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Abstract

In this paper the effect of integral memory terms in the behavior of diffusion phenomena
is studied. The energy functional associated with different models is analyzed and stability
inequalities are established. Approximation methods for the computation of the solution
of the integro-differential equations are constructed. Numerical results are included.
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1. Heat Equation and Jeffrey’s Kernel

Let us consider the problem of heat conduction in a one dimensional homogeneous and
isotropic bar (0, a) in which the heat pulses are transmitted by waves at finite but perhaps high
speed. Representing by q(x, t) the heat flux and assuming that holds the Fourier law

q = −k1

∂u

∂x
, (1)

where k1 is the effective thermal conductivity, it can be shown that the temperature u at (x, t)
satisfies the classical heat equation

∂u

∂t
= c

∂2u

∂x2
, (2)

where c represents the thermal diffusivity. It is well known that this equation has the unphysical
property that if a sudden change in the temperature is made at some point of the bar, it will
be felt instantly everywhere. We say that diffusion gives rise to infinite speeds of propagation.

The problem that unphysical infinite speeds of propagation are generated by diffusion was
first treated in [3]. In order to avoid this serious drawback it has been proposed in [3] to define
the flux by an integral over the history of the temperature gradient, that is,

q(x, t) = −
k

τ

∫ t

−∞

e−
t−s

τ
∂u

∂x
(x, s) ds , (3)

where k represents the thermal conductivity. We note that the Fourier law holds as the limit
of Cattaneo’s law (3) when τ → 0. This definition of q(x, t) corresponds to a first order
approximation, in τ , of the modified Fourier law

q(x, t + τ) = −k1

∂u

∂x
(x, t).

In fact, considering the first order approximation

q(x, t + τ) ≃ q(x, t) + τ
∂q

∂t
(x, t),
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and integrating the first order differential equation

1

τ
q(x, t) +

∂q

∂t
(x, t) = −

k1

τ

∂u

∂x
(x, t),

we obtain (3).
Considering (3), it can be shown that the temperature u at (x, t) satisfies Cattaneo’s equation

∂u

∂t
(x, t) =

k

γτ

∫ t

−∞

e−
t−s

τ
∂2u

∂x2
(x, s) ds , (4)

where γ is the heat capacity. This equation was considered by different authors. For instance,
Vernotte, in [15], considered Cattaneo’s equation as the simplest that gives rise to finite speed
of propagation. In fact, equation (4) is equivalent to the hyperbolic telegraph equation

∂2u

∂t2
+

1

τ

∂u

∂t
=

k

γτ

∂2u

∂t2
, (5)

which transmits waves with a finite speed

√

k

γτ
and presents a very small attenuation as a con-

sequence of relaxation. The telegraph equation is the simplest mathematical model combining
wave propagation and diffusion.

In Figure 1 we show the long time behavior of heat equation and Cattaneo’s equation. The
plots have been obtained from the discretization with standard numerical methods in a very
fine mesh.

However, as pointed out in the engineering literature (see for example [9]), there are no real
conductors which exhibit the wave propagation behavior of Cattaneo’s model.

In [9] a corrected version of flux (3) is presented. A kernel of Jeffrey’s type was then
considered by replacing in (3) the exponential kernel by

Q(s) = k1δ(s) +
k2

τ
e−

s
τ , (6)

where δ(s) is a Dirac delta function, and k1 and k2 represent , respectively, the effective thermal
conductivity and the elastic conductivity. In this case the Fourier law leads to a flux q defined
by

q(x, t) = −k1

∂u

∂x
(x, t) −

k2

τ

∫ t

−∞

e−
t−s

τ
∂u

∂x
(x, s) ds. (7)

It can be shown that the temperature, in this case, satisfies Jeffrey’s integro-differential equation

∂u

∂t
(x, t) =

k1

γ

∂2u

∂x2
(x, t) +

k2

γτ

∫ t

−∞

e−
t−s

τ
∂2u

∂x2
(x, s) ds . (8)

In recent years several authors gave attention to the introduction of Volterra integrals to
model heat propagation (see [2], [5], [13]).

For k2 = 0 we have the classical diffusion equation while for k1 = 0 we obtain Cattaneo’s
equation. In Figure 2 we present the behavior of the three models at different times. We remark
that Jeffrey’s model allows the selection of parameters k1 and k2 such that mathematical models
in agreement with experimental behavior of different materials can be obtained.

