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Abstract

This paper provides a proof for the uniform convergence rate (independently of the
number of mesh levels) for the nonnested V-cycle multigrid method for nonsymmetric and
indefinite second-order elliptic problems.
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1. Introduction

In this paper we study the convergence of the nonnested V-cycle multigrid method, cf.
[2,3]. The nonnestedness is usually caused either by the nature of a specific element (e.g.,
nonconforming finite elements) or by the nonnested mesh refinement. Due to the varieties of
the elements and the triangulations for various problems, nonnestedness is universal, cf. [2],
[5], [3]-

It is well-known that a general proof of the uniform convergence of the nonnested V-cycle
multigrid method had been open for many years, although there have been numerous numerical
experiments showing that a uniform convergence rate does exist, see [7], [14], [5], [18], [9]
and references cited. Among others, the analysis of the V-cycle for the non-conforming finite
element method for the second-order elliptic problem has been and is still an active research
subject. Let us mention some works in this aspect. The authors of [14][21] proposed a so-
called Galerkin V-cycle nested multigrid method and obtained a uniform convergence rate.
Since the iterated intergrid transfer operator is employed and different discrete equations on
different levels are solved, when dealing with anisotropic problems, the computational work is
huge for this Galerkin V-cycle. Recently, the author of [23] gave a proof under a less regularity
requirement for the nonconforming V-cycle of the symmetric and positive definite second-order
elliptic problem. Nevertheless, it is not clear if the analysis therein could be carried over to
other cases where the nonnestedness may be caused by bubble functions (the bubbles are either
artificial or come from cubic and above finite elements) or by unstructured mesh refinements,
due to its lengthy analysis and its long list of assumptions. Other related works may be referred
to [8], [5], [9], [2], [24], [25], [27], [28], [29], [26]. More importantly, however, up to now there
is no a general convergence proof for the nonnested V-cycle for nonsymmetric and indefinite
second-order elliptic problems.
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In this paper, inspired by an argument developed in [4], we give a general convergence proof
for the nonnested V-cycle for nonsymmetric and indefinite second-order elliptic problems. Our
proof covers all existing nonnested V-cycle where Assumptions A1) and A2) hold (see Section 3
of this paper), including the non-conforming V-cycle with nested meshes [6,10,15], conforming
V-cycle with nonnested meshes [9] and Mortar element V-cycle [26, 29, 28, 20]. We obtain a
uniform convergence rate (independently of the number of mesh levels), under the condition that
the number of pre and post-smoothing steps are sufficiently large and that the coarsest mesh-
size is sufficiently small (see Theorem 3.1 and Remark 3.1 of this paper). We point out that, for
all existing nonnested V-cycle methods, Assumptions Al) and A2) are valid, see the comments
on various nonnested V-cycles in Remark 3.2 of this paper. The key Assumption A1) is the
usual regularity-approximation property as in [4,2,3,1], whose verification here requires the full
elliptic regularity assumption. The Assumption A2) concerns the approximation property of
the coarse-to-fine intergrid transfer operator, which is usually either the interpolation or the
L? projection operator. Also, the assumption A2) holds for all existing nonnested V-cycles, see
Remark 3.2 of this paper. We would like also to remark that it is not clear if our approach
could be applied to the case of less elliptic regularity, see related works [27] for nonconforming
W-cycle and [23] for nonconforming V-cycle for symmetric and positive definite second-order
elliptic problems.

The outline of this paper is as follows. In section 2, we review the nonsymmetric and
indefinite second-order elliptic problem and the V-cycle multigrid method as well as some
notations. In section 3, we obtain the convergence rate for the nonnested V-cycle multigrid
method for nonsymmetric and indefinite second-order elliptic problems.

2. Preliminaries

2.1. Nonsymmetric and indefinite second-order elliptic problem

Let 2 be a bounded, connected domain in R™, (n = 2,3), with Lipschitz continuous bound-

ary 9. We will use Sobolev spaces H*(£2), with norm || - ||z« (o) and seminorm | - [ (), and
H}(Q) = {v e H(Q);v|sq = 0}. We denote by (-,-) the inner product of L?(Q2)(= H°()) or
(L2 ()"

We consider the nonsymmetric and indefinite second-order elliptic problem:

