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Abstract

This paper provides a proof for the uniform convergence rate (independently of the

number of mesh levels) for the nonnested V-cycle multigrid method for nonsymmetric and

indefinite second-order elliptic problems.
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1. Introduction

In this paper we study the convergence of the nonnested V-cycle multigrid method, cf.

[2,3]. The nonnestedness is usually caused either by the nature of a specific element (e.g.,

nonconforming finite elements) or by the nonnested mesh refinement. Due to the varieties of

the elements and the triangulations for various problems, nonnestedness is universal, cf. [2],

[5], [3].

It is well-known that a general proof of the uniform convergence of the nonnested V-cycle

multigrid method had been open for many years, although there have been numerous numerical

experiments showing that a uniform convergence rate does exist, see [7], [14], [5], [18], [9]

and references cited. Among others, the analysis of the V-cycle for the non-conforming finite

element method for the second-order elliptic problem has been and is still an active research

subject. Let us mention some works in this aspect. The authors of [14][21] proposed a so-

called Galerkin V-cycle nested multigrid method and obtained a uniform convergence rate.

Since the iterated intergrid transfer operator is employed and different discrete equations on

different levels are solved, when dealing with anisotropic problems, the computational work is

huge for this Galerkin V-cycle. Recently, the author of [23] gave a proof under a less regularity

requirement for the nonconforming V-cycle of the symmetric and positive definite second-order

elliptic problem. Nevertheless, it is not clear if the analysis therein could be carried over to

other cases where the nonnestedness may be caused by bubble functions (the bubbles are either

artificial or come from cubic and above finite elements) or by unstructured mesh refinements,

due to its lengthy analysis and its long list of assumptions. Other related works may be referred

to [8], [5], [9], [2], [24], [25], [27], [28], [29], [26]. More importantly, however, up to now there

is no a general convergence proof for the nonnested V-cycle for nonsymmetric and indefinite

second-order elliptic problems.

∗ Received March 5, 2003; Final revised August 16, 2005.



158 H.Y. DUAN AND Q. LIN

In this paper, inspired by an argument developed in [4], we give a general convergence proof

for the nonnested V-cycle for nonsymmetric and indefinite second-order elliptic problems. Our

proof covers all existing nonnested V-cycle where Assumptions A1) and A2) hold (see Section 3

of this paper), including the non-conforming V-cycle with nested meshes [6,10,15], conforming

V-cycle with nonnested meshes [9] and Mortar element V-cycle [26, 29, 28, 20]. We obtain a

uniform convergence rate (independently of the number of mesh levels), under the condition that

the number of pre and post-smoothing steps are sufficiently large and that the coarsest mesh-

size is sufficiently small (see Theorem 3.1 and Remark 3.1 of this paper). We point out that, for

all existing nonnested V-cycle methods, Assumptions A1) and A2) are valid, see the comments

on various nonnested V-cycles in Remark 3.2 of this paper. The key Assumption A1) is the

usual regularity-approximation property as in [4,2,3,1], whose verification here requires the full

elliptic regularity assumption. The Assumption A2) concerns the approximation property of

the coarse-to-fine intergrid transfer operator, which is usually either the interpolation or the

L2 projection operator. Also, the assumption A2) holds for all existing nonnested V-cycles, see

Remark 3.2 of this paper. We would like also to remark that it is not clear if our approach

could be applied to the case of less elliptic regularity, see related works [27] for nonconforming

W-cycle and [23] for nonconforming V-cycle for symmetric and positive definite second-order

elliptic problems.

The outline of this paper is as follows. In section 2, we review the nonsymmetric and

indefinite second-order elliptic problem and the V-cycle multigrid method as well as some

notations. In section 3, we obtain the convergence rate for the nonnested V-cycle multigrid

method for nonsymmetric and indefinite second-order elliptic problems.

2. Preliminaries

2.1. Nonsymmetric and indefinite second-order elliptic problem

Let Ω be a bounded, connected domain in R
n, (n = 2, 3), with Lipschitz continuous bound-

ary ∂Ω. We will use Sobolev spaces Hk(Ω), with norm || · ||Hk(Ω) and seminorm | · |Hk(Ω), and

H1
0 (Ω) = {v ∈ H1(Ω); v|∂Ω = 0}. We denote by (·, ·) the inner product of L2(Ω)(≡ H0(Ω)) or

(L2(Ω))n.

