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Abstract

To solve nonlinear complementarity problems (NCP), at each iteration, the classi-
cal proximal point algorithm solves a well-conditioned sub-NCP while the Logarithmic-
Quadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system).
This paper presents a practical LQP method-based prediction-correction method for NCP.
The predictor is obtained via solving the LQP system approximately under significantly
relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit
formula derived from the original LQP method. The implementations are very easy to be
carried out. Global convergence of the method is proved under the same mild assumptions
as the original LQP method. Finally, numerical results for traffic equilibrium problems are
provided to verify that the method is effective for some practical problems.
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1. Introduction

The nonlinear complementarity problem (NCP) is to determine a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0 and xT F (x) = 0, (1.1)

where F is a nonlinear mapping from Rn into itself. NCP has received a lot of attention due to
its various applications in operations research, economic equilibrium, engineering design, and
others, e.g., [7, 8].

A classical method for solving NCP is the Proximal Point Algorithm (PPA) proposed first by
Martinet [12] and then developed by many researchers, e.g., [6, 9, 15, 16]. For given xk ∈ Rn

+

and βk > 0, the new iterate xk+1 generated by PPA is the unique solution of the following
auxiliary NCP: Find x ∈ Rn such that

x ≥ 0, βkF (x) + (x− xk) ≥ 0 and xT (βkF (x) + (x− xk)) = 0. (1.2)

Recently, a number of articles have concentrated on the generalization of PPA by replacing
the linear term x − xk with some nonlinear functions r(x, xk). As a result, some “interior
point” proximal methods for variational inequality problems have been developed by introducing
entropic proximal terms arising from appropriately formulated Bregman functions [1, 4, 5, 6]
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and entropic ϕ-divergence [16]. For given xk ∈ Rn
++ := intRn

+ and βk > 0, the Logarithmic-
Quadratic Proximal (LQP) method presented by Auslender, et al. in [2] takes the unique
solution of the following auxiliary NCP as the new iterate:

x ≥ 0, βkF (x) +∇xD(x, xk) ≥ 0 and xT (βkF (x) +∇xD(x, xk)) = 0, (1.3)

where
∇xD(x, xk) = (x− xk) + µ(xk −X2

kx−1), (1.4)

µ is a parameter in (0, 1), Xk = diag(xk
1 , xk

2 , . . . , xk
n) and x−1 is an n-vector whose j-th element

is 1/xj . Note that the integral function of ∇xD(x, xk) satisfying D(xk, xk) = 0 is

D(x, xk) =

{

1
2‖x− xk‖2 + µ

∑n

j=1

(

(xk
j )2 log

xk
j

xj
+ xjx

k
j − (xk

j )2
)

, if x ∈ Rn

++,

+∞ otherwise.
(1.5)

Since D(x, xk) includes logarithmic and quadratic terms, the method is called Logarithmic-
Quadratic Proximal method. The first term of ∇xD(x, xk) is to avoid that the new iterate is
too far away from xk; and the second term is to guarantee that the new iterate lies in Rn

++.
Therefore, at the k-th iteration, solving NCP by the LQP method is equivalent to finding the
positive solution of the following system of nonlinear equations

βkF (x) + x− (1 − µ)xk − µX2
kx−1 = 0. (1.6)

Throughout this paper, we call (1.6) the LQP system of nonlinear equations (abbreviated as
LQP system). Generally speaking, solving the LQP system is much easier than solving the
auxiliary NCP (1.2). Thus the LQP method is attractive for solving NCP. In general, however,
it is not trivial to obtain the exact positive solution of the LQP system. An inexact LQP
method solving (1.6) approximately was also presented in [2].

In this paper, inspired by the LQP method, we present a prediction-correction method [11]
for NCP. Both the predictor and corrector are computed via an explicit formula derived from
(1.6) (For details, see (2.1) and (2.3)). Similar to the LQP method, all the iterative points
generated by the method lie in Rn

++ whenever the initial point does. Thus the method inherits
theoretical properties of the original LQP method. Based on these observations, we call the
method a LQP based interior prediction-correction method.

The rest of this paper is organized as follows. In Section 2, the new method is presented
and some remarks are also provided. In Section 3, we prove the contractive properties of the
proposed method. These properties play important roles in the convergence analysis. Conver-
gence of the new method is discussed in Section 4. In Section 5, some implementation details
of the proposed method are addressed. In addition, numerical results for problems in traffic
equilibrium are also reported. Finally, some conclusions are drawn in Section 6.