) Ou = ou
- E — | ayj(z)=— b; d =f, in{, =0, 2.1
ij=1 Ox; (aj(x)axi> " i—1 (@) Ox; td@u=/ i Hloa 21)
where A(z) := (a;;(x)) € R™*™ is bounded symmetric and uniformly positive definite in the

usual sense, and a;;,b; € C1(Q) and d € C°(Q). The variational problem of (2.1) reads as
follows: Find u € U := Hg () such that

a(u,v) = (f,v) Yoel, (2.2)
where

alu, v) = a(u, v) + b, v), (2.3)

a(u,v) = (A, wv) + (u,v), (2.4)

b(u, v) == (b- 7u,v) + ((d — 1)u, v), (2.5)

with b := (b1, ,b,)T and yu = (Qu/dx1, -+ ,0u/d0z,)T.
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Let Ji, kK > 1, be a sequence of quasi-uniform triangulations of €2 into elements K, with
mesh parameter hy = supge 7, hi, here hg is the diameter of K, cf. [13]. For each Jy, let Uy
be a finite element space (not necessarily a subspace of U and not necessarily Ux_1 C Uy), and
let

ak(7) = @y ) + e ) (2.6)

be a discrete bilinear form, where, for example, without loss of generality, for conforming and
non-conforming elements, we may often have (without numerical integration)

ar(u,v) = Z (A7u, 7)o, 5 + (u,v), (2.7)
KeJg
bi(u,v) = Z (b-vu,v)ox + ((d—1)u,v). (2.8)
KeJk

Note that we may encounter other forms, instead of (2.7) and (2.8), e.g., numerical integration
forms. Anyway, as usual, we require that ax(+,-) is defined on Ux_1 + Uy, + U, and such that
ax(+,-) reduces to a(-,-) on U and ap_1(-,-) on Ug—1. We further require that ax(-,-) is a
symmetric, positive definite, bounded bilinear form. These two requirements are reasonable for
most cases, e.g., conforming elements, Crouzeix-Raviart nonconforming elements with nested
triangulations [22], and so forth. We furthermore require that

bk (u, v)| < Cl[[ulll1k V]| L2)  Yu,v € Uk, (2.9)
|bk(u,v)| S C||u||L2(Q) |||U|||1)1C Vu,v (S Uk. (2.10)

Note that (2.9) generally holds trivially. For conforming elements, (2.10) can be shown with
the use of Green’s formula of integration by parts. For nonconforming elements which satisfy

/ [v] =0 Yov € Uy, for all edges F, (2.11)
F

where [v] denotes the jump of v across F, applying the nonconforming estimation [13,12,22],
we can easily obtain (2.10). Note that (2.11) is often true for nonconforming elements [22,17]
and Mortar elements [26,29,20,28].

We now state the finite element problem for (2.2): Find uy € Uy, such that

ag(uk,v) = (f,v) Yo € Uy. (2.12)

There are numerous solution algorithms for (2.12). Among others, the multigrid algorithm
is most efficient, because of its uniform convergence rate with respect to mesh levels and its
optimal computational complexity in the sense that the number of operations scales linearly
with the number of unknowns, see [1,3]. Before describing this algorithm, we need some more
notations for the analysis in Section 3.

Let (-, )0, be an inner product over Uy,. Associated with Uy, and ay, we introduce eigenvalues
Ak,; and eigenvectors 1y, ;, 1 <4 < Ny, which satisfy

i (Vi v) = My (Vryi, Vo Yo € Uy, (2.13)
0< )\k,l S )\k,2 S T S Ak,Nkv (2]‘4)
(Vhyiy Vrj)oe = 0ijy Gk (Vhis Vi) = Akyi0ijs (2.15)

where §;; is the Kronecker symbol, §;; = 1 for ¢ = j and §;; = 0 for ¢ # j. For any v € Uy,

. . N,
expanded in terms of eigenvectors as v = > ;' ¢; ¢y ;, we define mesh-dependent norms |||-|||s,x
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by

vllls,k :

Ny
> X2 VseR (2.16)
=1

We would see that
olllie = Var(v,v),  lvlllor =1/ (v,v)ok, (2.17)
lag (w, v)| < [|ullli+ex |V][1i—e.x Yu,v € Uy, Vt € R. (2.18)
With respect to (-, -)o.x, we define an operator Ag : U, — Uy, of ar(+,-) by
(Agu, v)or = ar(u,v) Yu,v € Uy. (2.19)

