ǫu(1)
ǫ within the parentheses of the first term on the right hand side

we have

f(
x

ǫ
, uǫ) − f(

x

ǫ
, u0) =

∂f

∂v
(
x

ǫ
, u0)zǫ + ǫ

∂f

∂v
(
x

ǫ
, u0)u

(1)

ǫ +
1

2

∂2f

∂v2
(
x

ǫ
, ξx

ǫ )(uǫ − u0)
2. (4.6)

Thus substituting (4.6) into (4.5) yields

∫

Ω

∇zǫ · ∇v dx +

∫

Γ

∂f

∂v
(x/ǫ, u0)zǫvdσx = −1

2

∫

Γ

∂2f

∂v2
(x/ǫ, ξx

ǫ )(uǫ − u0)
2vdσx. (4.7)

Now, if we pick v = zǫ, we have

∫

Ω

|∇zǫ|2 dx +

∫

Γ

∂f

∂v
(
x

ǫ
, u0)z

2
ǫ dσx = −1

2

∫

Γ

∂2f

∂v2
(
x

ǫ
, ξx

ǫ )(uǫ − u0)
2zǫdσx.

One can check that there exists a constant c0 > 0 such that ∂f
∂v (y, v) ≥ c0 > 0 for all (y, v)∈Y×R.

Using a variant of the Poincaré inequality (e.g. see [9]) yields

c̃0‖zǫ‖2
H1(Ω) ≤

∫

Ω

|∇zǫ|2 dx +

∫

Γ

∂f

∂v
(
x

ǫ
, u0)z

2
ǫ dσx

= −1

2

∫

Γ

∂2f

∂v2
(
x

ǫ
, ξx

ǫ )(uǫ − u0)
2zǫdσx
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for some c̃0 > 0. Now note that
∣

∣

∣

∣

∂2f

∂v2
(y, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

λ(y)[α(y)2eα(y)(v−V (y)) − (1 − α(y))2e−(1−α(y))(v−V (y))]

∣

∣

∣

∣

≤ λ(y)
[

α(y)2eα(y)(v−V (y)) + (1 − α(y))2e−(1−α(y))(v−V (y))
]

≤ ∂f

∂v
(y, v),

where the last inequality follows from the fact that 0 < α(y) < 1 for all y ∈ Y . So

c̃0‖zǫ‖2
H1(Ω)

≤ 1

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)

∫

Γ

(uǫ − u0)
2|zǫ|dσx. (4.8)

Now note that by Hölder’s Inequality we have

c̃0‖zǫ‖2
H1(Ω)

≤ 1

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)

∫

Γ

(uǫ − u0)
2|zǫ|dσx

≤ C

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖L2(Γ)‖(uǫ − u0)|zǫ|‖L2(Γ).

Note that since we assume Dǫ is finite, by a variant of Hölder’s Inequality, see [4], p.25, we have

‖(uǫ − u0)|zǫ|‖L2(Γ) ≤ ‖uǫ − u0‖L4(Γ)‖zǫ‖L4(Γ)

and then using an interpolation inequality, see [4], p.27, yields

‖uǫ − u0‖L4(Γ) ≤ ‖uǫ − u0‖1/2
L2(Γ)‖uǫ − u0‖1/2

L∞(Γ).

Note that by Theorem 7.58(i) in [3] we have the imbedding

H1/2(Γ) → L4(Γ),

thus we have

‖zǫ‖L4(Γ) ≤ C‖zǫ‖H1/2(Γ).

So,

c̃0‖zǫ‖2
H1(Ω)

≤ C

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖L2(Γ)‖uǫ − u0‖1/2
L2(Γ)‖uǫ − u0‖1/2

L∞(Γ)‖zǫ‖H1/2(Γ)

≤ C̃‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖3/2
L2(Γ)‖uǫ − u0‖1/2

L∞(Γ)‖zǫ‖H1(Ω),

where the last inequality follows by the Trace Theorem. Thus

‖zǫ‖H1(Ω) ≤ Ĉ‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖3/2
L2(Γ)‖uǫ − u0‖1/2

L∞(Γ).