We consider the nonsymmetric and indefinite second-order elliptic problem:

−
n

∑

i,j=1

∂

∂xj

(

aij(x)
∂u

∂xi

)

+

n
∑

i=1

bi(x)
∂u

∂xi
+ d(x)u = f, in Ω, u|∂Ω

= 0, (2.1)

where A(x) := (aij(x)) ∈ R
n×n is bounded symmetric and uniformly positive definite in the

usual sense, and aij , bi ∈ C1(Ω̄) and d ∈ C0(Ω̄). The variational problem of (2.1) reads as

follows: Find u ∈ U := H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ U, (2.2)

where

a(u, v) := ã(u, v) + b(u, v), (2.3)

ã(u, v) := (A▽u,▽v) + (u, v), (2.4)

b(u, v) := (b · ▽u, v) + ((d− 1)u, v), (2.5)

with b := (b1, · · · , bn)T and ▽u = (∂u/∂x1, · · · , ∂u/∂xn)T .
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Let Jk, k ≥ 1, be a sequence of quasi-uniform triangulations of Ω into elements K, with

mesh parameter hk = supK∈Jk
hK , here hK is the diameter of K, cf. [13]. For each Jk, let Uk

be a finite element space (not necessarily a subspace of U and not necessarily Uk−1 ⊂ Uk), and

let

ak(·, ·) = ãk(·, ·) + bk(·, ·) (2.6)

be a discrete bilinear form, where, for example, without loss of generality, for conforming and

non-conforming elements, we may often have (without numerical integration)

ãk(u, v) =
∑

K∈Jk

(A▽u,▽v)0,K + (u, v), (2.7)

bk(u, v) =
∑

K∈Jk

(b · ▽u, v)0,K + ((d− 1)u, v). (2.8)

Note that we may encounter other forms, instead of (2.7) and (2.8), e.g., numerical integration

forms. Anyway, as usual, we require that ak(·, ·) is defined on Uk−1 + Uk + U , and such that

ak(·, ·) reduces to a(·, ·) on U and ak−1(·, ·) on Uk−1. We further require that ãk(·, ·) is a

symmetric, positive definite, bounded bilinear form. These two requirements are reasonable for

most cases, e.g., conforming elements, Crouzeix-Raviart nonconforming elements with nested

triangulations [22], and so forth. We furthermore require that

|bk(u, v)| ≤ C |||u|||1,k ||v||L2(Ω) ∀u, v ∈ Uk, (2.9)

|bk(u, v)| ≤ C ||u||L2(Ω) |||v|||1,k ∀u, v ∈ Uk. (2.10)

Note that (2.9) generally holds trivially. For conforming elements, (2.10) can be shown with

the use of Green’s formula of integration by parts. For nonconforming elements which satisfy
∫

F

[v] = 0 ∀v ∈ Uk, for all edges F , (2.11)

where [v] denotes the jump of v across F , applying the nonconforming estimation [13,12,22],

we can easily obtain (2.10). Note that (2.11) is often true for nonconforming elements [22,17]

and Mortar elements [26,29,20,28].

We now state the finite element problem for (2.2): Find uk ∈ Uk such that

ak(uk, v) = (f, v) ∀v ∈ Uk. (2.12)

There are numerous solution algorithms for (2.12). Among others, the multigrid algorithm

is most efficient, because of its uniform convergence rate with respect to mesh levels and its

optimal computational complexity in the sense that the number of operations scales linearly

with the number of unknowns, see [1,3]. Before describing this algorithm, we need some more

notations for the analysis in Section 3.

Let (·, ·)0,k be an inner product over Uk. Associated with Uk and ãk, we introduce eigenvalues

λk,i and eigenvectors ψk,i, 1 ≤ i ≤ Nk, which satisfy

ãk(ψk,i, v) = λk,i(ψk,i, v)0,k ∀v ∈ Uk, (2.13)

0 < λk,1 ≤ λk,2 ≤ · · · ≤ λk,Nk
, (2.14)

(ψk,i, ψk,j)0,k = δij , ãk(ψk,i, ψk,j) = λk,iδij , (2.15)

where δij is the Kronecker symbol, δij = 1 for i = j and δij = 0 for i 6= j. For any v ∈ Uk,

expanded in terms of eigenvectors as v =
∑Nk

i=1 ci ψk,i, we define mesh-dependent norms |||·|||s,k
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by

|||v|||s,k :=

√

√

√

√

Nk
∑

i=1

λs
k,i c

2
i ∀s ∈ R. (2.16)