Throughout this paper we make the following standard assumptions:

A1. F (x) is continuous and monotone mappings with respect to Rn
+ , i.e.,

(x − x̃)T (F (x)− F (x̃)) ≥ 0, ∀x, x̃ ∈ Rn
+ . (1.7)

A2. The solution set of the NCP, denoted by X ∗, is nonempty.

2. The Proposed Method

At the k-th iteration, the LQP method solves the LQP system (1.6) exactly or approximately.
We now present a LQP based interior prediction-correction method for NCP.

Let µ, η ∈ (0, 1). For given xk > 0 and βk > 0, the new iterate xk+1 is generated by the
following steps:
Prediction step: Find an approximate solution x̃k of (1.6), called predictor, such that

0 ≈ βkF (x̃k) + x̃k − (1 − µ)xk − µX2
k(x̃k)−1 =: ξk, (2.1)
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where ξk satisfies

‖ξk‖ ≤ η
√

1− µ2‖xk − x̃k‖. (2.2)

Correction step: Take the positive solution of the following system of equations, called cor-
rector, as the new iterate xk+1(τ)

τβkF (x̃k) + x− (1− µ)xk − µX2
kx−1 = 0, (2.3)

where τ is a positive scalar. How to choose the parameter τ will be discussed in Section 3.
Remark 1. In general, the prediction step is implementable. Sometimes we can get the
approximate solution of (2.1) directly via choosing a suitable small βk > 0. For example, if F
is Lipschitz continuous with constant L on Rn

+ , i.e.,

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn
+ ; (2.4)

and 0 < β ≤ βk ≤ η
√

1− µ2/L, then we can take the positive solution of the following equation

βkF (xk) + x− (1− µ)xk − µX2
kx−1 = 0 (2.5)

as x̃k. Note that in this special case

ξk = βk(F (x̃k)− F (xk)) (2.6)

and condition (2.2) is satisfied. In addition, the components of the positive solution of (2.5)
can be computed directly by

x̃k
j =

(1− µ)xk
j − βkFj(x

k) +
√

[(1− µ)xk
j − βkFj(xk)]2 + 4µ(xk

j )2

2
. (2.7)

Remark 2. The predictor x̃k is computed by solving (2.1) under significantly relaxed inexact
criterion (2.2) due to that it will be corrected further by the correction step (2.3). Note that

the coefficient of the inexact criterion (2.2) can be fixed as η
√

1− µ2. Thus (2.2) is much more
relaxed than the criteria of the inexact LQP method in [2] which require their coefficients to
converge to 0.
Remark 3. Note that in the correction step the components of the positive solution of (2.3)
can be computed directly by

xk+1
j =

(1− µ)xk
j − τβkFj(x̃

k) +
√

[(1− µ)xk
j − τβkFj(x̃k)]2 + 4µ(xk

j )2

2
. (2.8)

It is easy to verify that x̃k > 0 and xk+1 > 0 whenever xk > 0. Thus all the iterative points
generated by the proposed method lie in Rn

++ whenever the initial point does. Therefore, the
proposed method inherits theoretical properties of the original LQP method.
Remark 4. At each iteration, the main task of the LQP method is to solve the LQP system (1.6)
(exactly or approximately). The proposed method sometimes obtains both the predictor x̃k and
the corrector xk+1 quite easily by an explicit formula, i.e., x̃k and xk+1 can be computed directly
by (2.7) and (2.8), respectively. Therefore, the proposed method is easily implementable.

3. Contractive Property of the Generated Sequence

The following proposition is similar to Lemma 2 in [2]. For completeness, a proof is provided.

Lemma 3.1 For given xk > 0 and q ∈ Rn, the equation

q + x− (1 − µ)xk − µX2
kx−1 = 0 (3.1)

has a positive solution x whose j-th element xj is given by

xj =
(1− µ)xk

j − qj +
√

[(1− µ)xk
j − qj ]2 + 4µ(xk

j )2

2
. (3.2)

Moreover, for this positive solution x > 0 and any y ≥ 0, we have

(x − y)T (−q) ≥ 1+µ
2

(

‖x− y‖2 − ‖xk − y‖2
)

+ 1−µ
2 ‖x

k − x‖2. (3.3)
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Proof. The first assertion is clear and we only prove the second one. Since x > 0, xk > 0
and y ≥ 0, we have

yi(x
k
i )2/xi ≥ yi(2xk

i − xi), i = 1, . . . , n. (3.4)

It follows from (3.1) that for i = 1, . . . , n,

(xi − yi)(−qi) = (xi − yi)
(

xi − (1 − µ)xk
i − µ(xk

i )2/xi

)

≥ (xi)
2 − (1− µ)xix

k
i − µ(xk

i )2 − xiyi + (1− µ)xk
i yi + µyi(2xk

i − xi)

= (xi)
2 − (1− µ)xix

k
i − µ(xk

i )2 − (1 + µ)xiyi + (1 + µ)xk
i yi

= 1+µ
2

(

(xi − yi)
2 − (xk

i − yi)
2
)

+ 1−µ
2 (xk

i − xi)
2.