Now if wǫ is a weak solution to (3.3) then by the Triangle Inequality and Proposition 3.1 we

have

‖uǫ − u0‖L2(Γ) = ‖uǫ − u0 − ǫwǫ + ǫwǫ‖L2(Γ)

≤ ‖uǫ − u0 − ǫwǫ‖L2(Γ) + ǫ‖wǫ‖L2(Γ)

≤ C1ǫ(Mǫ + C2) + ǫD1

≤ C1ǫ[Mǫ + C3], (4.9)
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where C3 is a constant independent of ǫ such that C2 + D1/C1 ≤ C3 . Thus, we have that

‖zǫ‖H1(Ω) ≤ Ĉ‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖3/2
L2(Γ)‖uǫ − u0‖1/2

L∞(Γ)

≤ ǫ3/2
√

2ĈC
3/2
1 MǫD

1/2
ǫ [Mǫ + C3]

3/2

≤ ǫ3/2
√

2ĈC
3/2
1 C3/2

ǫ [Cǫ + C3]
3/2

≤ ǫ3/2KC̃ǫ,

where K is a constant independent of ǫ and C̃ǫ = [Cǫ + C3]
3.

For the two-dimensional case we can prove a stronger result. In this case, recall in [6] we

saw that uǫ is continuous and bounded independent of ǫ and so Proposition 3.1 implies

‖uǫ − u0‖L2(Γ) ≤ C̃ǫ (4.10)

for some constant C̃ independent of ǫ.

Proposition 4.2. Let n = 2 and let uǫ, u0 be minimizers of (3.1), (3.2) respectively, and let

u(1)
ǫ be the solution to (4.1). Then for any δ > 0 there exists a constant C independent of ǫ such

that

‖uǫ − u0 − ǫu(1)

ǫ ‖H1(Ω) ≤ Cǫ2−δ.

Proof. As in Proposition 4.1, if we let

zǫ = uǫ − u0 − ǫu(1)

ǫ ,

since uǫ is continuous, by the variational form of (2.4) and (2.5), we can establish that

c̃0‖zǫ‖2
H1(Ω)

≤ 1

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)

∫

Γ

(uǫ − u0)
2|zǫ|dσx. (4.11)

By Hölder’s Inequality we have
∫

Γ

(uǫ − u0)
2|zǫ|dσx ≤ ||uǫ − u0||L2(Γ)||(uǫ − u0)|zǫ|||L2(Γ).

Now by a variant of Hölder’s Inequality, p.25 [4], we have

‖(uǫ − u0)|zǫ|‖L2(Γ) ≤ ‖uǫ − u0‖L2/α(Γ)‖zǫ‖L2/1−α(Γ)

for 0 < α < 1 and then using an interpolation inequality, p.27 [4], yields

‖uǫ − u0‖L2/α(Γ) ≤ ‖uǫ − u0‖α
L2(Γ)

‖uǫ − u0‖1−α
L∞(Γ).

Note that by Theorem 7.58(ii) in [3] we have the imbedding

H1/2(Γ) → Lq(Γ), for 2 ≤ q < ∞,

thus we have

‖zǫ‖L2/1−α(Γ) ≤ C‖zǫ‖H1/2(Γ) for 0 < α < 1.

So,

c̃0‖zǫ‖2
H1(Ω)

≤ C

2
‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖L2(Γ)‖uǫ − u0‖α
L2(Γ)‖uǫ − u0‖1−α

L∞(Γ)‖zǫ‖H1/2(Γ)

≤ C̃‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖1+α
L2(Γ)‖uǫ − u0‖1−α

L∞(Γ)‖zǫ‖H1(Ω),
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where the last inequality follows by the Trace Theorem. Thus

‖zǫ‖H1(Ω) ≤ Ĉ‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖1+α
L2(Γ)‖uǫ − u0‖1−α

L∞(Γ).