We would see that

|||v|||1,k =
√

ãk(v, v), |||v|||0,k =
√

(v, v)0,k, (2.17)

|ãk(u, v)| ≤ |||u|||1+t,k |||v|||1−t,k ∀u, v ∈ Uk, ∀t ∈ R. (2.18)

With respect to (·, ·)0,k, we define an operator Ãk : Uk → Uk of ãk(·, ·) by

(Ãku, v)0,k = ãk(u, v) ∀u, v ∈ Uk. (2.19)

Noting that Ãk is symmetric, positive definite with respect to (·, ·)0,k, we have

|||v|||s,k =

√

(Ãs
kv, v)0,k ∀v ∈ Uk. (2.20)

For all k, we always assume that the following inverse inequalities hold([13]):

|||v|||t,k ≤ C hs−t
k |||v|||s,k ∀s ≤ t, ∀v ∈ Uk (2.21)

and that there holds the following equivalence between || · ||L2(Ω) and ||| · |||0,k:

C−1 ||v||L2(Ω) ≤ |||v|||0,k ≤ C ||v||L2(Ω) ∀v ∈ Uk. (2.22)

It follows that

λk,Nk
≤ Λk := C h−2

k . (2.23)

2.2. The Nonnested V-cycle Multigrid method

In this subsection, we review the nonnested V-cycle multigrid method of the kth-level iter-

ation for the nonsymmetric and indefinite second-order elliptic problem [16,2].

Denote by Ik : Uk−1 → Uk the coarse-to-fine intergrid transfer operator and by m ≥ 1 an

integer and by U ′
k the dual of Uk. Given g ∈ U ′

k and an initial guess z0 ∈ Uk, we obtain an

approximate solution MG(k, z0, g) to the general problem (cf. also (2.12))

Find z ∈ Uk such that ak(z, v) = g(v) ∀v ∈ Uk. (2.24)

For k = 1, MG(1, z0, g) is the solution to (2.24) obtained from a direct method.

For k > 1, MG(k, z0, g) is obtained from three steps as follows.

Presmoothing step. Let zi ∈ Uk, 1 ≤ i ≤ m, be defined recursively by

(zi − zi−1, v)0,k = Λ−1
k {g(v) − ak(zi−1, v)} ∀v ∈ Uk. (2.25)

Correction step. Let ḡ ∈ U ′
k−1 be defined by ḡ(v) := g(Ikv) − ak(zm, Ikv) for all v ∈ Uk−1,

we obtain q1 ∈ Uk−1 from

q1 = MG(k − 1, 0, ḡ). (2.26)

Then set

zm+1 := zm + Ikq1. (2.27)

Postsmoothing step. Let zi ∈ Uk, m+ 2 ≤ i ≤ 2m+ 1 be defined recursively by

(zi − zi−1, v)0,k = Λ−1
k {g(v) − ak(zi−1, v)} ∀v ∈ Uk. (2.28)

Set

MG(k, z0, g) := z2m+1. (2.29)
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Note that pre and post-smoothings are well-known Richardson iterations.

3. The Convergence Analysis

In this section, we give a general convergence rate for the V-cycle multigrid method described

in Subsection 2.2.

We define two operators Ak, Bk : Uk → Uk by

(Aku, v)0,k = ak(u, v) ∀u, v ∈ Uk, (3.1)

(Bku, v)0,k = bk(u, v) ∀u, v ∈ Uk. (3.2)

The Richardson iterative operator may be written as

Rk = Idk − Λ−1
k Ak = R̃k − Λ−1

k Bk, (3.3)

where Idk is the identity operator on Uk and

R̃k = Idk − Λ−1
k Ãk. (3.4)

The eigenvalues for R̃k are

µk,i = 1 − λk,i

Λk
≥ 0, 1 ≤ i ≤ Nk, (3.5)

with its eigenvectors being the same as those of Ãk. For the convergence analysis, we also need

the operators Pk−1 : u ∈ Uk → Pk−1u ∈ Uk−1 defined by

ak−1(Pk−1u, v) = ak(u, Ikv) ∀v ∈ Uk−1 (3.6)

and Qk : Uk → Uk defined by

Qk := Idk − IkPk−1. (3.7)

Let the iterative operator ek,2m+1 : Uk → Uk for the V-cycle algorithm be defined by

z − z2m+1 = ek,2m+1(z − z0). (3.8)

From (2.24)-(2.29) we have

ek,2m+1(z − z0) = Rm
k QkR

m
k (z − z0) +Rm

k Ikek−1,2m+1Pk−1R
m
k (z − z0). (3.9)

We now list the assumptions which will be used for the convergence analysis.