Cattaneo’s equation and Jeffrey’s equations predict different quantitative and qualitative
behavior for the propagation of heat. This fact can be explained because while Cattaneo’s
equation is of hyperbolic type, Jeffrey’s equation has a parabolic behavior. In the first case, if
the initial condition presents discontinuities they will be propagated with constant speed. By
the contrary, as Jeffrey’s equation is of parabolic type, any discontinuity of the initial condition
will be smoothed by diffusion associated with the effective thermal conductivity.
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Figure 1: Solutions of the heat equation and Cattaneo’s equation with a Dirac delta initial condition.

Finally we remark that for reaction-diffusion equations the approximation of the transport
by diffusion gives also rise to infinite speeds of propagation. In [6]-[8], [10]-[12] different models
are proposed in order to avoid this drawback induced by the classical Fick’s law.

The aim of the present paper is the analytical and numerical study of Jeffrey’s equation.
From an analytical point of view the novelty of our approach is the establishment of an energy
estimate which leads to the stability of the solution. From a numerical viewpoint we propose a
new splitting method which simulates the heat transport as the superposition of diffusion and
wave propagation.

In Section 2 we study the energy behavior of the solution of models Jeffrey’s (8). This result
establish its stability. Section 3 is devoted to the study of numerical methods for (8) obtained
following two different approaches. The first one is obtained discretizing the partial derivatives
and the integral term using a quadrature rule; the second method is established using a splitting
technique and Proposition 2. Numerical simulations are included.

2. An Energy Estimate for the Jeffrey’s Equation

We consider in what follows the initial boundary value problem (IBVP) associated with (8)
but where the integral is computed in (0, t), that is

∂u

∂t
(x, t) =

k1

γ

∂2u

∂x2
(x, t) +

k2

γτ

∫ t

0

e−
t−s

τ
∂2u

∂x2
(x, s) ds, x ∈ (0, a), t > 0, (9)
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Figure 2: Behavior of the solutions of heat equation, Cattaneo’s equation and Jeffreys equation.

associated with initial and boundary conditions

u(x, 0) = u0(x), x ∈ (0, a),

u(0, t) = u(a, t) = 0, t > 0.

(10)

We establish, in the following result, an estimate for the energy of the functional

‖u‖L2 +
k2

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2 ,

for t > 0, where ‖.‖L2 represents the usual L2 norm.

Proposition 1. Let u be a solution of (9). Then

‖u‖2
L2 +

k2

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2 ≤ e
−2min{

k1

γa2
, 1

τ
}t
‖u0‖

2
L2. (11)

Proof. Multiplying Jeffrey’s equation (9) by u, with respect to the L2 inner product (., .),
we easily get

1

2

d

dt
‖u‖2

L2 = −
k1

γ
‖
∂u

∂x
‖2

L2 −
k2

γτ
(

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds,

∂u

∂x
). (12)

As

(

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds,

∂u

∂x
) =

1

2

d

dt
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2 +
1

τ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2 ,
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we deduce from (12) the differential inequality

d

dt

(

‖u‖2
L2 +

k2

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2

)

≤ 2 max{−
k1

γa2
,−

1

τ
}

(

‖u‖2
L2 +

k2

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2

)

(13)
which allow us to obtain (11).

Remark 1. Let us compare estimate (11) with estimates that can be established for heat
equation (2) or Cattaneo’s equation (4). From Proposition 1 for Cattaneo’s model (4) holds
the estimate

‖u‖2
L2 +

k

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(., s) ds‖2

L2 ≤ ‖u0‖
2
L2 .

Comparing Jeffrey’s model with Cattaneo’s model we conclude that for the first model

‖u‖2
L2 +

k2

γτ
‖

∫ t

0

e−
t−s

τ
∂u

∂x
(, .s) ds‖2

L2 → 0

as t → ∞, while for the second model the energy is bounded by ‖u0‖L2 .

As for the classical heat model holds the estimate

‖u‖L2 ≤ e
− k

γa2 t‖u0‖L2

we conclude that ‖u‖L2 → 0 as t → ∞. No further information on the behavior of the ”average”
in time of the gradient of u can be obtained for this equation.