Hence, (3.3) holds and the proof is completed.
Note that the corrector xk+1(τ) obtained by solving (2.3) is dependent on the parameter τ .

How to choose values of τ to ensure that xk+1(τ) is closer to the solution set than xk deserves
further investigation. For this purpose, we define

Θ(τ) := ‖xk − x∗‖2 − ‖xk+1(τ) − x∗‖2, (3.5)

where x∗ ∈ X ∗ is any solution point of NCP. Clearly, Θ(τ) measures the progress made by the
new iterate xk+1(τ) at the k-th iteration.

Lemma 3.2 For given predictor x̃k and any τ > 0, we have

Θ(τ) ≥ 1−µ
1+µ
‖xk − xk+1(τ)‖2 + 2τ

(

xk+1(τ) − x̃k
)T

dk − 2τµ
1+µ
‖xk − x̃k‖2, (3.6)

where
dk = (xk − x̃k) + 1

1+µ
ξk. (3.7)

Proof. The proof consists of applying Lemma 3.1 to both the prediction and correction
steps. First, we apply Lemma 3.1 to the prediction step (2.1). By setting q = βkF (x̃k)− ξk in
(3.1) and y = xk+1(τ) in (3.3), it follows from (2.1) that

(xk+1(τ) − x̃k)T ( 1
1+µ

(ξk − βkF (x̃k)) ≤
1

2

(

‖xk − xk+1(τ)‖2 − ‖x̃k − xk+1(τ)‖2
)

− 1−µ
2(1+µ)‖x

k − x̃k‖2. (3.8)

Notice the following identity

(xk+1(τ)− x̃k)T (xk − x̃k) =
1

2

(

‖x̃k − xk+1(τ)‖2 − ‖xk − xk+1(τ)‖2
)

+
1

2
‖xk − x̃k‖2.(3.9)

Adding (3.8) and (3.9) we obtain

(xk+1(τ) − x̃k)T
{

(xk − x̃k) + 1
1+µ

(ξk − βkF (x̃k))
}

≤ µ
1+µ
‖xk − x̃k‖2, (3.10)

which implies

0 ≥ 2τ(xk+1(τ)− x̃k)T
{

(xk − x̃k) + 1
1+µ

(ξk − βkF (x̃k))
}

− 2τµ
1+µ
‖xk − x̃k‖2. (3.11)

Then, we apply Lemma 3.1 to the correction step (2.3). Setting q = τβkF (x̃k) in (3.1) and
y = x∗ in (3.3), it follow from (2.3) that

(xk+1(τ) − x∗)T (−τβkF (x̃k)) ≥ 1+µ
2 (‖xk+1(τ)− x∗‖2 − ‖xk − x∗‖2) + 1−µ

2 ‖x
k − xk+1(τ)‖2.

Thus we get
Θ(τ) ≥ 1−µ

1+µ
‖xk − xk+1(τ)‖2 + 2τ βk

1+µ
(xk+1(τ)− x∗)T F (x̃k). (3.12)

Since x̃k ∈ Rn
+ and x∗ is a solution of NCP, using the monotonicity of F , we have

(x̃k − x∗)T F (x̃k) ≥ (x̃k − x∗)T F (x∗) = (x̃k)T F (x∗) ≥ 0, (3.13)

and consequently

Θ(τ) ≥ 1−µ
1+µ
‖xk − xk+1(τ)‖2 + 2τ βk

1+µ
(xk+1(τ) − x̃k)T F (x̃k). (3.14)

Adding (3.11) and (3.14) and using the notation of dk in (3.7), the assertion is proved.
Based on Lemma 3.2, we discuss the contractive property of the proposed method by setting

τ = 1−µ
1+µ

α in the correction step (2.3).
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Theorem 3.1 Let Θ(τ) be defined in (3.5) and dk be defined in (3.7). If we take τ = 1−µ
1+µ

α in

(2.3), then for any x∗ ∈ X ∗ and α > 0, we have

Θ(1−µ
1+µ

α) ≥ 1−µ
1+µ

Φ(α), (3.15)

where
Φ(α) := 2αϕk − α2‖dk‖2 (3.16)

and
ϕk := 1

1+µ
‖xk − x̃k‖2 + 1

1+µ
(xk − x̃k)T ξk. (3.17)

