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Abstract

In this paper, we consider the higher divided difference of a composite function f(g(t))
in which ¢(¢) is an s-dimensional vector. By exploiting some properties from mixed par-
tial divided differences and multivariate Newton interpolation, we generalize the divided
difference form of Faa di Bruno’s formula with a scalar argument. Moreover, a generalized
Faa di Bruno’s formula with a vector argument is derived.
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1. Introduction

The well-known formula of Faa di Bruno [5] for higher derivative of a composite function
plays an important role in combinatorial algebra. The formula together with its representa-
tive tools, the Bell polynomials and cycle indicator polynomials of symmetric groups, have
wide applications in numerical analysis. Recently, applying Faa di Bruno’s formula [10], the
coefficients in Lagrangian numerical differentiation formulas and asymptotic expansions of the
remainders on local approximation have been derived explicitly. It is proved in [14] that the
solutions of a system of equations of algebraic sum of equal powers can be converted to all roots
of two univariate algebraic equations whose degree sum equals to the number of unknowns of
the underlying system of equations. In [15], we proposed the best quadrature for the function
which belongs to any order Sobolev class KW [a,b] with the Lo norm. In [11], the authors
applied the formula again and proved that, for complex polynomials, all extraneous fixed points
for any iteration of Halley iterative family (Konig’s algorithms) are repelling. Then six years
earlier than [1] they solved the problem left by [9]. Moreover, using the Bell polynomials and
cycle indicator polynomials of symmetric groups, a family of parallel and interval iterations for
finding all roots of a polynomial simultaneously is established, see, e.g., [16, 17]. These results
became the main part of the monograph [8].

Several generalizations of Faa di Bruno’s formula for multivariate composite functions have
been given in [3, 4, 7]. However, it seems that the details of the proofs and expressions are so
cumbersome that they are difficult to be used for practical computations. In a recent paper
[13], we established the divided difference form of Faa di Bruno’s formula which is of simple
form. It happened that Floater [6] also derived a similar result independently. It is the purpose
of this paper to continue the above work and to give the high order divided difference of h which
is represented by the divided differences of f and g. The functions f and g satisfy f: V — F,
g: U — V, and the function h : U — F is the composite function f o g, which is denoted
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by t — f(g(t)). Here F denotes the set of real numbers R or the set of complex numbers C.
Moreover, U C F, V C F® and s is a positive integer. We follow the definition of the divided
difference of g from [2]. So we can obtain the following generalized Faa di Bruno’s formula,

R / 7 (n)
SO = Y OB (G2 0 O, (11)

la! 1! 2! n!
1<|a|<n
where

|| .

Bualwias, - o)=Y SERIEE (1.2)
€iq +"‘+€i‘a‘ = k1+~~~+k‘a‘=n Jj=1
ki, ..., k‘a‘zl

is the ordinary partial Bell polynomial with several vector variables x1,xs,...,x,. We will

introduce all notations in the next section. However, in order to understand formula (1.1) well,
here we present an example for the generalized Faa di Bruno’s formula. Let h(t) = f(z(¢), y(t)).
Then we have
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3
32/ (O O0(0) + 52O/ 0 ) + 5k (500 0)

1 a4f 3 1 a4f , ,
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2. Preliminaries

In order to simplify expressions, it is convenient to recall some multivariate notations. We
denote by Z the set of nonnegative integers and by Z? the set of multi-integers. e; € Z3 is a
unit vector whose jth component is d;; where

5..=10 J#5
R O T

Let F® be the s-dimensional Euclidean space and x € [F* be an s-dimensional vector whose ith
S

component is denoted by z¢. o € Z7 denotes a multi-index. [a] := Y ;_; a® is its length.
More generally,
S
()*:F°->F: zw—a:= H(xe")aei,

=1
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and 00 := 1. Let

1 2 s

f(z) = (afel)ae (8562)(16 (ajeS)ae f(z).

For zg,21,...,2, € F*, we also denote the convex hull of X := {xg,x1,...,2,} CF* by
n n
X::{(l—Zt,) To + 11wy et [ 520, i < 1}.
i=1 i=1

According to the Hermite-Genocchi formula for univariate divided difference, we give the
definition of the mixed partial divided difference of order |a| at zq, 71, ..., 7|4

Definition 2.1 ([2]) For a € Z7, the mized partial divided difference of order |a| of f is
defined by

[zolof = f(20),

and
[1'0; L1y 7x\a|]af

1 Ul u‘a‘,l
Z:/ / / f(a)(m0+u1A1-0++u‘a|Amla‘_1)du‘aldu1’
0 0 0

where
Azj =z —x5, j=0,1,---,|a|—1, |af>1.