Now recalling (4.9) we have

‖uǫ − u0‖L2(Γ) ≤ C1ǫ[Mǫ + C3],

where C1 and C3 are constants independent of ǫ. Note that when n = 2 we have that Dǫ is

bounded independently of ǫ, thus there exists a positive constant K, bounded independently of

ǫ, such that

‖zǫ‖H1(Ω) ≤ Ĉ‖∂f

∂v
(
x

ǫ
, ξx

ǫ )‖L∞(Γ)‖uǫ − u0‖1+α
L2(Γ)‖uǫ − u0‖1−α

L∞(Γ)

≤ ǫ1+αKD1−α
ǫ for 0 < α < 1.

So, for any δ > 0 we have

‖zǫ‖H1(Ω) ≤ Cǫ2−δ,

where C can be picked independently of ǫ.

5. Numerical Experiments

We now demonstrate the accuracy of this approximation with numerical experiments when

n = 2. We begin by using the same parameters as in [6]: JA = 1, JC = 10, VA = 0.5, VC = 1.0,

αaa = 0.5, αca = 0.85, and Y = YA ∪ YC where YA = [0, 1/3] and YC = [1/3, 1]. For the

parameter values used here, we have u0 = 0.9758. Recall that in the two-dimensional case the

domain Ω is a unit square, see Fig. 3.1.

To compute uǫ, u0, and u(1)
ǫ , we use piecewise linear finite elements on a regular mesh,

and choose a grid which conforms to the medium to avoid singularities within elements. We

compute the correction, u(1)
ǫ , using standard finite elements (conforming to the media) for a

linear problem. When solving for uǫ we use a conjugate gradient descent based algorithm

developed by Hager and Zhang [8] to perform the nonlinear minimization.

Our previous approximations [6] are shown in Fig. 5.1, where we see the slight shift in the

approximation away from the solution to the nonlinear problem (2.4). In Fig. 5.2 we graph the

new approximation and the solution to the nonlinear problem (2.4) using the same parameter

values used in [6]. Note the high accuracy of this approximation. Since the curves seem to be

overlapping, by plotting node values, we demonstrate in Fig. 5.3 that the two curves are indeed

slightly different. In Fig. 5.4 we provide surface plots of the full solution on Ω.

In Table 5.1 we present the computed norm errors and empirical values for the convergence

rate α using the parameter values from [6]. Since piecewise linear finite elements yield only O(h)

approximations for the gradient, the error of our finite element approximation (using about 1

million elements) is on the order of our observed errors (h ≈ 6.5 × 10−4). So calculations of

convergence rates for the H1-norm are meaningless.

In order to get better empirical convergence rates, we choose our second set of parameter

values to contain a much higher contrast in rest potentials. We expect this will lead to larger

errors in all approximations. The second set of parameter values are JA = 3, JC = 7, VA = 10,
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Fig. 5.1. Previous approximation and the brute force solution on the boundary Γ, ǫ = 1/5, ǫ = 1/11

respectively.
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Fig. 5.2. New approximation and the brute force solution on the boundary Γ, ǫ = 1/5, ǫ = 1/11

respectively.

Table 5.1: Table of estimates and convergence rates.

ǫ 1/2 1/3 1/4 1/5 1/6 α

‖uǫ − (u0 + ǫu
(1)
ǫ )‖

H1(Ω) .8406e-4 .4420e-4 .2877e-4 .2124e-4 .2104e-4 n.a. n.a. n.a. n.a.

‖uǫ − (u0 + ǫu
(1)
ǫ )‖L∞(Ω) .0019 .0013 .0009 .0007 .0004 1.4183 1.7004 2 3.0694

‖uǫ − (u0 + ǫu
(1)
ǫ )‖

L2(Ω) .5254e-4 .2427e-4 .1290e-4 .0720e-4 .0417e -4 2.3062 2.5411 2.7852 2.9956

‖uǫ − (u0 + ǫu
(1)
ǫ )‖

L2(Γ) .5729e-4 .2908e-4 .1791e-4 .1212e-4 .0736e -4 1.8679 1.9822 2.1933 2.7358

VC = 1.0, αaa = 0.5, αca = 0.85 and Y = YA ∪ YC where YA = [0, 1/3] and YC = [1/3, 1]. Here

we have u0 = 3.272.