Assumption A1) (regularity-approximation assumption)

|||Qkv|||0,k ≤ C h2
k |||v|||2,k ∀v ∈ Uk. (3.10)

Assumption A2)

||Ikv − v||L2(Ω) ≤ C hk |||v|||1,k−1 ∀v ∈ Uk−1, (3.11)

|||Pk−1v|||1,k−1 ≤ C |||v|||1,k ∀v ∈ Uk. (3.12)

We are now in a position to state the main theorem of this paper.

Theorem 3.1. Let Assumptions A1) and A2) hold. In addition, we assume that

δ :=
C

2m− C
+ C

∞
∑

j=1

(m2 h2
j (1 + hj)

2m−2 +mhj (1 + hj)
m−1) < 1 (3.13)

holds. Then, for all k ≥ 2 we have

εk =
C

2m− C
+ C

k
∑

j=2

(m2h2
j (1 + hj)

2m−2 +mhj (1 + hj)
m−1) < δ < 1, (3.14)
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such that

|||ek,2m+1v|||1,k ≤ εk |||v|||1,k ∀v ∈ Uk. (3.15)

Remark 3.1. This theorem says that the convergence rate is δ which is less than 1 and is

uniform with respect to mesh levels. We consider nested triangulations into triangles. In spite of

the nestedness of meshes, the use of Crouzeix-Raviart nonconforming elements or conforming

elements with bubbles still makes the V-cycle is nonnested. The nested triangulations are

obtained as follows. Suppose J1 is given and Jk, k ≥ 2, is obtained from Jk−1 via a bi-

subdivision: edge midpoints in each triangle Jk−1 are connected. Obviously, we have hk =

hk−1/2 = h1/2
k−1. We can require that hk ≤ 1 for all k. We then have

δ <
C

2m− C
+ C

(

4

3
m2 4m−1 h2

1 + 2m 2m−1 h1

)

,

from which we first choose m > C such that

δ1 :=
C

2m− C
< 1, (3.16)

and then choose h1 such that

4

3
m2 4m−1 h2

1 + 2m 2m−1 h1 <
1 − δ1
C

.

That hj = h1/2
j−1 is sufficiently small because of h1 being sufficiently small is an essential

requirement in the finite element discretization of nonsymmetric and indefinite second-order

elliptic problems, see [12, page 139]. On the other hand, we point out that for symmetric

and positive definite second-order elliptic problems the convergence rate is δ1. It would be

interesting comparing δ1 with the convergence rate C/(2m+ C) for the nested V-cycle [4,2].

In the sequent, we shall prove Theorem 3.1.

To that goal, we first need to thoroughly investigate some properties of the Richardson

iteration operator Rk. They are closely related to a quantity ρ(w), characterizing the smooth

effect of the Richardson iteration, which was first introduced in [4] for the convergence analysis

for the nested V-cycle. Here we generalize that quantity to the case of nonnested V-cycle. For

w ∈ Uk, we define

ρk(w) = ãk(w, R̃kw)/ãk(w,w) = |||R̃1/2
k w|||21,k/|||w|||21,k (3.17)

if w 6= 0; otherwise, we define ρk(w) = 0 if w = 0. Expanding w =
∑Nk

i=1 ciψk,i 6= 0, then

ρk(w) =
Nk
∑

i=1

λk,iµk,ic
2
i /

Nk
∑

i=1

λk,ic
2
i , which, together with µk,i ≤ 1, leads to 0 ≤ ρk(w) ≤ 1.

The following three Propositions mainly give some properties associated with Rk.

Proposition 3.1. For all w ∈ Uk and for all m ≥ 1, we have

|||R̃m
k w|||1,k ≤ ρm

k (R̃m
k w) |||w|||1,k , (3.18)

|||w|||2,k ≤ C h−1
k

√

1 − ρk(w) |||w|||1,k. (3.19)

Proof. (3.18) and (3.19) can be easily shown by the same argument as in [4,Lemma 4.3,

Lemma 4.4].