Proof. Recall that

Θ(1−µ
1+µ

α) = ‖xk − x∗‖2 − ‖xk+1(1−µ
1+µ

α)− x∗‖2. (3.18)

It follows from (3.6) that
1+µ
1−µ

Θ(1−µ
1+µ

α) ≥ 2α{(xk+1(1−µ
1+µ

α)− xk) + (xk − x̃k)}T dk − 2 αµ
1+µ
‖xk − x̃k‖2

+‖xk − xk+1(1−µ
1+µ

α)‖2

= 2α(xk − x̃k)T dk − 2 αµ
1+µ
‖xk − x̃k‖2 − α2‖dk‖2

+‖(xk − xk+1(1−µ
1+µ

α))− αdk‖2

≥ 2α
{

(xk − x̃k)T dk − µ
1+µ
‖xk − x̃k‖2

}

− α2‖dk‖2

(3.7)
= 2α

{

1
1+µ
‖xk − x̃k‖2 + 1

1+µ
(xk − x̃k)T ξk

}

− α2‖dk‖2

(3.17)
= 2αϕk − α2‖dk‖2. (3.19)

The assertion follows from (3.18) and (3.19) directly.
Note that Θ(1−µ

1+µ
α) can be regarded as the progress made by xk+1(1−µ

1+µ
α) at the k − th

iteration. Therefore, it motivates us to choose such an α that reaches the maximum of Φ(α).
Since Φ(α) is a quadratic function of α, it reaches its maximum at

α∗
k =

ϕk

‖dk‖2
(3.20)

with
Φ(α∗

k) = α∗
kϕk. (3.21)

Under the condition (2.2) we have

2ϕk

(3.17)
= 2

1+µ
‖xk − x̃k‖2 + 2

1+µ
(xk − x̃k)T ξk

= ‖xk − x̃k‖2 + 2
1+µ

(xk − x̃k)T ξk + 1−µ
1+µ
‖xk − x̃k‖2

(2.2)

≥ ‖xk − x̃k‖2 + 2
1+µ

(xk − x̃k)T ξk + 1
(1+µ)2 ‖ξ

k‖2 + 1−µ
1+µ

(1− η2)‖xk − x̃k‖2

(3.7)
= ‖dk‖2 + 1−µ

1+µ
(1− η2)‖xk − x̃k‖2. (3.22)

Therefore, it follows from (3.20) and (3.22) that

α∗
k >

1

2
. (3.23)

In addition, we have

ϕk

(3.17)

≥ 1
1+µ

(

‖xk − x̃k‖2 − ‖xk − x̃k‖ · ‖ξk‖
)

(C.S.I)

≥ 1
1+µ

(

‖xk − x̃k‖2 − 1−µ2

2 ‖x
k − x̃k‖2 − 1

2(1−µ2)‖ξ
k‖2

)

(2.2)

≥ 1−η2+µ2

2(1+µ) ‖x
k − x̃k‖2, (3.24)
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where the second inequality comes from the Cauchy-Schwartz inequality.
Consequently, from (3.21), (3.23) and (3.24) we obtain

Φk(α∗
k) ≥

1− η2 + µ2

4(1 + µ)
‖xk − x̃k‖2. (3.25)

Based on numerical experiments, we prefer multiplying the ‘optimal’ value α∗ by a relaxation
factor γ ∈ (1, 2) (better when close to 2). Thus the correction step (2.3) with ‘optimal’ α of
the proposed method is to find the positive solution xk+1(1−µ

1+µ
γα∗) of the following system of

equations

(LQP P-Cγτ∗

k
) γτ∗

kβkF (x̃k) + x− (1− µ)xk − µX2
kx−1 = 0, (3.26)

where (see (3.20))

τ∗
k =

1− µ

1 + µ
α∗

k and α∗
k =
‖xk − x̃k‖2 + (xk − x̃k)T ξk

(1 + µ)‖dk‖2
. (3.27)

Theorem 3.2 Let xk+1(1−µ
1+µ

γα∗) be the positive solution of (3.26). Then for any x∗ ∈ X ∗ and

γ ∈ (1, 2), we have

‖xk+1(1−µ
1+µ

γα∗)− x∗‖2 ≤ ‖xk − x∗‖2 −
γ(2− γ)(1− η2 + µ2)(1 − µ)

4(1 + µ)2
‖xk − x̃k‖2. (3.28)

Proof. Note that for γ ∈ (1, 2), by a simple manipulations we obtain

Φ(γα∗
k)

(3.16)
= 2γα∗

kϕk − (γ2α∗
k)(α∗

k‖d
k‖2)