Figs. 5.5 and 5.6 show the surface plots of the brute force solution and our approximation

for ǫ = 1/5 and ǫ = 1/11 respectively. The errors are indeed larger in this case, as we can see

from the plot of the potentials on Γ in Fig. 5.7 for ǫ = 1/5. The approximation is still very

accurate, and one sees that for smaller ǫ (Fig. 5.7) the plots are almost indistinguishable.

In Table 5.2 we measure the accuracy of our approximation in various norms and calculate

the convergence rate. In the L2-norm the error is low and, as one expects, the H1 error is

larger. Although approximating the gradient of the solution of the heterogeneous, nonlinear

problem (2.4) is difficult, the solution of the problem with Robin boundary data (4.1) yields a

correction term which has a gradient that is an accurate and numerically efficient approximation.

In Table 5.3 we examine the accuracy of all the approximation strategies discussed here. Note
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Fig. 5.3. New approximation and the brute force solution on the boundary Γ, ǫ = 1/5.

Table 5.2: Table of norms over Ω and Γ and convergence rates.

ǫ 1/5 1/11 1/25 1/40 α

‖uǫ − (u0 + ǫu(1)
ǫ )‖H1(Ω) .8080 .3150 .0859 .0366 1.4884 1.6677 1.8164

‖uǫ − (u0 + ǫu(1)
ǫ )‖L2(Ω) .0486 .0149 .0039 .0015 1.6726 1.7784 2.033

‖uǫ − (u0 + ǫu(1)
ǫ )‖L2(Γ) .1888 .0561 .0132 .0054 1.7093 1.8131 1.9017

‖uǫ − (u0 + ǫu(1)
ǫ )‖L∞(Γ) .5756 .2225 .0692 .0347 1.3507 1.4394 1.4686

Table 5.3: Comparison of approximations over Ω and convergence rates.

ǫ 1/5 1/11 1/25 1/40 α

‖uǫ − (u0 + ǫu(1)
ǫ )‖H1(Ω) .8080 .3150 .0859 .0366 1.4884 1.6677 1.8164

‖uǫ − (u0 + ǫwǫ)‖H1(Ω) 6.8550 3.1770 1.3441 .8108 1.0266 1.0579 1.0756

‖uǫ − uL

ǫ ‖H1(Ω) 2.8178 2.8821 2.5022 2.1940 .1203 .2113 .2797

that the direct linearization approximation is poor as ǫ decreases. While the approximation

developed in [6] improves as ǫ → 0, the approximation presented in this paper is substantially

more accurate.

6. Conclusion

We have constructed an accurate approximation to the solution to (2.4), a nonlinear, hetero-

geneous problem, by using its homogenized limit and a linear correction. This linear correction,

while just as easy to compute, is far better than the correction proposed in [6], although both

converge to the correct limit as ǫ → 0. If the period size ǫ were large, i.e., the number of

anodes is small, linearizing the problem directly also yields reasonable results. However, the

approximation introduced in this paper appears to be even better, and the direct linearization
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Fig. 5.4. Left: Brute force solution. Right: New approximation. ǫ = 1/5.
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Fig. 5.5. Left: Brute force solution. Right: New approximation. ǫ = 1/5.

Fig. 5.6. Left: Brute force solution. Right: New approximation. ǫ = 1/11.

can be very bad for a large number of anodes.

If one were to prescribe a nonzero current over the inactive part of the boundary in (1.1),

the same results will hold. However, the homogenized solution u0 in this case will no longer be

constant and will solve a nonlinear problem. But, since this problem is homogeneous, u0 will
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Fig. 5.7. The approximation and the original, ǫ = 1/5, ǫ = 1/25 respectively.

generally be much easier to compute than the original.

It seems that this technique of homogenizing and then linearizing about the homogenized

solution could be extended to more complicated media, e.g., with boundary conditions of the

form

−∂uǫ

∂n
= f(x, x/ǫ, uǫ)

in problem (2.4) or other semilinear periodic problems. We also suspect that for n = 3, we can

obtain convergence on the order of O(ǫ2). Further analysis must be done and certain issues

regarding imbeddings must be resolved to obtain O(ǫ2) convergence. Another subject of future

research is the study of related eigenvalue problems, as in [15], but with periodically varying

parameters.
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