Remark 2. Let us now consider the stability of the previous models. Let ũ be the solution
corresponding to the initial condition ũ0. For Jeffrey’s equation (8) and Cattaneo’s equation
(4) hold respectively the following estimates

‖u − ũ‖2
L2 +

k2

γτ
‖

∫ t

0

e−
t−s

τ
∂

∂x
(u − ũ) ds‖2

L2 ≤ e
−2min{

k1

γa2
, 1

τ
}t
‖u0 − ũ0‖

2
L2 ,

and

‖u − ũ‖2
L2 +

k

γτ
‖

∫ t

0

e−
t−s

τ
∂

∂x
(u − ũ) ds‖2

L2 ≤ ‖u0 − ũ0‖
2
L2. (14)

Then for the first model the L2 norm of the perturbation of u and of an ”average” in time of its
gradient decreases as t increases going to zero as t → +∞; for the second model the quantity
defined in the first member of (14) is bounded by the perturbation in the initial state. As for
the classical heat model (2) holds

‖u − ũ‖L2 ≤ e
− k

γa2
t
‖u0 − ũ0‖L2

we conclude that ‖u − ũ‖L2 → 0, as t → +∞.

3. Numerical Discretizations of Jeffreys’s Equation

3.1. Non-splitting Methods

In this subsection we present a simple first order numerical method for solving the integro-
differential equation (9).

We consider a spatial uniform grid xi such that xi+1 − xi = h and a uniform temporal grid
tn such that tn+1 − tn = ∆t. By un

j we denote a numerical approximation of u(xj , tn).
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Let us consider equation (9) at (xj , tn). Using the trapezoidal rule in the discretization
of the integral term and discretizing the partial derivative with respect to t with backward
differences and the partial derivative with respect to the space variable with second order
centered differences we obtain

un
j − un−1

j

∆t
=

k1

γ
D2,xun−1

j +
k2∆t

2γτ

(

e−
tn−1

τ D2,xu0
j + 2

n−2
∑

ℓ=1

e−
tn−1−tℓ

τ D2,xuℓ
j + D2,xun−1

j

)

,

(15)
where j = 1, . . . , N − 1, and

D2,xvj =
1

h2
(vj+1 − 2vj + vj−1).

In order to reduce the computational effort due to the use of the trapezoidal rule in the dis-
cretization of the memory term we rewrite method (15) as a three stage method

un+1
j =

(

e−
∆t
τ + 1

)

un
j + ∆t

(

k1

γ
+

k2∆t

2γτ

)

D2,xun
j

+ ∆te−
∆t
τ

(

−
k1

γ
+

k2∆t

2γτ

)

D2,xun−1
j − e−

∆t
τ un−1

j .

(16)

The numerical solution obtained with method (16) is plotted in Figure 3 and experimentally
we observed an instable behavior of this method for reasonable values of stepsizes h and ∆t.

This behavior is illustrated in Figure 4. To overcome this drawback we study in Section 3.2 a
splitting method.
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Figure 3: Numerical solution of Jeffrey’s equation obtained using method (15) with
ki

γ
= 0.1, τ = 1, h = 0.1, ∆t = 0.03.
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Figure 4: Stability behavior of method (15) with
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γ
= 0.1, i = 1, 2, τ = 1, h = 0.1 at T = 2.

3.2. Splitting Methods

3.2.1. The Functional Splitting

In this section we present a discretized procedure based on a functional splitting suggested by
the decomposition of Jeffrey’s heat flux (7) into two parts: Fourier’s heat flux (1) and modified
heat flux (3) where the first one updated by the second one. This assumption is equivalent to
consider the IBVP (9) in the interval [t, t + ∆t] splitted into two following subproblems:

1.














∂v1

∂t
(x, t) =

k1

γ
(x, t)

∂2v1

∂x2
(x, t) , x ∈ (0, a) t ∈ (t, t + ∆t] ,

v1(x, t) = u(x, t) , x ∈ (0, a),

(17)

2.














∂v2

∂t
(x, t) =

k2

γτ

∫ t

0

e−
t−s

τ
∂2u

∂x2
(x, s) ds , x ∈ (0, a), t ∈ (t, t + ∆t],

v2(x, t) = v1(x, t + ∆t) , x ∈ (0, a).

(18)

Then the temperature u(x, t + ∆t) is approximated by v2(x, t + ∆t).
In order to replace the integro-differential equation in (18) by an equivalent partial differ-

ential equation, we remark that it is equivalent to the telegraph equation

∂2v2

∂t2
+

1

τ

∂v2

∂t
=

k2

γτ

∂2v2

∂x2
.

This last assertion follows immediately for Proposition 2.



98 A. ARAÚJO, J.A. FERREIRA AND P. OLIVEIRA

Proposition 2. Let u be the solution of (9) with initial condition u(x, 0) = u0(x), x ∈ (0, a),
and v be the solution of

∂2u

∂t2
+

1

τ

∂u

∂t
=

k1

γ

∂3u

∂t∂x2
+

k

γτ

∂2u

∂x2
. (19)

with initial conditions










∂v

∂t
(x, 0) = f(x), x ∈ (0, a),

v(x, 0) = v0(x), x ∈ (0, a) .