Proposition 3.2. For all v ∈ Uk and for all m ≥ 1, we have

|||Rm
k v|||i,k ≤ |||R̃m

k v|||i,k + Cmh2−i
k (1 + hk)m−1 |||v|||1,k, i = 1, 2, (3.20)
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|||Rm
k v|||21,k ≤ |||R̃m

k v|||21,k + C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||21,k, (3.21)

|||Rm
k v|||22,k ≤ |||R̃m

k v|||22,k + C(m2 (1 + hk)2m−2 +m
1

2 h−1
k (1 + hk)m−1) |||v|||21,k, (3.22)

|||Rm
k v|||21,k + C h2

k |||Rm
k v|||22,k ≤ ρ2m

k (R̃m
k v){1 + C[1 − ρk(R̃m

k v)]} |||v|||21,k

+ C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||21,k,

(3.23)

|ãk(Rm
k u, v) − ãk(u,Rm

k v)| ≤ Cmhk (1 + hk)m−1 |||u|||1,k |||v|||1,k, ∀u, v ∈ Uk. (3.24)

Proof. With the application of Proposition 3.1, (3.23) follows from (3.21) and (3.22), while

(3.21) and (3.22) follow from (3.20) and

|||R̃m
k v|||1,k ≤ |||v|||1,k, |||R̃m

k v|||2,k ≤ C (hk

√
m)−1 |||v|||1,k. (3.25)

We thus only need to show (3.20) and (3.24). Let us first show (3.20). Note that

Rm
k v = (R̃k − Λ−1

k Bk)mv, (3.26)

|||Bkv|||0,k ≤ C |||v|||1,k ∀v ∈ Uk (by (2.9)), (3.27)

using the inverse inequality (2.21) we have

|||Bkv|||i,k ≤ C h−i
k |||v|||1,k, i = 1, 2. (3.28)

By a simple but tedious calculation, from (3.26)-(3.28) and Λ−1
k = Ch2

k, we have

|||Rm
k v|||i,k ≤ |||R̃m

k v|||i,k + Cmh2−i
k (1 + hk)m−1 |||v|||1,k, i = 1, 2. (3.29)

We now show (3.24). Note that

Rm
k u = R̃m

k u+ Φ(Λ−1
k , R̃k, Bk)u ∀u ∈ Uk, (3.30)

where, Φ(·, ·, ·) is a linear operator, for which, similar to (3.29), we have

|||Φ(Λ−1
k , R̃k, Bk)u|||1,k ≤ Cmhk (1 + hk)m−1 |||u|||1,k, (3.31)

we then have

|ãk(Rm
k u, v) − ãk(u,Rm

k v)| = |ãk(Φ(Λ−1
k , R̃k, Bk)u, v) − ãk(u,Φ(Λ−1

k , R̃k, Bk)v)|
≤ Cmhk (1 + hk)m−1 |||u|||1,k |||v|||1,k

(3.32)

because of ãk(R̃m
k u, v) = ãk(u, R̃m

k v).

Proposition 3.3. Let Assumptions A1) and A2) hold. Then, for all v ∈ Uk and for all m ≥ 1,

we have

|||Pk−1R
m
k v|||21,k−1 ≤ ρ2m

k (R̃m
k v)

{

1 + C
[

1 − ρk(R̃m
k v)

]}

|||v|||21,k

+C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)|||v|||21,k.

(3.33)

Proof. We first have

|||Pk−1R
m
k v|||21,k−1 = ãk−1(Pk−1R

m
k v, Pk−1R

m
k v)

= ak−1(Pk−1R
m
k v, Pk−1R

m
k v) − bk−1(Pk−1R

m
k v, Pk−1R

m
k v)

= ak(Rm
k v, IkPk−1R

m
k v) − bk−1(Pk−1R

m
k v, Pk−1R

m
k v)

= ak(Rm
k v,R

m
k v) − ak(Rm

k v,QkR
m
k v) − bk−1(Pk−1R

m
k v, Pk−1R

m
k v)

= ãk(Rm
k v,R

m
k v) − ãk(Rm

k v,QkR
m
k v) − bk(Rm

k v,QkR
m
k v)

+bk(Rm
k v,R

m
k v) − bk−1(Pk−1R

m
k v, Pk−1R

m
k v)

= ãk(Rm
k v,R

m
k v) − ãk(Rm

k v,QkR
m
k v)

+bk(IkPk−1R
m
k v − Pk−1R

m
k v, Pk−1R

m
k v)

+bk(QkR
m
k v, Pk−1R

m
k v) + bk(Rm

k v, IkPk−1R
m
k v − Pk−1R

m
k v).