The above expressions may be regarded as a generalization of univariate divided difference
to high dimensions.
Next, we give the definition of multivariate Newton interpolation of total degree n.

Definition 2.2. Let X := {z¢,z1, ' ,z,} C F* and f € C*(X). Then the multivariate
Newton interpolation of f at the nodes X C F* is defined by

N(l‘,f,X) - Z [l‘o,l‘l,"' ax|a\]af'wa(x;X)a

0<[al<n

where
1, la] =0,
la
vl X) = S [e-w0%, >0

iy teigtrotes , =aj=l1

We call wq (z; X) the Newton fundamental functions for all v € Z7 . For more properties of the
multivariate Newton polynomials, see [12] and references therein.

In the rest of this section, we state some lemmas which will be needed in the proofs of our
theorems.

Lemma 2.1 ([12]) If f € C!°I(X) and X := {x¢, 21, -~ s Ta|} C F°, then there exists an
¢ € X such that

(o, Tyafaf = ﬁf“”(&)-
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Lemma 2.2 ([13]) Assume that {t;}}'_ is a sequence of n+ 1 distinct points. Let ¢; satisfy
¢i(ti):O7 i:0517"'7k_17

and let ®(t) = Hf;ol ¢i(t). Then for allm >k, we have
k
q)[tO;tla"' atn] = Z H(bifl[tifl;tuifl;tui,ﬁrl;'" 7tui]a
vo<vy < <wyy i=1

where vy =k, vg :=n.

3. Main Results

In this section, we suppose that to,t;...,t, € F, T := {to,t1,-- ,t,} and T is a convex
hull of T. Let g : T — F*, g € C*(T) and g° := [g(-)]. We will consider the divided difference
of a composite function h := fog.

Theorem 3.1. If g € C™(T), f € C"(g(T)) and h := f o g, then we have

[t(Jatla T atn]h = Z [g(tO)ag(tl)a T 7g(t\a|)]af

1<]a|<n

||

X Z Z H[tj717tl/j71)tl/j71+1)..' atuj]ge%ja (31)

iy Frotei Sa v S-Sy j=1

where vy := |a|, Vo := n. In particular, when t; = --- = t, = to, the generalized formula of
Faa di Bruno is as follows

la| (uj—uj 1+1)(t0))

f( g(to))
—h(" 3.2
oy M)y e,
1<|a|<n €+ +e” ‘—Ozy0<y1< <o J=1 J J
where v = |, V)q) = n.

Proof. Assume that {t;}7, is a sequence of n + 1 distinct points. Then we can obtain the
following Newton polynomial of h(t),

N(t;h, T) = h(to) +Z to,tr, - ti)h-wi(t:T), (3.3)
where
-1
wit;T) =[]t —t:).
i=0
For zg, 71, ,xn € g(T), let X := {z9,71, - ,2,}. Then for x € g(T) the multivariate

Newton interpolation of f at the nodes X C F? is

N(z; f, X) = f(x0) + Z [0, 21, , T)al]af - walz; X),

1<]al<n
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where

we(z; X) = Z H(:E—xj,l)eij.

1<|al<n
where o
walg®ig(M) = > ] —gt;-1))" = Qalt).
ei1+---+ei‘a‘:aj:1
Write "
Gu,...,i‘a\(t) - H(g(t) 7g(tj71))eij

Then we have

Qa(t) = > G,y (1)

iy +ooteq =

For |a| > I we have
[th tla T 7tl]Gi17--~ai\a\ = O’

which yields [to,t1, - ,t]Qa = 0. So the Newton interpolation of £, (t) at the nodes T is

N(t;Qa,T) = Zn: [to,t1, - 8] Q0 - wi(t: T). (3.5)

I=|a|
From (3.4) and (3.5), we derive
Nt fog, T) =flg(to) + S [a(to)sg(tr),- - »g(tia)laf

1<]a|<n

n
X Y oty 1] wi(T)

I=||

n
—Flgt0)) + > S lglto)sg(tr), -+ g(tia)lef
1=1 1<|a|<I
X [to,tl, s ,tl]Qa ~wl(t;T).
Therefore, by comparing the above expression with (3.3) and in view of the uniqueness of
interpolation, we have h(tp) = f(g(to)) and

[toatla te 7tn]h = Z [g(to),g(t1), e ;g(t|a\)]af : [toatla T ,tn]Qa.
1<]al<n

According to Lemma 2.2, we can obtain

||

[to,tr, ] Qe = Y S Tt vot, oty ot ],

€iy +"'+€7,‘a‘ = V()Sl/lg"'gl/\a\ j=1



702 X.H. WANG AND A.M. XU

where vy := |, V|| := n. Therefore we obtain (3.1). For general nodes, (3.1) holds automati-
cally because g € C"(T). In particular, when t; = --- = t,, = tg, we get (3.2) from Lemma 2.1
and (3.1). 0

In Theorem 3.1, for j = 1,2,---,|a|, we take k; instead of v; — v;_1 + 1. Then we will
derive an alternative form.

