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Abstract

This paper provides a simplified derivation for error estimates of the TRUNC plate
element. The error analysis for the problem with mixed boundary conditions is also dis-
cussed.
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1. Introduction

The TRUNC element is very effective for the numerical solution of Kirchhoff plates. Appli-
cations to some sample problems showed that it converged rapidly [1, 2, 3]. Shi first established
the error estimates in [9], and the derivation is rather technical.

This paper intends to revisit error analysis of the element. We will give a simple but very
useful identity for the approximate solution. From this identity, we obtain a desired estimate
for the term E1(u

∗, w̄h) in [9] in a simplified way, which is essential in producing optimal error
estimates. We also discuss error analysis of the method for corresponding problems with mixed
boundary conditions. It deserves to point out that our derivation is different from that in [14],
where the deduction of (3.18) is not rigorous (see Remark 1.4.4.7 in [6, p.32]).

2. Error Estimates for Plate Bending Problem with Clamped

Conditions

Given a polygonal domain Ω, consider the following plate bending problem with clamped
conditions [5]:

{

−Mαβ,αβ(u∗) = ∆2u∗ = f in Ω,
u∗ = ∂nu∗ = 0 on ∂Ω,

(2.1)

where

Mαβ(u) := (1 − σ)Kαβ(u) + σKµµ(u), Kαβ(u) := −∂αβu, 1 ≤ α, µ, β ≤ 2,

with σ ∈ (0, 0.5) being the Poisson ratio of the plate and n the unit outward normal to ∂Ω.
Throughout this paper we use Einstein’s convention for summation, and always assume that
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u∗ ∈ H3(Ω) ∩ H2
0 (Ω) in this section. The variational formulation of (2.1) is to find u∗ ∈ V =

H2
0 (Ω) such that

a(u∗, v) = f(v) =

∫

Ω

fvdx, ∀v ∈ V,

where

a(u, v) :=

∫

Ω

Mαβ(u)Kαβ(v)dx

=

∫

Ω

[∆u∆v + (1 − σ)(2∂12u∂12v − ∂11u∂22v − ∂22u∂11v)]dx.

We next give some useful identities [8] for later uses. Given a polygon G, let v be a function
in H3(G) and w a function in H2(G). Then

aG(v, w) :=

∫

G

Mαβ(v)Kαβ(w)dx

=

∫

G

Qα(v)∂αwdx −
∫

∂G

{Mnn(v)∂nw + Mnτ (v)∂τ w}ds, (2.2)

where

Mnn(v) := Mαβ(v)nαnβ, Mnτ (v) := Mαβ(v)nατβ , Qα(v) := ∂βMαβ(v),

with n = (n1, n2) and τ = (τ1, τ2) being the unit outward normal and tangent vector to ∂G
such that (n, τ) forms a right-hand system. Moreover, we have by (2.1) that

∫

G

Qα(u)∂αvdx − f(v) =

∫

∂G

Qn(u)vds, ∀v ∈ H1(G), (2.3)

where Qn(u) := Qα(u)nα ∈ H−1/2(∂G). Since the tangent derivative is only the derivative
with respect to the arc length parameter s in the boundary ∂G, we also write ∂s for ∂τ in what
follows.

We divide the region of interest Ω into a regular family of triangular elements K with the
diameter hK ≤ h, Ω̄ = ∪K∈Th

K̄, and define on each triangle K the shape function to be an
incomplete cubic polynomial,

vh =a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1

+ a7(λ
2
1λ2 − λ1λ

2
2) + a8(λ

2
2λ3 − λ2λ

2
3) + a9(λ

2
3λ1 − λ3λ

2
1), (2.4)

with the nodal parameters being the function values and the values of two first order derivatives
at vertices of the triangle K, i.e., vh(pi), ∂1vh(pi), ∂2vh(pi), 1 ≤ i ≤ 3, where {pi}3

i=1 denote
the three vertices of K. We then obtain the usual Zienkiewicz element space Vh related to V .