(3.20)
= (2γα∗

k − γ2α∗
k)ϕk

(3.21)
= γ(2− γ)Φ(α∗

k). (3.29)

It follows from Theorem 3.1 and (3.29) that

Θ(1−µ
1+µ

γα∗) = ‖xk − x∗‖2 − ‖xk+1(1−µ
1+µ

γα∗)− x∗‖2

≥ 1−µ
1+µ

Φ(γα∗)

= γ(2− γ)1−µ
1+µ

Φ(α∗
k). (3.30)

Then the assertion follows from (3.25) immediately.
It follows from Theorem 3.2 that there exists a constant c > 0 such that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − c‖xk − x̃k‖2, ∀x∗ ∈ X ∗, (3.31)

whenever the new iterate xk+1 is obtained by LQP P-C1 or LQP P-Cγα∗

k
. Since (3.31) holds

for any x∗ ∈ X ∗, we have

[dist(xk+1,X ∗)]2 ≤ [dist(xk,X ∗)]2 − c‖xk − x̃k‖2, (3.32)

where
dist(x,X ∗) = inf{‖x− x∗‖ | x∗ ∈ X ∗}. (3.33)

Both LQP P-C1 and LQP P-Cγα∗

k
belong to contractive methods because the new iterate xk+1

generated by either of them is closer to the solution set X ∗ than xk.

4. Convergence of the Proposed Method

The following lemma plays an important role in the convergence analysis of the proposed
method.

Lemma 4.1 For given xk > 0 and βk > 0, let x̃k be obtained by the prediction step (2.1), then
for each x ≥ 0 we have

(x− x̃k)T (βkF (x̃k)− ξk) ≥ (xk − x̃k)T
{

(1 + µ)x− (µxk + x̃k)
}

. (4.1)
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Proof. By setting q = βkF (x̃k)− ξk in (3.1), x = x̃k and y = x in (3.3), it follows from (3.3)
that

(x − x̃k)T (βkF (x̃k)− ξk) ≥ 1+µ
2

(

‖x̃k − x‖2 − ‖xk − x‖2
)

+ 1−µ
2 ‖x

k − x̃k‖2. (4.2)

By a simple manipulation, we have
1+µ

2

(

‖x̃k − x‖2 − ‖xk − x‖2
)

+ 1−µ
2 ‖x

k − x̃k‖2

= (1 + µ)xT xk − (1 + µ)xT x̃k − (1 − µ)(x̃k)T xk − µ‖xk‖2 + ‖x̃k‖2

= (1 + µ)xT (xk − x̃k)− (xk − x̃k)T (µxk + x̃k)

= (xk − x̃k)T
{

(1 + µ)x−
(

µxk + x̃k
)}

.

Then the proof is completed.
Now, we are ready to prove convergence of the proposed method.

Theorem 4.1 If inf∞k=0 βk := β > 0, then the sequence {xk} generated by the proposed method
converges to some x∞ which is a solution of NCP.

Proof. It follows from (3.31) that {xk} is a bounded sequence and

lim
k→∞

‖xk − x̃k‖ = 0. (4.3)

Consequently, {x̃k} is also bounded. Since limk→∞ ‖x
k − x̃k‖ = 0, ‖ξk‖ < ‖xk − x̃k‖ and

βk ≥ β > 0, it follows from (4.1) that

lim
k→∞

(x− x̃k)T F (x̃k) ≥ 0, ∀x ∈ Rn
+ . (4.4)

Because {x̃k} is bounded, it has at least one cluster point. Let x∞ be a cluster point of {x̃k}
and the subsequence {x̃kj} converges to x∞. It follows that

lim
j→∞

(x− x̃kj )T F (x̃kj ) ≥ 0, ∀x ∈ Rn
+ (4.5)

and consequently
(x− x∞)T F (x∞) ≥ 0, ∀x ∈ Rn

+ . (4.6)

This means that x∞ is a solution of NCP. Note that the inequality (3.31) is true for all solution
point of NCP, hence we have

‖xk+1 − x∞‖2 ≤ ‖xk − x∞‖2, ∀k ≥ 0. (4.7)

Since x̃kj → x∞ (j →∞) and xk − x̃k → 0 (k →∞), for any given ε > 0, there exists an l > 0
such that

‖x̃kl − x∞‖ < ε/2 and ‖xkl − x̃kl‖ < ε/2. (4.8)

Therefore, for any k ≥ kl, it follows from (4.7) and (4.8) that

‖xk − x∞‖ ≤ ‖xkl − x∞‖ ≤ ‖xkl − x̃kl‖+ ‖x̃kl − x∞‖ ≤ ε. (4.9)

This implies that the sequence {xk} converges to x∞ which is a solution of NCP.