Noting that Ay, is symmetric, positive definite with respect to (-, ok, we have

olllsk = \/ (Ajv, )0 Yo € Uy. (2.20)
For all k, we always assume that the following inverse inequalities hold([13]):
Nolllex < CREH|olllse Vs <t, YoveUy (2.21)
and that there holds the following equivalence between || - |[12(q) and ] - |||o,x:
CH lle2g) < Mlvlllos < Cllvllz2ge) Vo € Ut (2.22)
It follows that
Aevy, < Ag = Chy 2 (2.23)

2.2. The Nonnested V-cycle Multigrid method

In this subsection, we review the nonnested V-cycle multigrid method of the kth-level iter-
ation for the nonsymmetric and indefinite second-order elliptic problem [16,2].

Denote by I : Ux—1 — Uy the coarse-to-fine intergrid transfer operator and by m > 1 an
integer and by Uj, the dual of Uy. Given g € U, and an initial guess zop € Uy, we obtain an
approximate solution MG (k, zg, g) to the general problem (cf. also (2.12))

Find z € Uy, such that ax(z,v) = g(v) Yo € Uy. (2.24)

For k =1, MG(1, 29, ¢g) is the solution to (2.24) obtained from a direct method.
For k > 1, MG(k, 29, g) is obtained from three steps as follows.
Presmoothing step. Let z; € Uy, 1 <1 < m, be defined recursively by

(zi — 2i—1,V)0k = A,:l{g(v) —ag(zi—1,v)} Vv € Uy. (2.25)

Correction step. Let g € U], be defined by g(v) := g(Ixv) — ax(2m, Ixv) for all v € Uy_1,
we obtain ¢; € Ug_1 from
a1 = MGk —1,0,3). (2.26)

Then set
Zmal = Zm + Ixq1. (2.27)

Postsmoothing step. Let z; € Ug, m + 2 < i < 2m + 1 be defined recursively by
(zi — zi1,v)0 = AL Hg(v) — ap(zi—1,v)} Vv € Uy (2.28)

Set
MG(k, 20, g) = 22m41- (229)



On the Convergence of the Nonnested V-cycle Multigrid Method 161

Note that pre and post-smoothings are well-known Richardson iterations.

3. The Convergence Analysis

In this section, we give a general convergence rate for the V-cycle multigrid method described
in Subsection 2.2.
We define two operators Ay, By : Uy — Uy by

(Apu,v)o.k = ar(u,v) Yu,v € Uy, (3.1)

(Bru,v)ok = br(u,v) Yu,v € Uy. (3.2)
The Richardson iterative operator may be written as

Ry = Idy, — A Ap = Ry — A ' By, (3.3)
where Idy is the identity operator on Uy and

Ry = Idy — A M Ay (3.4)
The eigenvalues for Ry, are
Ak .
Mk,izl—A—;ZO, 1 <1< Ny, (3.5)

with its eigenvectors being the same as those of Aj. For the convergence analysis, we also need
the operators Py_1 : u € Uy — Pyx_1u € Up_; defined by

ak—1(Pr—1u,v) = ag(u, [v) Vv € Ug_1 (3.6)

and Qy, : Uy — Uy defined by
Qr = Idy — Iy Pi_1. (3.7)

Let the iterative operator ey 2m+1 : Ur — Uy, for the V-cycle algorithm be defined by
2 — Zoam41 = €k2m+1(2 — 20). (3.8)
From (2.24)-(2.29) we have
ek 2m+1(2 — 20) = R QiR (2 — 20) + Ry Iek—1,2m+1Ps—1RE (2 — 20). (3.9)

We now list the assumptions which will be used for the convergence analysis.
Assumption A1) (regularity-approximation assumption)

11Qrvlllox < Chi[lJvlll2g Vo € U. (3.10)

Assumption A2)
||Ik’U—’U||L2(Q) SChk|||’U|||17k_1 Yv € Ug_1, (3.11)
[Pe-1vll[1,k-1 < CllJoll[1e Vv € Uk (3.12)

We are now in a position to state the main theorem of this paper.
Theorem 3.1. Let Assumptions A1) and A2) hold. In addition, we assume that

C - e -
5;:m+02(m2h§(1+hj)2 Z4mh; (14+h)m <1 (3.13)
j=1

holds. Then, for all k > 2 we have

C
2m — C

k
e = +C D (mPhE (L4 hy)P ™2 +mhy (14 hy)" 1) <6 < 1, (3.14)
j=2
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such that
llex,2m+1v[l[16 < erl[vl[lie Vv € Uy. (3.15)