For each vh ∈ Vh, we split the function into two parts,

vh := v̄h + v′h, (2.5)

where

v̄h|K := a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1 (2.6)

and

v′h|K := a7(λ
2
1λ2 − λ1λ

2
2) + a8(λ

2
2λ3 − λ2λ

2
3) + a9(λ

2
3λ1 − λ3λ

2
1). (2.7)

Thus, we define a bilinear form on Vh by

bh(uh, vh) := ah(ūh, v̄h) + ah(u′
h, v′h), ∀uh, vh ∈ Vh,
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where

ah(uh, vh) :=
∑

K

aK(uh, vh), aK(uh, vh) :=

∫

K

Mαβ(uh)Kαβ(vh)dx.

With these notations, the TRUNC element method is to find uh ∈ Vh such that

bh(uh, vh) = f(vh), ∀vh ∈ Vh. (2.8)

Lemmas 2.1-2.5 are due to Shi [9].

Lemma 2.1 For the split functions determined by (2.4)-(2.7), it holds

|v̄h|2,K . |vh|2,K , |v′h|2,K . hK |vh|3,K , |∂nv′h|0,∞,F . hK |vh|3,K .

Lemma 2.2 Let rh be the usual interpolation operator related to the Zienkiewicz element space
Vh. Given u ∈ H3(Ω) and the decomposition of the interpolant rhu = rhu + (rhu)′. Then

|u − rhu|m,K . h3−m
K |u|3,K , |u − rhu|m,K . h3−m

K |u|3,K , |(rhu)′| . h3−m
K |u|3,K , 0 ≤ m ≤ 2.

Lemma 2.3 The seminorm |vh|2,h =
(
∑

K |vh|22,K

)1/2
is a norm over the space Vh and the

bilinear form bh(·, ·) is coercive,

|vh|22,h . bh(vh, vh), ∀vh ∈ Vh.

Lemma 2.4 Let u∗, uh be the solutions of (2.1) and (2.8) respectively. Then

|u∗ − uh|2,h . |u∗ − rhu∗|2,h + sup
wh∈Vh

|Gh(u∗, rhu∗, wh)|
|wh|2,h

, (2.9)

where

Gh(u∗, rhu∗, wh) := E1(u
∗, w̄h) + E1(u

∗ − rhu∗, w′
h) − E1(w̄h, (rhu∗)′),

E1(u, w) := −
∑

K

∫

∂K

Mnn(u)∂nwds =
∑

K

∫

∂K

[∆u − (1 − σ)∂ssu]∂nwds.

Lemma 2.5 Let ϕ = u∗ − rhu∗. Then

|E1(ϕ, w′
h)| . h|u∗|3|wh|2,h, |E1(w̄h, (rhu∗)′) . h|u∗|3|wh|2,h.

In the above results and henceforth, we always use “. · · · ” to indicate “≤ C · · · ”, where
the generic constant C is independent of related parameters (e.g., hK and h) and the functions
under considerations, which may take different values in different appearances. Moreover, we
simply write | · |k (resp. ‖ · ‖k) for | · |k,Ω (resp. ‖ · ‖k,Ω) where there is no confusion caused.

Lemma 2.6 For any vh ∈ Vh, it holds the identity:
∑

F⊂∂K

[Mnn(w)|F QF (∂nv′h) + Mnτ (w)|F QF (∂sv
′
h)] = 0, ∀w ∈ P2(K),

where
QF (f) := 1/2|F |(f(a) + f(b))

for a continuous function f in F := (a, b).

Lemma 2.6 follows from the identities (18)-(19) in [9] combined with the identities [4, p.15]

Mnn(u) = −{∆u − (1 − σ)∂ssu}, Mnτ (u) = −(1 − σ)∂nsu.

One of the main results of this paper is to give a new proof of the following result, which
simplifies the original derivation [9] essentially.
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Lemma 2.7 We have the estimate

|E1(u
∗, w̄h)| . h|u∗|3|wh|2,h. (2.10)

Proof. Let F be an edge of a triangle K ∈ Th. For each function v ∈ L2(F ), we define

PF
0 v :=

1

|F |

∫

F

vds, RF
0 v := v − PF

0 v.