Theorem 3.2. Suppose all assumptions in Theorem 3.1 hold. Then we have

[tO;tla to atn]h - Z [g(tO)ag(tl)a T ;g(t|a\)]af

1<]al<n

||

8 Z Z H[tjfl’t’/j—lvtuj,l+1,"~ 7tyj]geij,

iy totes  Fa kit kg =n j=1

iy oo okjo>1
where
vo = laf; vji=kitke+-+kitlal—j j=12 ]a| =1 v =n
In particular, when t; = --- = t, = tg, the above expression becomes the generalized Faa di

Bruno’s formula defined by

lol (o (k3) ()
%h(n)(to)Z > ||,f(0"(( ) x Y > H%

1<|a|<n eip+- +e”a‘_|a\ ki+-+kj o =n j=1 g
ki, ... k‘ ‘>1
1 . g'(to) g"(to) 9™ (to)
_ = (e)
- X (o) B (TF2L TG ). (3.6
1<|a|<n

We conclude this section by considering an example. Let s = 2 and h(t) = f(z(t),y(t)).
The functions z(t) and y(t) are two components of g(t), respectively. Then it follows from (3.1)
that

[to,tl,tg,t3]h
=[g(t0), 9(t)](1,0)f - [to, t1, 2, ts]x + [g(t0), 9(t1)](0,1) f - [to, t1, t2, t3]y
+1[9(to), 9(t1), 9(t2)l (2,0 f - ([to, t2]z[t1, t2, t3]x + [to, ta, ts]x[t1, t3]x)
+ [g(to), g(t1), 9(t2)] 1,0 f - ([to, tala[tr, b2, taly + [to, b2, ta)a[ts, ts]y
+ [to, ta]y[te, ta, ts]z + [to, t2, taly[t1, ts]z)
+ [9(to), 9(t1), g(t2)](0,2) f - ([to, t2lylta, ta, taly + [to, ta, taly[ta, taly)
+ [g(to), g(t1), g(t2), g(t3)](3,0) f - [to, ta]x[ts, t3]x[to, t3]x
+ [9(t0), g(t1), 9(t2), 9(t3)) 2,1y f - ([t talz[ts, ts]zta, ta]y
+ [to, ta]z[t1, ta]y [t27t3]$+[t slyltr, ta]z[te, ts])
+[9(t0), 9(t1), 9(t2), 9(t3)l (1,2 f - ([to, tala[tr, t3]alta, ts]y
+ [to, t3]y[t1, 3]z [tQ,ts]er [to, tly[t1, ta]ylta, ts)x)
+ [9(to), 9(t1), 9(t2), 9(ts)](0,3) f - [to, tsly[ts, ts]y[t2, tsy.



On the Divided Difference Form of Faa di Bruno’s Formula II 703

In particular, when tqg = t; = to = t3 = t, the above expression becomes

h”l(t) _g xlll (t) ﬂ yl”(t)
31 9z 3 dy 3!

1 82 1 62 1 62

+ aa—g;gx’(t)x”(t) + iax—gy (@' (£)y" (t) + 2" (£)y' (1)) + ga—ngcy'(t)y"(t)
10%f , 1 9%f ’ /

L A2 (e

1 an / / 2 183f 77\ 3
+ 3190547 (320w (1) )+§a—y3y OF

If we only need to calculate the high order derivative of A but not the high order divided
difference of h, we can do it by the generalized ordinary partial Bell polynomial (1.2) directly.
For example, we find the generalized ordinary partial Bell polynomials of order 4 as follows (we
omit the polynomials which can be derived by symmetries):

® e ® e1,.e e1\2

By o) =73y Bao) = 22725 + (23')7

® e1, e ey, e ey, .e ® e1\2,.e
By 1,1y = 2(27 x5 + 25 w5® + 25 27?), By (s,0) = 3(27") 5",
> e1\2,.e ey, .e1,.e » e1\4

By (21) = 3(27")725® + 627" 25" 27®, By a0 = (27')",

By = 4a$)%23,  Byen = 6(27)*(2$*)%

Then from these formulas, we derive the results for the example in Section 1 according to the
second conclusion of Theorem 3.2, i.e., formula (1.1).
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