(3.34)
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where, using (2.10), (3.10) and (3.12) of Assumptions A1) and A2), (3.21), we have

|bk(QkR
m
k v, Pk−1R

m
k v)| ≤ C |||QkR

m
k v|||0,k |||Pk−1R

m
k v|||1,k−1 ≤ C h2

k |||Rm
k v|||2,k |||Rm

k v|||1,k

≤ C hk

{

ρ2m
k (R̃m

k v)
[

1 + C
(

1 − ρk(R̃m
k v)

)]

+C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)

}

|||v|||21,k

≤ C hk { max
0≤ρ≤1

ρ2m[1 + C(1 − ρ)] + C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)} |||v|||21,k

≤ C hk

{

max

(

1,
C + 1

2m+ 1

)

+ C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)

}

|||v|||21,k

≤ C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||21,k.

(3.35)

Similarly,

|bk(IkPk−1R
m
k v − Pk−1R

m
k v, Pk−1R

m
k v)| ≤ C(m2h2

k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||21,k,

(3.36)

|bk(Rm
k v, IkPk−1R

m
k v−Pk−1R

m
k v)| ≤ C(m2h2

k (1+hk)2m−2+mhk (1+hk)m−1) |||v|||21,k, (3.37)

|ãk(Rm
k v,R

m
k v) − ãk(Rm

k v,QkR
m
k v)| ≤ ρ2m

k (R̃m
k v){1 + C[1 − ρk(R̃m

k v)]} |||v|||21,k

+C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||21,k.

(3.38)

Summarizing (3.34)-(3.38) to get (3.33).

We next give two Lemmas from which we shall prove Theorem 3.1. In proving the first

lemma, we used the previous Propositions in several places.

Lemma 3.1. Let Assumptions A1) and A2) hold. If

|||ek−1,2m+1v|||1,k−1 ≤ εk−1 |||v|||1,k−1 ∀v ∈ Uk−1, (3.39)

where εk−1 < 1. Then, we have

|||ek,2m+1v|||1,k ≤ εk |||v|||1,k ∀v ∈ Uk (3.40)

with

εk := max
0≤ρ≤1

ρ2m{(1+εk−1)C(1−ρ)+εk−1}+C (m2h2
k (1+hk)2m−2+mhk (1+hk)m−1). (3.41)

Proof. Note that

|||ek,2m+1v|||1,k = sup
w∈Uk

ãk(ek,2m+1v, w)

|||w|||1,k
, (3.42)

ãk(ek,2m+1v, w) = ãk(Rm
k QkR

m
k v, w) + ãk(Rm

k Ikek−1,2m+1Pk−1R
m
k v, w)

= ãk(Rm
k QkR

m
k v, w) − ãk(QkR

m
k v,R

m
k w)

+ãk(Rm
k Ikek−1,2m+1Pk−1R

m
k v, w) − ãk(Ikek−1,2m+1Pk−1R

m
k v,R

m
k w)

+ãk(QkR
m
k v,R

m
k w) + ãk(Ikek−1,2m+1Pk−1R

m
k v,R

m
k w),

(3.43)

ãk(QkR
m
k v,R

m
k w) + ãk(Ikek−1,2m+1Pk−1R

m
k v,R

m
k w)

= ãk(QkR
m
k v,R

m
k w) + ãk−1(ek−1,2m+1Pk−1R

m
k v, Pk−1R

m
k w)

+bk−1(Pk−1R
m
k w, ek−1,2m+1Pk−1R

m
k v) − bk(Rm

k w, Ikek−1,2m+1Pk−1R
m
k v).

(3.44)

In view of (3.24) and (3.20) with i = 1 (see Proposition 3.2), we have

|ãk(Rm
k QkR

m
k v, w) − ãk(QkR

m
k v,R

m
k w)| ≤ Cmhk (1 + hk)m−1 |||QkR

m
k v|||1,k |||w|||1,k

≤ Cmhk (1 + hk)m−1 |||Rm
k v|||1,k |||w|||1,k

≤ Cmhk (1 + hk)m−1 (1 + Cmhk (1 + hk)m−1) |||v|||1,k |||w|||1,k

≤ C (m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||1,k |||w|||1,k.