Since PF
0 is an orthogonal projection operator, we can rewrite E1(u

∗, w̄h) in the form

−E1(u
∗, w̄h) =

∑

K

∫

∂K

Mnn(u∗)∂nw̄hds

=
∑

K

∑

F⊂∂K

∫

F

RF
0 [Mnn(u∗)]RF

0 (∂nw̄h)ds

+
∑

K

∑

F⊂∂K

∫

F

PF
0 [Mnn(u∗)]∂nw̄hds

= : I1 + I2. (2.11)

From Lemma 2.1, the estimate for PF
0 [12] and the Cauchy-Schwarz inequality, it follows that

|I1| .
∑

K

∑

F⊂∂K

‖RF
0 [Mnn(u∗)]‖0,F ‖RF

0 (∂nw̄h)‖0,F

.
∑

K

∑

F⊂∂K

hK |u∗|3,K |w̄h|2,K . h|u∗|3|wh|2,h. (2.12)

The second term in (2.11) is

∑

K

∑

F⊂∂K

∫

F

PF
0 [Mnn(u∗)]∂nw̄hds =

∑

K

∑

F⊂∂K

PF
0 [Mnn(u∗)]

∫

F

∂nw̄hds.

The integrand ∂nw̄h is a linear polynomial in one variable on F, so the trapezoidal rule is exact
and yields,

∫

F

∂nw̄hds = QF (∂nw̄h) = QF (∂nwh) − QF (∂nw′
h).

Since the first derivatives of wh are continuous at vertices, and ∂nu = 0 on the vertices of
F ⊂ ∂Ω, we know

∑

K

∑

F⊂∂K

PF
0 [Mnn(u∗)]QF (∂nwh) = 0.

Therefore,

I2 = −
∑

K

∑

F⊂∂K

PF
0 [Mnn(u∗)]QF (∂nw′

h)

=

{

−
∑

K

∑

F⊂∂K

{PF
0 [Mnn(u∗)]QF (∂nw′

h) + PF
0 [Mnτ (u∗)]QF (∂sw

′
h)}

}

+

{

∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]QF (∂sw

′
h)

}

=:I21 + I22. (2.13)
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It follows from Lemma 2.6 that
∑

F⊂∂K

{PF
0 [Mnn(I

(2)
K u∗)]QF (∂nw′

h) + PF
0 [Mnτ (I

(2)
K u∗)]QF (∂sw

′
h)} = 0,

where I
(2)
K denotes the usual interpolation operator related the Lagrange element of second

order [4]. Hence,

|I21| =

∣

∣

∣

∣

∑

F⊂∂K

{PF
0 [Mnn(u∗ − I

(2)
K u∗)]QF (∂nw′

h) + PF
0 [Mnτ (u∗ − I

(2)
K u∗)]QF (∂sw

′
h)}

∣

∣

∣

∣

.h
1/2
K

∑

F⊂∂K

{‖Mnn(u∗ − I
(2)
K u∗)‖0,F ‖∂nw′

h‖0,∞,F

+ ‖Mnτ(u∗ − I
(2)
K u∗)‖0,F‖∂sw

′
h‖0,∞,F}. (2.14)

However, we have by Lemma 2.1, the error estimate for the interpolation operator I
(2)
K [4] and

the inverse inequality that

‖Mnn(u∗ − I
(2)
K u∗)‖0,F + ‖Mnτ(u∗ − I

(2)
K u∗)‖0,F . h

1/2
K |u∗ − I

(2)
K u∗|2,∞,K . h

1/2
K |u∗|3,K ,

‖∂nw′
h‖0,∞,F + ‖∂sw

′
h‖0,∞,F . hK |wh|3,K . |wh|2,K .

Plugging these estimates into (2.14) and using the Cauchy-Schwarz inequality then yields

|I21| .
∑

K

hK |u∗|3,K |wh|2,K . h|u∗|3|wh|2,h. (2.15)

Moreover, since w′
h is identically zero at the vertices of any K in Th, wh is a continuous

function with zero values on ∂Ω, and ∂sw̄h is a linear polynomial in one variable on F ⊂ ∂K,
we have

∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]

∫

F

∂swhds = 0,

∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]QF (∂swh) = 0,

and

QF (∂sw̄h) =

∫

F

∂sw̄hds =

∫

F

∂swhds,

hence

I22 =
∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]QF (∂sw

′
h)

=
∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]QF (∂swh)

−
∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]

∫

F

∂swhds

=0. (2.16)

The estimate (2.10) now follows from (2.11)-(2.13) and (2.15)-(2.16) directly.
The next result is an immediate consequence of Lemmas 2.2-2.7.