Remark 3.1. This theorem says that the convergence rate is § which is less than 1 and is
uniform with respect to mesh levels. We consider nested triangulations into triangles. In spite of
the nestedness of meshes, the use of Crouzeix-Raviart nonconforming elements or conforming
elements with bubbles still makes the V-cycle is nonnested. The nested triangulations are
obtained as follows. Suppose [Jj is given and Ji, k > 2, is obtained from J;_; via a bi-
subdivision: edge midpoints in each triangle [J_1 are connected. Obviously, we have hy =
hix_1/2 = h1/2F~1. We can require that hy, <1 for all k. We then have

_ ¢
2m—C

from which we first choose m > C such that

4
§< +C<§m24m1h§+2m2m1h1>,

5 = —— <1, (3.16)

and then choose hq such that
1-6
C
That h; = hy/27~! is sufficiently small because of hy being sufficiently small is an essential
requirement in the finite element discretization of nonsymmetric and indefinite second-order
elliptic problems, see [12, page 139]. On the other hand, we point out that for symmetric
and positive definite second-order elliptic problems the convergence rate is d;. It would be
interesting comparing §; with the convergence rate C/(2m + C) for the nested V-cycle [4,2].

In the sequent, we shall prove Theorem 3.1.

To that goal, we first need to thoroughly investigate some properties of the Richardson
iteration operator Rj. They are closely related to a quantity p(w), characterizing the smooth
effect of the Richardson iteration, which was first introduced in [4] for the convergence analysis
for the nested V-cycle. Here we generalize that quantity to the case of nonnested V-cycle. For
w € Uy, we define

4
3 m?24m 2 L 2m2m Ty <

~ 7 ~ 51/2
pr(w) = ay(w, Ryw) /ax(w,w) = ||| R *wll[3 1o/ lllwl][3 (3.17)

if w # 0; otherwise, we define pi(w) = 0 if w = 0. Expanding w = Zi\[:kl cithg,i # 0, then
Nk Nk

pr(w) =3 Apipkic?/ S Agic?, which, together with g ;
i=1 =1

1=

<1, leads to 0 < pg(w) < 1.

The following three Propositions mainly give some properties associated with Ry.
Proposition 3.1. For all w € Uy, and for allm > 1, we have

IRE w1 < P (Biw) ||l , (3.18)

lwlllze < Chy v/ = pr(w) [llwl]]1. (3.19)

Proof. (3.18) and (3.19) can be easily shown by the same argument as in [4,Lemma 4.3,
Lemma 4.4].
Proposition 3.2. For all v € Uy and for all m > 1, we have

RVl < NBF ol + Com b (L4 h)™ H[[olllige,  i=1,2, (3.20)
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IRl < HREOIIE ) + CmPhE (L4 he) ™2 4 mby, (1L + h)™ ) [[[ollI 5, (3.21)
m pm m— 1, - m—

NRE I3 5 < NREOIIE k. + Cm? (14 h)*™ 72+ m2 bt (L4 b)) ol e (3.22)

)

NRZll[3, + CRENIRTI1, < pi™(R7v){L+ C[1 — pr(Ryo)]} 0],
+  O(m?hj (14 he)*™ 2 + mhy, (1+ b)) [|[0]]]F 1,
(3.23)
|ar (R u, v) — ar(u, R'v)| < Cmhg (1+ hi)™ [ |ulll vl 1e,  Yu,v € Uk (3.24)

Proof. With the application of Proposition 3.1, (3.23) follows from (3.21) and (3.22), while
(3.21) and (3.22) follow from (3.20) and

IBE ok < Nlollhe, Rz < C (i v/m) = [[o]]1e. (3.25)
We thus only need to show (3.20) and (3.24). Let us first show (3.20). Note that
Ry = (Ry — A ' By)™v, (3.26)
[l|Brv|llo,e < CllIvlllie Yo e Us (by (2.9)), (3.27)
using the inverse inequality (2.21) we have
I1Beolllin < Chit ol i =12 (3.25)
By a simple but tedious calculation, from (3.26)-(3.28) and A, ' = Ch?, we have
R vlllik < B[l + CmbE™" (L4 i)™ [0l = 1,2. (3.29)
We now show (3.24). Note that
Wu = Ri'u+ ®(AL", Ry, B)u Vu € Uy, (3.30)

where, ®(-,-,) is a linear operator, for which, similar to (3.29), we have
N®(ALY Biey Be)ulllie < Cmchye (14 hi)™ ]|, (3.31)

we then have
|ak (R u, v) — ax(u, RiM)| |k (®(AL ", R, Be)u, v) — dn(u, (A", Ri, Bi)v))|