Then u = v if and only if u0 = v0 and f = k1

γ
u

′′

0 .

Proof. Let u be a solution of (9). Differentiating (9) with respect to time we obtain

∂2u

∂t2
(x, t) =

k1

γ

∂3u

∂t∂x2
(x, t) −

k2

γτ2

∫ t

0

e−
t−s

τ
∂2u

∂x2
ds +

k2

γτ

∂2u

∂x2
(x, t) , (20)

which allow us to conclude that u is solution of (19). As u satisfies (10) we have










∂u

∂t
(x, 0) =

k1

γ
u

′′

0 (x) ,

u(x, 0) = u0(x) .

(21)

Otherwise, if u a solution of (19), (21) then u also satisfies (9), (10).

Let v2(x, t) = v1(x, t + ∆t). We have

∂v2

∂t
(x, t) =

k1

γ

∂2v1

∂x2
(x, t + ∆t).

Consequently (18) can be replaced by






























∂2v2

∂t2
(x, t) +

1

τ

∂v2

∂t
(x, t) =

k2

γτ

∂2v2

∂x2
(x, t) , x ∈ (0, a), t ∈ (t, t + ∆t] ,

∂v2

∂t
(x, t) =

k1

γ

∂2v1

∂x2
(x, t + ∆t)x ∈ (0, a),

v2(x, t) = v1(x, t + ∆t).

(22)

The functional splitting (17), (22) corresponds to considering the solution of the parabolic
part of Jeffrey’s equation followed by the solution of its hyperbolic part. From physical point of
view this splitting states that the heat transmission is viewed as the superposition of diffusion
and wave propagation. In (22) the solution obtained only by diffusion is corrected and updated.

It is easy to show that, for the functional splitting (17), (22), holds the following proposition.

Proposition 3. Let u be the solution of the integro-differential (9)and ū its approximation
computed using the functional splitting (17), (22). Then

‖u(t + ∆t) − ū(t + ∆t)‖∞ = O(∆t) . (23)

If in (22) we assume
∂v2

∂t
(t) = 0 then

‖u(t + ∆t) − v2(t + ∆t)‖∞ = O(∆t2) . (24)

3.2.2. The Splitting Method

Discretizing (17) and (22) we obtain
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1.










Dtv
n
1,j =

k1

γ
D2,xvn+1

1,j , , j = 1, . . . , N − 1,

vn
1,j = un

j , j = 1, . . . , N − 1,

(25)

2.














Dtw
n
j =

k2

γτ
D2,xvn

2,j −
1

τ
wn

j , j = 1, . . . , N − 1,

Dtv
n
2,j = wn+1

j , j = 1, . . . , N − 1,










vn
2,j = vn+1

1,j , j = 1, . . . , N − 1,

wn
j =

k1

γ
D2,xvn+1

1,j , j = 1, . . . , N − 1.

(26)

where u(xj , t
n+1) ≃ vn+1

2,j , j = 1, . . . , N − 1. We remark that we are considering homogeneous
Dirichlet boundary conditions.

Using matrix notation, the splitting method (25), (26) has the form

1. (I −
k1

γ
∆tA2)V

n+1
1,h = Un

h ,

2. Wn+1

h =

(

k1

γ
+

∆t

τ

k2 − k1

γ

)

A2V
n+1

1,h

3. Un+1

h = V n+1

1,h + ∆tWn+1

h ,

which lead to

Un+1

h =

(

I + ∆t

(

k1

γ
+

∆t

τ

k2 − k1

γ

)

A2

)(

I −
k1

γ
∆tA2

)−1

Un
h , (27)

where A2 is the matrix associated with D2,x.
Let us now proceed to a stability analysis using the L2- discrete norm.