Theorem 2.1 Let u∗ ∈ H3(Ω) ∩ H2
0 (Ω) be the solution of problem (2.1) and uh ∈ Vh the

solution of problem (2.8). Then
|u∗ − uh|2,h . h|u∗|3.
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3. Error Estimates for the Problem with Mixed Boundary Conditions

Suppose that Ω is a polygonal domain with the boundary ∂Ω consisting of N line segments
{Γj}N

j=1, which are numbered anticlockwise. Let Γ̃0 be the union of {Γi}N0

i=1, 1 ≤ N0 < N, i.e.,

Γ̃0 = (∪N0

i=1Γ̄i)
0, while Γ̃1 the other part of ∂Ω. We consider the plate bending problem with

the clamped conditions on Γ̃0 , i.e.,

u∗ = ∂nu∗ = 0 on Γ̃0,

and the force and moment free conditions on Γ̃1. The related variational formulation is to find
u∗ ∈ V = H2

0 (Ω; Γ̃0) such that
a(u∗, v) = f(v), ∀v ∈ V, (3.1)

where a(u, v) :=
∫

Ω Mαβ(u)Kαβ(v)dx.

From now on we always assume that u∗ ∈ H3(Ω)∩H2
0 (Ω; Γ̃0). Then we have by the similar

argument in [7] that
Mαβ,αβ(u∗) + f = 0 in L2(Ω),

and
Mnn(u∗) = 0 in H1/2(Γi), N0 + 1 ≤ i ≤ N. (3.2)

We introduce an auxiliary space by

H̃1
0 (Ω; Γ̃0) := {v ∈ H1

0 (Ω; Γ̃0); v|Γi ∈ H1
∗ (Γi), 1 ≤ i ≤ N},

where H1
∗ (Γi) consists of all functions in C∞(Γ̄i) whose first-order derivatives are identically

zero at two endpoints. The next result follows from the same argument for proving Lemma 4.1
in [7].

Lemma 3.1 H̃1
0 (Ω; Γ̃0) is dense in H1

0 (Ω; Γ̃0) in the norm ‖ · ‖1,∂Ω.

Lemma 3.2 For all v ∈ H1
0 (Ω; Γ̃0),

< Qn(u∗), v >H−1/2(∂Ω)×H1/2(∂Ω) −
∫

∂Ω

Mnτ (u∗)∂svds = 0. (3.3)

Proof. For each v ∈ H̃1
0 (Ω; Γ̃0), we have by the trace theorem for polygonal domains [6] that

there exists a function w ∈ H2
0 (Ω; Γ̃0) such that

∂nw = 0 on ∂Ω; w = 0 on Γ̃0; w = v on Γi, N0 + 1 ≤ i ≤ N.

Now it follows (3.1), (3.2), (2.2) and (2.3) that

0 = a(u∗, w) − f(w) =< Qn(u∗), w >H−1/2(∂Ω)×H1/2(∂Ω) −
∫

∂Ω

[Mnn(u∗)∂nw + Mnτ (u∗)∂sw]ds

=< Qn(u∗), w >H−1/2(∂Ω)×H1/2(∂Ω) −
∫

∂Ω

Mnτ (u∗)∂swds.

This with Lemma 3.1 implies that (3.3) also holds for each v ∈ H1
0 (Ω; Γ̃0) by the density

argument.
The TRUNC element method for solving (3.1) is to find uh ∈ Vh such that

bh(uh, vh) = f(vh), ∀vh ∈ Vh, (3.4)

where
bh(uh, vh) := ah(ūh, v̄h) + ah(u′

h, v′h), ∀vh ∈ Vh. (3.5)
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In contrast to the method (2.8), the only difference is that for a function vh in the current
admissible space Vh, it only holds that vh(p) = ∂1vh(p) = ∂2vh(p) = 0, for any vertex p ∈ Γ̃0

(including the endpoints of Γ̃0).
We next check the validity of Lemma 2.4 in the present case. We have by the identities