- 3.32
< Cmn (L4 ol ol o (3:2)

because of ax (R u,v) = ax(u, R{').
Proposition 3.3. Let Assumptions A1) and A2) hold. Then, for all v € Uy and for allm > 1,
we have

P RElliz oy < o2 (Be) {1+ C [1 = pulBo)] } IR,

C(m2h2 (1 + h.)2m—2 R (1 4 B ym—1 2 (3'33)
+C(m*hj; (1 + ha) + mhy (1 + hie)™ [ [0]]]7 -

Proof. We first have

|Pe—1RPl[F oy = ax—1(Ps—1R{v, Peo1 Riv)
Af—1 (Pk—l RZI’U, Pk—l ka’l)) — bk—l (Pk_lRLnU, Pk_lemU)
= ak(R}c”v, IkpkflRZlv) - bkfl(PkflR;nv, Pkflenv)
ar(RPv, R7'v) — agp(R'v, QrR'v) — bi—1(Pry—1 R v, Pe—1 RJ'v)
= ar(RPv, R'v) — ar (R, Qe Ryv) — b (RIv, Qi R')
+bi(R)'v, R7'v) — b1 (Pr—1R}'v, Py_1 RJ'v)
= ap(R"v, R™) — ar(R'v, Qi Ryv)
—|—bk(IkPk,1R;n’U — PkflRZlv, PkflRZlv)
+bg (QkkaU, Pk_lRLnU) + by (RZL’U, Iy Py R — Py RZL’U).(
3.34)
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where, using (2.10), (3.10) and (3.12) of Assumptions A1) and A2), (3.21), we have
bk (@R v, P RY)| < CIQeRE 0o [ Pr-r Bl k—1 < CRE IR |2 [ B0k
< Chy {pim(kau) {1 e (1 - Pk(RL”U))}
+Cm20E (1 )™ 2 4 i, (14 b)) 112,
< Oy { uasx 9271+ C(1L— )] + Clm2KE (1 + ™2 4 mhy (1+ )™ D)} [
<p<
C+1

< Chy {max <1, > + C(m?h2 (1 + hg)?™ 2 + mhy, (1 + hk)ml)} |||v|||§k

2m+1
< C(mPhE (14 hy)*™ =2 + mhy (14 Ry)™ ) [[[0][[3 -
(3.35)
Similarly,
bk (I Pe—1 R0 — Py 1 R0, P 1 R 0)| < C(mPhi, (14 he)*™ 2 4+ mhy (1+ he)™ ) [[[oll]7 4,
(3.36)

|br (R0, I Pe—1 Ry'v— Pe_1 R{0)| < C(mPhi (1+hi)*™ 2 +mbhy, (14+hi)™ ) [[v][[3 5, (3.37)

jan (R v, Ri*v) = ar(Riv, QrRv)| < o™ (R o){1+ C[1 = pu(BP o)} [l
+CO(m2h3 (1 + hi)?™ =2 + mhe (1+ b)) [[[0]]12,.

Summarizing (3.34)-(3.38) to get (3.33).
We next give two Lemmas from which we shall prove Theorem 3.1. In proving the first

(3.38)

lemma, we used the previous Propositions in several places.
Lemma 3.1. Let Assumptions A1) and A2) hold. If

[llex—1,2m+10|[1,6—1 < €1 |||V]||1,6=1 Vv € U1, (3.39)
where 1 < 1. Then, we have
erzm1vllle < ek lllolllie Vo € Uk (3.40)
with

ek 1= max PP {(14e,_1)C(1—p)+er_1}+C (m?hi (14+hg)*™ 2 +mhy, (1+he)™ ). (3.41)
<p<

Proof. Note that
ar(er,2m1v, W)

[llex,2m+1v]|[1, = sup : (3.42)
wetr [l
ar(er,2m+1v, w) = ap (R QrRy v, w) 4 ar (R Ireg—1,2m+1Pe—1 Ry v, w)
— an(RPQu R0, w) — an (QuRy™v, R'w) )