(3.45)



On the Convergence of the Nonnested V-cycle Multigrid Method 165

Noting that

|||Ik v|||1,k ≤ C |||v|||1,k (by ((3.11) in Assumption A2) and (2.21)),

in view of (3.11) (see Assumption A2)), (3.24) and (3.20) with i = 1 (see Proposition 3.2) and

(3.39), we have

|ãk(Rm
k Ikek−1,2m+1Pk−1R

m
k v, w) − ãk(Ikek−1,2m+1Pk−1R

m
k v,R

m
k w)|

≤ Cmhk (1 + hk)m−1 |||Ikek−1,2m+1Pk−1R
m
k v|||1,k |||w|||1,k

≤ Cmhk (1 + hk)m−1 εk−1 |||Rm
k v|||1,k |||w|||1,k

≤ C (m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||1,k |||w|||1,k.

(3.46)

Noting that

bk−1(Pk−1R
m
k w, ek−1,2m+1Pk−1R

m
k v) − bk(Rm

k w, Ikek−1,2m+1Pk−1R
m
k v)

= bk(Pk−1R
m
k w − IkPk−1R

m
k w, ek−1,2m+1Pk−1R

m
k v)

+bk(Rm
k w, ek−1,2m+1Pk−1R

m
k v − Ikek−1,2m+1Pk−1R

m
k v)

−bk(QkR
m
k w, ek−1,2m+1Pk−1R

m
k v),

(3.47)

similarly, we have

|bk(Pk−1R
m
k w − IkPk−1R

m
k w, ek−1,2m+1Pk−1R

m
k v)| ≤

C hk |||Pk−1R
m
k w|||1,k−1 |||ek−1,2m+1Pk−1R

m
k v|||1,k−1

≤ C hk εk−1 |||Pk−1R
m
k v|||1,k−1 |||Pk−1R

m
k w|||1,k−1

≤ C (m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||1,k |||w|||1,k,

(3.48)

|bk(Rm
k w, ek−1,2m+1Pk−1R

m
k v − Ikek−1,2m+1Pk−1R

m
k v)|

≤ C (m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||1,k |||w|||1,k,

(3.49)

| − bk(QkR
m
k w, ek−1,2m+1Pk−1R

m
k v)|

≤ C (m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1) |||v|||1,k |||w|||1,k.

(3.50)

|ãk(QkR
m
k v,R

m
k w)| ≤ C h2

k |||Rm
k v|||2,k |||Rm

k w|||2,k

≤ C
√

ρ2m
k (R̃m

k v)C[1 − ρk(R̃m
k v)] + C(m2h2

k (1 + hk)2m−2 +mhk (1 + hk)m−1)

×C
√

ρ2m
k (R̃m

k w)C[1 − ρk(R̃m
k w)] + C(m2h2

k (1 + hk)2m−2 +mhk (1 + hk)m−1)

×|||v|||1,k |||w|||1,k,

(3.51)

|ãk−1(ek−1,2m+1Pk−1R
m
k v, Pk−1R

m
k w)|

≤ εk−1 |||Pk−1R
m
k v|||1,k−1 |||Pk−1R

m
k w|||1,k−1

≤ εk−1

√

ρ2m
k (R̃m

k v)
[

1 + C(1 − ρk(R̃m
k v))

]

+ C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)

×
√

ρ2m
k (R̃m

k w)
[

1 + C(1 − ρk(R̃m
k w))

]

+ C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1)

×|||v|||1,k |||w|||1,k.
(3.52)

For convenience, set

γk := m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1,

ηk(v) := ρ2m
k (R̃m

k v)C[1 − ρk(R̃m
k v)],

ξk(v) := ρ2m
k (R̃m

k v)
[

1 + C(1 − ρk(R̃m
k v))

]

.