5. Implementation Details and Numerical Experiments

In this section, we provide some illustrations of the proposed method from the practical
point of view. Then the algorithm with some implementation details are addressed. Finally
some numerical results are reported to verify the theoretical results.

5.1 Implementation details

In the prediction step, the main task of the proposed method is to find an approximate
solution x̃k of (1.6) such that (2.1)-(2.2) are satisfied. Such x̃k can be obtained by choosing a
suitably small βk > 0 in (2.7) (see Remark 1 in Section 2 ) such that

‖ξk‖ ≤ η
√

1− µ2‖xk − x̃k‖, (5.1)
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where

ξk = βk(F (x̃k)− F (xk)). (5.2)

Too small values of βk, however, usually lead to extremely slow convergence according to our
numerical experiments. Thus it is necessary to avoid this situation. To do so, a strategy of
enlarging the values of βk whenever they are too small is proposed in the following algorithm.

The implementation details of the proposed method

Step 0. Let β0 = 1, η(:= 0.95) < 1, µ = 0.01, γ = 1.8 , ε = 10−8, k = 0 and x0 > 0.

Step 1. If ‖min{x, F (x)}‖∞ ≤ ε, then stop. Otherwise, go to Step 2.

Step 2. (Prediction step)

s := (1 − µ)xk − βkF (xk), x̃k
i :=

(

si +
√

(si)2 + 4µ(xk
i )2

)

/2,

ξ := βk(F (x̃k)− F (xk)), r := ‖ξ‖/(
√

1− µ2 ‖xk − x̃k‖).

while (r > η)

βk := βk ∗ 0.8/r,

s := (1 − µ)xk − βkF (xk), x̃k
i :=

(

si +
√

(si)2 + 4µ(xk
i )2

)

/2,

ξ := βk(F (x̃k)− F (xk)), r := ‖ξ‖/(
√

1− µ2 ‖xk − x̃k‖).

end while

Step 3. (Correction step)

ϕ := 1
1+µ
‖xk − x̃k‖2 + 1

1+µ
(xk − x̃k)T ξ,

d = (xk − x̃k) + 1
1+µ

ξ, α∗ = ϕ
‖d‖2 ,

s := (1 − µ)xk − 1−µ
1+µ

βkγα∗F (x̃k),

xk+1
i :=

(

si +
√

(si)2 + 4µ(xk
i )2

)

/2,

Step 4. βk+1 :=

{

βk ∗ 0.7/r, if r ≤ 0.5,
βk, otherwise.

Step 5. k := k + 1; go to Step 1.

From the implementation details, we see that the entire computational cost of the proposed
method is very small, thus it is applicable in practice. The number of evaluations of the
mapping F per iteration is dependent on the trial steps in the prediction step, yet our numerical
experiments show that the number of the total trial steps is small.

5.2 Numerical experiments for network equilibrium problems

As an application we use the examples in the traffic equilibrium problems [17]. Consider a
network [N, L] of nodes N and directed links L, which consists of a finite sequence of connecting
links with a certain orientation. Let a, b, etc., denote the links, and let p, q, etc., denote the
paths. We let ω denote an origin/destination (O/D) pair of nodes of the network and Pω denote
the set of all paths connecting the O/D pair ω. An illustrative example is depicted in Fig. 5.1.

n3 -
1

2

n4

n1 PPPPPPPPPPq

@
@@R 5

3

n2 ����������1

�
���

4

O/D Path No. & the
Pairs link on the path
ω1 : p1 = {3}
©1→©4 p2 = {1, 5}
ω2 : p3 = {4}
©2→©4 p4 = {2, 5}

Fig. 5.1. An example of given directed network and the O/D pairs
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Let A and B denote the path-arc and the path-O/D pair incidence matrices, respectively. For
the given example in Fig. 5.1, A and B have the following forms:

No. link 1 2 3 4 5

A =









0 0 1 0 0
1 0 0 0 1
0 0 0 1 0
0 1 0 0 1









← p1

← p2

← p3

← p4

,

No. O/D pair ω1 ω2

B =









1 0
1 0
0 1
0 1









← p1

← p2

← p3

← p4

.