+ap (R Iker—1,2m+1Pe—1 R0, w) — ap(Iner—1,2m+1Po—1 R} v, R w)
+ar(Qr R v, Rw) + ak(Iker—1,2m+1Pe—1 R'v, Rj'w),

ag (QkRZIU, RZL’UJ) + ag (Ikek—l,2m+lpk—1 RZL’U, kaw)
= Qg (QkR;n’U, R;”w) + ap_1 (ek_lygm_;,_l P._1 R, Pk_lR;”w) (3.44)
+bp—1(Pro—1 R w, ek—1,2m+1Pe—1 Rv) — b (R w, Ixex—1,2m+1Pe—1 R0).

In view of (3.24) and (3.20) with ¢ = 1 (see Proposition 3.2), we have

|an (R QrRjMv, w) — ax(QuRY v, Rifw)| < Cmhi (1 + o)™ || Qu Ry ||k [[ [ w1,

< Cmhy (1+ )™ | R0l [ |1w

< Cmh (14 hi)™ 1 (14 Cmbie (1 + i)™ ) [|[v]] |1k [w] ]2,

< C(mPhi (1+ he)®™ 2 + mehy (14 )™ ) [l [ [wl]]1,5- (
3.45)
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Noting that
NIk vlllie < Cllvllle (by ((3.11) in Assumption A2) and (2.21)),

in view of (3.11) (see Assumption A2)), (3.24) and (3.20) with ¢ = 1 (see Proposition 3.2) and
(3.39), we have

|ak (R Ixek—1,2m+1Pe—1 R v, w) — @ (Ixer—1,2m+1Ps—1 R0, R w)|
< Cmhy (1+ hi)™ H|[Tker—1.2m+ 1 Pe1 R[]k |[Jw] |15

3.46
< Cmhy (1+ i)™ epr [|IRF ]k [Nwl]]1k (3.46)
< C(mPhy (T4 he)*™ 2 4+ mhge (14 hi)™ ) o]l |1k ] ]]1,5-
Noting that
bi—1(Pr—1 R w, ex—1,2m+1Pe—1R"0) — b (R w, Iner—1,2m41Po—1Rv)
= b (Py—1 R'w — I, Py—1 R w, e—1,2m+1Po—1 RY') (3.47)
+bi (R w, ek—1,2m+1Ps—1 R0 — Inep—1 omi1 Pe—1 RT'V) ’
—br (Qr Ry w, er—1,2m+1Pr—1R]'v),
similarly, we have
|bk (Py—1 Rp'w — I, Pio—1 R w, ex—1,2m+1Pk—1 R0)| <
C hy ||| Pe—1 R w|||1,6-1 |||€k—1,2m+1Pe—1 RV ||1, k-1 (3.48)
< Chg et ||| Pe—1 R |1 k=1 ||| Pe—1 R w] |11 '
< C(mPhy (14 he)*™ 2 4+ mhy (14 he)™ 1) ol e w] ]2k
bk (R w, ex—1,2m+1Ps—1 B0 — Iyex—1,2m+1 Pe—1 R 0))| (3.49)
< C(mPhi (14 7?2 + mhy (14 hi)™ ) ][] [w][]1,x, '
| — be (QrR W, ex—1,2m+1Pr—1 R} '0)| (3.50)
< C(mPhi (14 he)* 2 + mhy (14 hi)™ ) ][] |[w][]1,5- '
|ak (Qr Ry, Rt w)| < C b ||| RF|ll2,5 (IR w2,k
< O\/pim(é}c”v)C[l — pe(Ry )] + C(m2h2 (14 hg)2m=2 + mhy, (1 + hy)m—1) (3.51)

< /o2 (Rpw)CIL — pr( Rpw)] + Cmh3 (1 + h)>™=2 + m (1+ b))
il el

|@k—1(er—1,2m+1Pr—1R}'v, Py_1 R w)|
< g1 [[|1Pe—1 B0 k=1 ||| Pre—1 R wl|]1,5—1

< e \/pzm(fz;yu) (14 CL = pr(B))| + COM2E (14 hi)m=2 4 mhy (1 -+ By )

xJoRm (Rw) [1+ C(1 = pr(Rypw)| + Cm2h3 (1+ hi)2m=2 + i, (1+ )™ =)