Combining (3.43)-(3.52), we get

|ãk(ek,2m+1 v, w)| ≤ C γk |||v|||1,k |||w|||1,k

+C
√

ηk(v) + C γk

√

ηk(w) + C γk |||v|||1,k |||w|||1,k

+εk−1

√

ξk(v) + C γk

√

ξk(w) + C γk |||v|||1,k |||w|||1,k,

(3.53)
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where, using Cauchy-inequality we have

C
√

ηk(v) + C γk

√

ηk(w) + C γk + εk−1

√

ξk(v) + C γk

√

ξk(w) + C γk ≤
{Cηk(v) + Cγk + εk−1 [ξk(v) + C γk]}1/2

×{Cηk(w) + Cγk + εk−1 [ξk(w) + C γk]}1/2

≤ max
0≤ρ≤1

ρ2m {C (1 − ρ) + εk−1 [1 + C(1 − ρ)]} + C γk.

(3.54)

Therefore, (3.41) follows from (3.53), (3.54) and (3.42).

Lemma 3.2. Let δ1 be given as (3.16). Then, for any θ satisfying

δ1 ≤ θ < 1, (3.55)

we have

max
0≤ρ≤1

ρ2m {C (1 − ρ) + θ [1 + C(1 − ρ)]} ≤ θ. (3.56)

Proof. Let

κθ,m(ρ) := ρ2m {C(1 − ρ) + θ [1 + C(1 − ρ)]}. (3.57)

We see that κθ,m(ρ) has a nonzero stationary point

ρ∗(m) =
2mC + 2mθC + 2mθ

2mC + 2mθC + C + θC
. (3.58)

Clearly, in view of (3.55), we have ρ∗(m) ≥ 1. That is to say, κθ,m(ρ) has not any stationary

point in the interval (0, 1). Hence, κθ,m(ρ) attains its maximum θ at 1 (in fact, with (3.55)

κθ,m(ρ) is nondecreasing over the interval [0, 1]).

Proof of Theorem 3.1 Reasoning by mathematical induction. For k = 1, there is nothing to

show. We assume that for k − 1 we have

εk−1 =
C

2m− C
+ C

k−1
∑

j=2

(m2h2
j (1 + hj)

2m−2 +mhj (1 + hj)
m−1) < δ < 1. (3.59)

In what follows, we consider k. Since

1 > εk−1 > δ1, (3.60)

from Lemma 3.2 we have

max
0≤ρ≤1

ρ2m{(1 + εk−1)C(1 − ρ) + εk−1} ≤ εk−1. (3.62)

It follows from Lemma 3.1 that εk = εk−1 + C(m2h2
k (1 + hk)2m−2 +mhk (1 + hk)m−1). �

Remark 3.2. Let us make some comments on Assumptions A1) and A2) for applications.

The Assumption A1) plays the most important role in the convergence analysis of multigrid

methods, whose validity needs the full elliptic regularity. Although it was proven for symmetric

positive definite second-order elliptic problems, there are not any essential difficulties to adapt

the argument to the case of nonsymmetric and indefinite second-order elliptic problems.

Let us mention some realistic applications where the verification of Assumption A1) can be

found. For P1 and Wilson’s nonconforming elements, see [6], [10], [17]. For C0(continuous)

elements with nonnested triangulations, see [9]. For other nonnested C0 elements such as

bubble-enriching element and composited element, see [11]. For nonconforming elements such

as Qrot
1 element and discretely divergence-free P1 element, see [15], [19], [8]. For Mortar element,

see [26], [29], [28]. Note that there are different assumptions on the triangulations for different

nonnested cases. Readers may refer to the cited references for details.
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Assumption A2) is also true generally. For nonconforming elements, Ik is usually a local

average operator or local L2 projection operator, cf. [6], [10], [18] ,[20]; for nonnested conforming

elements, Ik is the usual interpolation operator, cf. [9]. Under some appropriate conditions on

the triangulations, Assumption A2) could be shown, see [6], [9], [10], [11], [15], [17], [18], [19],

[20], [25], [26], [27], [28], [29], [2].

Finally, we remark that (3.10) and (3.11) imply (3.12), if hk is small enough. In fact, since

|||Pk−1v|||1,k−1 = sup
w∈Uk−1

ãk−1(Pk−1v, w)

|||w|||1,k−1
,

ãk−1(Pk−1v, w) = ak(v, Ikw − w) + ak(v, w)

+ bk(IkPk−1v − Pk−1v, w) + bk(Qkv, w) − bk(v, w)
≤ C hk |||Pk−1v|||1,k−1 |||w|||1,k−1 + C |||v|||1,k |||w|||1,k−1,

we conclude that (3.12) holds, with a sufficiently small hk.
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