Let xp represent the traffic flow on path p, fa denote the link load on link a and dω denote
the traffic amount between the O/D pair ω. Thus the arc-flow vector f is given by

f = AT x (5.3)

and the O/D pair-traffic amount vector d is given by

d = BT x. (5.4)

Let t(f) = {ta, a ∈ L} be the vector of link travel costs, which is a function of the link flow. A
user travelling on path p incurs a (path) travel cost θp. For given link travel cost vector t, the
path travel cost vector θ is given by

θ = At(f) and thus θ(x) = At(AT x). (5.5)

Associated with every O/D pair ω, there is a travel disutility λω(d). Since both the path costs
and the travel disutilities are functions of the flow pattern x, the traffic network equilibrium
problem is to seek the path flow pattern x∗:

x∗ ≥ 0, (x− x∗)T F (x∗) ≥ 0, ∀x ≥ 0 (5.6)

where

Fp(x) = θp(x)− λω(d(x)), ∀ ω, p ∈ Pω. (5.7)

Using matrices A and B, a compact form of mapping is F (x) = At(AT x) − Bλ(BT x). The
problem is a NCP. We take some test examples from [14] in which the disutility function λω(d)
is given by

λω(d) = −mωdω + qω, ∀ω. (5.8)

Example 1. The first traffic equilibrium problem (example 7.4 in [14]) is consisted of 20 nodes,
28 links and 8 O/D pairs. Its network is depicted in Figure 5.2. The user cost of traversing link
a is given in Table 5.1. The O/D pairs, the coefficients mω and qω in the disutility function
(5.8) and numbers of paths of each O/D pair for this problem are given in Table 5.2. Since
there are together 49 paths for the 8 given O/D pairs, the dimension of the variable x is 49,
and the path-arc incidence matrix A and the path-O/D pair incidence matrix B is a 49 × 28
matrix and a 49× 8 matrix, respectively.

n1 -1 n2 -2 n3 -3 n4 -4 n5 -5 n6 -6 n7 -7 n8 -8 n9 -9 n10

n11 -20 n12 -21 n13 -22 n14 -23 n15 -24 n16 -25 n17 -26 n18 -27 n19 -28 n20
?10 ?

11

?

12

?

13

?

14

?

15

?

16

?

17

?

18

?

19

Fig. 5.2. A directed network with 20 nodes and 28 links in Example 1
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Table 5.1. The link traversing cost functions ta(f) in Example 1

t1(f) = 5 · 10−6f4
1 + 0.5f1 + 0.2f2 + 50 t15(f) = 3 · 10−6f4

15 + 0.9f15 + 0.2f14 + 20
t2(f) = 3 · 10−6f4

2 + 0.4f2 + 0.4f1 + 20 t16(f) = 0.8f16 + 0.5f12 + 30
t3(f) = 5 · 10−6f4

3 + 0.3f3 + 0.1f4 + 35 t17(f) = 3 · 10−6f4
17 + 0.7f17 + 0.2f15 + 45

t4(f) = 3 · 10−6f4
4 + 0.6f4 + 0.3f5 + 40 t18(f) = 0.5f18 + 0.1f16 + 30

t5(f) = 6 · 10−6f4
5 + 0.6f5 + 0.4f6 + 60 t19(f) = 0.8f19 + 0.3f17 + 60

t6(f) = 0.7f6 + 0.3f7 + 50 t20(f) = 3 · 10−6f4
20 + 0.6f20 + 0.1f21 + 30

t7(f) = 8 · 10−6f4
7 + 0.8f7 + 0.2f8 + 40 t21(f) = 4 · 10−6f4

21 + 0.4f21 + 0.1f22 + 40
t8(f) = 4 · 10−6f4

8 + 0.5f8 + 0.2f9 + 65 t22(f) = 2 · 10−6f4
22 + 0.6f22 + 0.1f23 + 50

t9(f) = 10−6f4
9 + 0.6f9 + 0.2f10 + 70 t23(f) = 3 · 10−6f4

23 + 0.9f23 + 0.2f24 + 35
t10(f) = 0.4f10 + 0.1f12 + 80 t24(f) = 2 · 10−6f4

24 + 0.8f24 + 0.1f25 + 40
t11(f) = 7 · 10−6f4

11 + 0.7f11 + 0.4f12 + 65 t25(f) = 3 · 10−6f4
25 + 0.9f25 + 0.3f26 + 45

t12(f) = 0.8f12 + 0.2f13 + 70 t26(f) = 6 · 10−6f4
26 + 0.7f26 + 0.8f27 + 30

t13(f) = 10−6f4
13 + 0.7f13 + 0.3f18 + 60 t27(f) = 3 · 10−6f4

27 + 0.8f27 + 0.3f28 + 50
t14(f) = 0.8f14 + 0.3f15 + 50 t28(f) = 3 · 10−6f4

28 + 0.7f28 + 65

Table 5.2. The O/D pairs and the parameters in (5.8) of Example 1

No. of the Pair 1 2 3 4 5 6 7 8

(O, D) (1, 20) (1, 19) (2, 17) (4, 20) (6, 19) (2, 20) (2, 13) (3, 14)
mω 0.5 0.6 0.1 0.6 1 1 0.5 0.4
qω 100 200 500 100 500 200 100 200