Proposition 4. Let Un
h and Un+1

h be the numerical approximations at time levels n and
n + 1 defined by the splitting method (25), (26). If ǫ ∈ (0, 1) and ∆t and h are such such that

4
∆t

h2

(

k1

γ
+

∆t

τ

|k2 − k1|

γ

)

≤ ǫ, (28)

then

‖Un+1
h ‖L2 ≤

1 − ǫ

1 + k1

γ
∆t
a2

‖Un
h ‖L2 . (29)

Proof. By vh we denote a grid function defined on the spatial grid such that vh(x0) =
vh(xN ) = 0. As

‖I −
k1

γ

∆t

τ
A2‖L2 = sup

06=vh

‖(I − k1

γ
∆t
τ

A2)vh‖L2

‖vh‖L2

≥
|((I − k1∆t

γ
D2,x)vh, vh)L2 |

‖vh‖2
L2

≥
‖vh‖

2
L2 + k1∆t

γ

∑N

i=1
h(D−xvh(xi))

2

‖vh‖2
L2

,
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and considering the discrete Poincaré-Friedrichs inequality

‖vh‖
2
L2 ≤ a2

N
∑

i=1

h(D−xvh(xi))
2,

we conclude

‖I −
k1∆t

γ
A2‖2 ≥ 1 +

k1

γ

∆t

a2
. (30)

Inequality (30) enable us to conclude that

‖

(

I −
k1∆t

γ
A2

)−1

‖L2 ≤
1

1 + k1

γ
∆t
a2

. (31)

For symmetric matrices an upper bound to the L2- norm can be obtained using the maximum
of the absolute value of the eigenvalues. Using (28) we easily deduce

‖

(

I + ∆t

(

k1

γ
+

∆t

τ

k2 − k1

γ

)

A2

)

‖L2 ≤ 1 − ǫ (32)

Combining (27) with the upper bounds (31), (32) we conclude the proof.

A numerical simulation obtained using the splitting method is plotted in Figure 5. We
remark that for the same values of h and ∆t method (15) is unstable (see Figure 3).
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Figure 5: Numerical solutions for the solution of Jeffrey’s equation obtained using the splitting

method (25), (26) ( ki

γ
= 0.1, i = 1, 2, τ = 1, h = 0.1, ∆t = 0.06).
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The numerical solution obtained by the last method illustrates the theoretical behavior of
the solution of Jeffrey’s equation: the solution is ”between” the solutions of the classical heat
equation and of Cattaneo’s equation.

4. Conclusion

In this paper we studied the solution of the integro-differential equation (9) that describes
the heat propagation of a large class of materials. This equation is based on a generalization
of Fourier law for heat flux. We analyse the qualitative properties of the theoretical solution
of this problem estimating, in Proposition 1, the energy of the solution. This result enable us
to conclude the stability of the IBVP (9), which has the serious drawback of imposing severe
stability restrictions.

As the exact solution u of (9) can’t be computed analytically, the study of two numerical
methods has been carried on. We start by considering the direct discretization of the integro-
differential equation - method (16).

The second method - (25), (26) - is obtained using a splitting approach. In this approach
problem (9) was splitted into two subproblems taking into account the different behavior of the
components of the integro-differential equation (9).

In order to avoid the discretization of the integral term presented in (18) we established
the equivalence between the IBVP and an telegraph equation. The stability of the method was
established with respect to the discrete L2 norm.
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de Modena, 3 (1948), 3-21.

[4] J. Douglas, B.F. Jones Jr., Numerical methods for integro-differential equations of parabolic and

hyperbolic type, Numer. Math., 4 (1962), 96-102.

[5] M. Fabrizio, G. Gentili, R.W. Reynolds, On rigid heat conductors with memory, Int. J. Eng. Sci.,

36 (1998), 765-782.

[6] S. Fedotov, Traveling waves in a reaction - diffusion system: diffusion with finite velocity and

Kolmogorov-Petrovskii-Piskunov kinectics, Physical Review E, 5:4 (1998), 5143-5145.

[7] S. Fedotov, Nonuniform reaction rate distribution for the generalized Fisher equation: ignition

ahead of the reaction front, Physical Review E, 60: 4 (1999), 4958-4961.

[8] S. Fedotov, Front propagation into an unstable state of reaction - transport systems, Physical

Review Letter, 86: 5 (2001), 926-929.

[9] D.D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61 (1989), 41-73.

[10] V. Méndez, J. Camacho, Dynamic and thermodinamics of delayed population growth, Physical

Review E, 55: 6 (1997), 6476-6482.

[11] V. Méndez, J. Llebot, Hyperbolic reaction-diffusion equations for a forest fire model, Physical

Review E, 56: 6 (1997), 6557-6563.

[12] V. Mendez, T. Pujol, J. Fort, 2002, Dispersal probability distributions and the wave front speed

problem, Physical Review E, 65 (2002), 041109.

[13] S. Shaw, J.R. Whiteman, Some partial differential Volterra equation problems arising in viscoelas-

ticity, Proceedings of Equadiff 9, CD ROM, Brno 1997, 183-200.
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