(2.2)-(2.3) that for all wh ∈ Vh,

f(wh) − ah(u∗, wh) = −
∑

K

∫

∂K

Qn(u∗)whds +
∑

K

∫

∂K

[Mnn(u∗)∂nwh + Mnτ (u∗)∂swh]ds

= −
∑

K

∫

∂K

Qn(u∗)whds +
∑

K

∫

∂K

Mnτ (u∗)∂swhds − E1(u
∗, wh). (3.6)

Observing that each function in Vh is continuous, by the density argument we get

−
∑

K

∫

∂K

Qn(u∗)whds = −
∫

∂Ω

Qn(u∗)whds.

Since wh|∂Ω ∈ H1
0 (Ω; Γ̃0), combining the last equation with (3.3) and (3.6) shows

f(wh) = ah(u∗, wh) − E1(u
∗, wh), ∀wh ∈ Vh. (3.7)

On the other hand, recalling definition (3.5), we can write

bh(vh, wh) = ah(vh, wh) − ah(v̄h, w′
h) − ah(v′h, w̄h)

= ah(vh − u∗, wh) − ah(v̄h, w′
h) − ah(v′h, w̄h) + ah(u∗, wh),

from which and (3.7) we obtain

f(wh) − bh(vh, wh) = f(wh) − ah(u∗, wh) + ah(v̄h, w′
h) + ah(v′h, w̄h) + ah(u∗ − vh, wh)

= −E1(u
∗, wh) + ah(v̄h, w′

h) + ah(v′h, w̄h) + ah(u∗ − vh, wh). (3.8)

Using Lemma 2.4 and (3.8), we find, for each vh ∈ Vh,

|uh − vh|22,h . bh(uh − vh, wh) = f(wh) − bh(vh, wh)

= ah(u∗ − vh, wh) − E1(u
∗, wh) + ah(v̄h, w′

h) + ah(v′h, w̄h), (3.9)

where wh := uh − vh.
Noting that v̄h|K is a quadratic polynomial, and w′

h takes zero values at vertices of triangles,
we have by identity (2.2) that

ah(v̄h, w′
h) = E1(v̄h, w′

h). (3.10)

Similarly,
ah(v′h, w̄h) = E1(v

′
h, w̄h).

This with (3.9) and (3.10) implies

|uh − vh|22,h . ah(u∗ − vh, wh) − E1(u
∗, w̄h) − E1(u

∗ − v̄h, w′
h) + E1(w̄h, v′h),

which leads to the estimate (2.9) by taking vh = rhu∗. Therefore, Lemma 2.4 still holds true
for the method (3.4). It is easy to check that Lemma 2.5 is also valid for this method.

Now the critical step is to estimate E1(u
∗, w̄h). Employing the similar argument for proving

Lemma 2.7, we find

−E1(u
∗, w̄h) =

∑

K

∫

∂K

Mnn(u∗)∂nw̄hds

=
∑

K

∑

F⊂∂K

∫

F

RF
0 [Mnn(u∗)]RF

0 (∂nw̄h)ds +
∑

K

∑

F⊂∂K

∫

F

PF
0 [Mnn(u∗)]∂nw̄hds

=: II1 + II2, (3.11)
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|II1| .
∑

K

∑

F⊂∂K

‖RF
0 [Mnn(u∗)]‖0,F ‖RF

0 (∂nw̄h)‖0,F

.
∑

K

∑

F⊂∂K

hK |u∗|3,K |w̄h|2,K . h|u∗|3|wh|2,h, (3.12)

II2 = −
∑

K

∑

F⊂∂K

PF
0 [Mnn(u∗)]QF (∂nw′

h)

=

{

−
∑

K

∑

F⊂∂K

{PF
0 [Mnn(u∗)]QF (∂nw′

h) + PF
0 [Mnτ (u∗)]QF (∂sw

′
h)}

}

+

{

∑

K

∑

F⊂∂K

PF
0 [Mnτ (u∗)]QF (∂sw

′
h)

}

=: II21 + II22. (3.13)

II21 can be estimated as for the clamped bending problems,

|II21| .
∑

K

hK |u∗|3,K |wh|2,K . h|u∗|3|wh|2,h. (3.14)