<|[[oll1e Hwll]1k-
(3.52)

For convenience, set
Ve 1= m?h}, (14 he)>™ 2 + mhy, (L+ hy)™
1k (v) = pp" (R )C[L = pr(Bio)],
§(v) = g () [1+ C(1 = pu(R))]
Combining (3.43)-(3.52), we get

lar(eramirv,w)| < Couell[olllak [l
+C /i (v) + C i /e (w) + C e [0, w1, (3.53)
ter—1 V& () + C i /& (W) + C e [l[vlll1 w1,k
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where, using Cauchy-inequality we have

C /M () + Cyi /i (w) + C g + ek-1 V&) + C g V& (w) + C i <

{Cm(v) + Cy, + 1 [Er(v) + C ]}

% ACT(w) + Ci + p1 [€(w) + C ]}/ (8:54)
< [ax, p?™ {C (1 —p) +ep—1[14+C(1 = p)]} + C .

Therefore, (3.41) follows from (3.53), (3.54) and (3.42).
Lemma 3.2. Let §; be given as (3.16). Then, for any 6 satisfying

01 <6<, (3.55)
we have
max p*" {C(L=p) +6[1+C(L-p)]} 0. (3.56)
Proof. Let
Fom(p) i= P {C(1 = p) + 011+ C(1 = p)]}. (3.57)

We see that kg, (p) has a nonzero stationary point

(m) = 2mC + 2mOC + 2m#b
P = O+ 2mlC + C + 6C

Clearly, in view of (3.55), we have p.(m) > 1. That is to say, ke,m(p) has not any stationary
point in the interval (0,1). Hence, kg n(p) attains its maximum 6 at 1 (in fact, with (3.55)
ko.m(p) is nondecreasing over the interval [0, 1]).

Proof of Theorem 8.1 Reasoning by mathematical induction. For k£ = 1, there is nothing to
show. We assume that for kK — 1 we have

(3.58)

Ep1 = ch_ a+ C jz_‘; (m*h3 (14 h;)*™ 2 +mh; (14 hy)" ") <6 < 1. (3.59)
In what follows, we consider k. Since
1>¢ep_1 > 61, (3.60)
from Lemma 3.2 we have
max p>"{(1+ex_1)C(1 —p) +ex_1} < ep_1. (3.62)

0<p<1

It follows from Lemma 3.1 that e, = g1 + C(m?h; (1 + hg)*™ =2 + mhy (1 + hy)™ 1), O
Remark 3.2. Let us make some comments on Assumptions Al) and A2) for applications.
The Assumption Al) plays the most important role in the convergence analysis of multigrid
methods, whose validity needs the full elliptic regularity. Although it was proven for symmetric
positive definite second-order elliptic problems, there are not any essential difficulties to adapt
the argument to the case of nonsymmetric and indefinite second-order elliptic problems.

Let us mention some realistic applications where the verification of Assumption A1) can be
found. For P; and Wilson’s nonconforming elements, see [6], [10], [17]. For C°(continuous)
elements with nonnested triangulations, see [9]. For other nonnested C° elements such as
bubble-enriching element and composited element, see [11]. For nonconforming elements such
as Q1° element and discretely divergence-free P; element, see [15], [19], [8]. For Mortar element,
see [26], [29], [28]. Note that there are different assumptions on the triangulations for different
nonnested cases. Readers may refer to the cited references for details.
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Assumption A2) is also true generally. For nonconforming elements, I, is usually a local
average operator or local L? projection operator, cf. [6], [10], [18] ,[20]; for nonnested conforming
elements, I is the usual interpolation operator, cf. [9]. Under some appropriate conditions on
the triangulations, Assumption A2) could be shown, see [6], [9], [10], [11], [15], [17], [18], [19],
[20], [25], [26], [27], [28], [29], [2].

Finally, we remark that (3.10) and (3.11) imply (3.12), if hj is small enough. In fact, since

ap—1(Pr—1v,w)

1 Pe—10[[1,6—1 = sup :
weUry  |wlll1k—1
ar—1(Pe_1v,w) = ap(v, iw —w) + ag(v, w)
+ bk(IkPkfl’U — Pk,lv,w) + bk(ka, w) — bk(v, w)
< Chy|||Pe=1vl1k-1 [[[wll1 -1 + C o[l [[Jw][[1,5-1,

we conclude that (3.12) holds, with a sufficiently small hy,.
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