No. of the Paths 10 9 6 7 4 9 2 2

Example 2. The second example (Example 7.5 in [14]) is consisted of 25 nodes, 37 links and
6 O/D pairs. The network is depicted in Figure 5.3. The user cost of traversing link a is given
in Table 5.3. The O/D pairs, the coefficients mω and qω in the disutility function (5.8) and
numbers of paths of each O/D pair for this problem are given in Table 5.4. Since there are
together 55 paths for the 6 given O/D pairs, the dimension of the variable x is 55, and the
path-arc incidence matrix A and the path-O/D pair incidence matrix B is a 55×37 matrix and
a 55× 6 matrix, respectively.

n1 -1 n2 -2 n3 -3 n4 -4 n5 -5 n6 -6 n7 -7 n8 -8 n9 -9 n10

n11 -20 n12 -21 n13 -22 n14 -23 n15 -24 n16 -25 n17 -26 n18 -27 n19 -28 n20
?

10

?

11

?

12

?

13

?

14

?

15

?

16

?

17

?

18

?

19

n21 -34 n22 -35 n23 -36 n24 -37 n25
?

29

?

30

?

31

?

32

?

33

Fig. 5.3. A directed network with 25 nodes and 37 links in Example 2
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Table 5.3. The link traversing cost functions in Example 2.

t1(f), t2(f), . . . , t28(f) are given as in Table 5.3.

t29(f) = 3 · 10−6f4
29 + 0.3f29 + 0.1f30 + 45 t34(f) = 6 · 10−6f4

34 + 0.7f34 + 0.3f30 + 55
t30(f) = 4 · 10−6f4

30 + 0.7f30 + 0.2f31 + 60 t35(f) = 3 · 10−6f4
35 + 0.8f35 + 0.3f32 + 60

t31(f) = 3 · 10−6f4
31 + 0.8f31 + 0.1f32 + 75 t36(f) = 2 · 10−6f4

36 + 0.8f36 + 0.4f31 + 75
t32(f) = 6 · 10−6f4

32 + 0.8f32 + 0.3f33 + 65 t37(f) = 6 · 10−6f4
37 + 0.5f37 + 0.1f36 + 35

t33(f) = 4 · 10−6f4
33 + 0.9f33 + 0.2f31 + 75

Table 5.4. The O/D pairs and the parameters in (5.8) of Example 2

No. of the Pair 1 2 3 4 5 6

(O, D) (1, 20) (1, 25) (2, 20) (3, 25) (1, 24) (11, 25)
mω 0.1 0.6 1 0.5 0.7 0.9
qω 100 80 200 600 800 700

No. of the Paths 10 15 9 6 10 5

The problems are solved by the proposed method. We take x0 = (1, 1, . . . , 1)T as starting
point and stop criterion is

‖min{x, F (x)}‖∞
‖min{x0, F (x0)}‖∞

≤ ε. (5.9)

The number of iteration, the mapping evaluations, and the CPU time on a Notebook Computer
IBM T40 for different ε are reported in Table 5.5.

Table 5.5. Numerical results for different ε.

Examples
No. of iterations

10−6 10−7 10−8
No. of F evaluations

10−6 10−7 10−8
CPU-time
Average

Example 1 342 419 496 770 944 1117 0.14 Sec.
Example 2 352 436 516 790 979 1159 0.15 Sec.

The preliminary numerical experiments tell us that solutions are obtained in a moderate
number of iterations. Theoretically, the number of evaluations of the mapping F per iteration
is at least 2. From Table 5.5 we see that it is approximately equal to 2.2 in our test examples.
This means, in order to satisfy the conditions in the prediction step, the number of trial steps
is insignificant.

6. Conclusion

Based on the Logarithmic-Quadratic Proximal (LQP) method, we present an interior prediction-
correction method for nonlinear complementarity problems (NCP). By solving the LQP system
approximately, the predictor can be obtained easily. Then the corrector is computed directly
via an explicit formula derived from the original LQP method. The totally computational cost
of the proposed method is very tiny, thus the method is applicable in practice. In addition,
we prove that it is meaningful to find the optimal value of α in the correction step in both
theoretical and practical senses. Preliminary numerical results show that the proposed method
is a practical method for large scale NCP. How to design some LQP method-based algorithms
for variational inequalities and maximal monotone operator may be interesting research topics
in the future.
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