It remains to bound II22. Applying the similar argument for deriving (2.16) we have

II22 =
∑

F⊂∂Ω

PF
0 [Mnτ (u∗)]

{

QF (∂swh) −
∫

F

∂swhds

}

=
1

12

∑

F⊂∂Ω

|F |2
∫

F

Mnτ (u∗)∂3
sw′

hds, (3.15)

where we have also used the identity

QF (∂sw̄h) =

∫

F

∂sw̄hds, ∀F ⊂ ∂K,

and the error estimate for numerical integration formula [11]. We remark that in the equation
(3.15), F ⊂ ∂Ω means that F is a side of some triangle K ∈ Th which also belongs to ∂Ω.

By the Hölder inequality we have for a side F,

∣

∣

∣

∣

∫

F

Mnτ (u∗)∂3
sw′

hds

∣

∣

∣

∣

. ‖Mnτ (u∗)‖Lr(F )‖∂3
sw′

h‖Lr
′

(F )

.

2
∑

α,β=1

‖∂αβu∗‖Lr(F )‖∂3
sw′

h‖Lr
′

(F )
, (3.16)

where r > 2 is a real number, r
′

= r/(r − 1).

Recalling definition (2.7), using the scaling argument, estimate (24) in [9] and the inverse
inequality for finite elements, we deduce that

‖∂3
sw′

h‖Lr
′

(F )
. h

−3+1/r
′

KF
(|a7| + |a8| + |a9|)

. h
−1+1/r

′

KF
|wh|3,KF . h

−3/2
KF

|wh|2,r′ ,KF
, (3.17)

where KF is the triangle with F as one side. Hence, by the Hölder inequality, and (3.15)-(3.17)
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we get

|II22| . h1/2
2

∑

α,β=1

{

∑

F⊂∂Ω

‖∂αβu∗‖r
Lr(F )

}1/r{
∑

F⊂∂Ω

|wh|r
′

2,r′ ,KF

}1/r
′

. h1/2
2

∑

α,β=1

‖∂αβu∗‖Lr(∂Ω)

{

∑

F⊂∂Ω

|wh|r
′

2,r′ ,KF

}1/r
′

. (3.18)

Noting that 1 < r
′

< 2, using the Hölder inequality again, we obtain

{

∑

F⊂∂Ω

|wh|r
′

2,r′ ,KF

}1/r
′

.

{

∑

F⊂∂Ω

|wh|22,KF

}1/2{
∑

F⊂∂Ω

∫

KF

1
2r−2

r−2 dx

}

r−2

2r−2

. |wh|2,hmeas(Ω̃)(r−2)/(2r−2) . h(r−2)/(2r−2)|wh|2,h, (3.19)

where Ω̃ stands for the set of all points in Ω with distance of ∂Ω no more than h.
On the other hand, it follows from [10] and [13, p.68] that, for all v ∈ H1/2(∂Ω),

‖v‖Lr(∂Ω) .
√

r‖v‖H1/2(∂Ω),

where the generic constant does not depend on r. This with the trace theorem for Sobolev
spaces gives

‖∂αβu∗‖Lr(∂Ω) .
√

r‖u∗‖3,

from which and (3.18)-(3.19) it comes that

|II22| . h
√

rh−1/(2r−2)‖u∗‖3|wh|2,h.

By taking r = 2(1 + | lnh|) in the above estimate, we have after a simple computation that

|II22| . h(1 + | lnh|)1/2‖u∗‖3|wh|2,h. (3.20)

Now it follows from (3.11)-(3.14) and (3.20) that

|E1(u
∗, w̄h)| . h(1 + | lnh|)1/2‖u∗‖3|wh|2,h,

which with Lemmas 2.4-2.5 yields

|u∗ − uh|2,h . h(1 + | lnh|)1/2‖u∗‖3.

Theorem 3.1 Let u∗ ∈ H3(Ω) ∩ H2
0 (Ω; Γ̃0) be the solution of problem (3.1) and uh ∈ Vh the

solution of the discrete problem (3.4). Then

|u∗ − uh|2,h . h(1 + | lnh|)1/2‖u∗‖3.
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